Artykuły w czasopismach na temat „Oxygen Gas Sensors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oxygen Gas Sensors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sembodo, Shafanda Nabil, Nazrul Effendy, Kenny Dwiantoro, and Nidlom Muddin. "Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (2022): 3044. http://dx.doi.org/10.11591/ijece.v12i3.pp3044-3050.
Pełny tekst źródłaZhang, Mao Lin, Tao Ning, and Yu Hong Yang. "Gas Response Properties of Noble Metal Modified TiO2 Gas Sensor." Advanced Materials Research 706-708 (June 2013): 126–29. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.126.
Pełny tekst źródłaSun, Jingxia, Aimin Zhang, Guoqiang Gong, and Jian Jiang. "Study on calibration period of Gas Sensor in exercise Pulmonary Function instrument." Modern Electronic Technology 2, no. 3 (2018): 66. http://dx.doi.org/10.26549/met.v2i3.1133.
Pełny tekst źródłaDuan, Chao, Lejun Zhang, Zhaoxi Wu, Xu Wang, Meng Meng, and Maolin Zhang. "Study on the Deterioration Mechanism of Pb on TiO2 Oxygen Sensor." Micromachines 14, no. 1 (2023): 156. http://dx.doi.org/10.3390/mi14010156.
Pełny tekst źródłaMaskell, W. C., and B. C. H. Steele. "Solid state potentiometric oxygen gas sensors." Journal of Applied Electrochemistry 16, no. 4 (1986): 475–89. http://dx.doi.org/10.1007/bf01006843.
Pełny tekst źródłaLiu, Jianqiao, Wanqiu Wang, Zhaoxia Zhai, et al. "Influence of Oxygen Vacancy Behaviors in Cooling Process on Semiconductor Gas Sensors: A Numerical Analysis." Sensors 18, no. 11 (2018): 3929. http://dx.doi.org/10.3390/s18113929.
Pełny tekst źródłaAgustinur, Satya Cantika, Khaled Issa Khalifa, Meta Yantidewi, and Utama Alan Deta. "Literature Review: Air Oxygen Level Monitoring System." International Journal of Research and Community Empowerment 1, no. 2 (2023): 62–70. http://dx.doi.org/10.58706/ijorce.v1n2.p62-70.
Pełny tekst źródłaTutunea, Dragos, Ilie Dumitru, Oana Victoria Oţăt, Laurentiu Racila, Ionuţ Daniel Geonea, and Claudia Cristina Rotea. "Oxygen Sensor Testing for Automotive Applications." Applied Mechanics and Materials 896 (February 2020): 249–54. http://dx.doi.org/10.4028/www.scientific.net/amm.896.249.
Pełny tekst źródłaHendryani, Atika, Vita Nurdinawati, and Nashrul Dharma. "Design of Manifold with Pressure Controller for Automatic Exchange of Oxygen Gas Cylinders in Hospital." TEKNIK 42, no. 1 (2021): 45–51. http://dx.doi.org/10.14710/teknik.v42i1.33127.
Pełny tekst źródłaMoos, Ralf, Noriya Izu, Frank Rettig, Sebastian Reiß, Woosuck Shin, and Ichiro Matsubara. "Resistive Oxygen Gas Sensors for Harsh Environments." Sensors 11, no. 4 (2011): 3439–65. http://dx.doi.org/10.3390/s110403439.
Pełny tekst źródłaPlata, Desirée L., Yadira J. Briones, Rebecca L. Wolfe, et al. "Aerogel-platform optical sensors for oxygen gas." Journal of Non-Crystalline Solids 350 (December 2004): 326–35. http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.046.
Pełny tekst źródłaShu, Lin, Xuemin Wang, Dawei Yan, Long Fan, and Weidong Wu. "The Investigation of High-Temperature SAW Oxygen Sensor Based on ZnO Films." Materials 12, no. 8 (2019): 1235. http://dx.doi.org/10.3390/ma12081235.
Pełny tekst źródłaSricharoen, C., T. Waritananta, N. Wattanavicheana, R. Jaisuthi, and T. Osotchan. "Flow dependence of handheld breath analyzer for body fuel utilization monitoring." Journal of Physics: Conference Series 2431, no. 1 (2023): 012017. http://dx.doi.org/10.1088/1742-6596/2431/1/012017.
Pełny tekst źródłaPan, Hongyin, Chenyu Wang, Zexu Zhang, et al. "Oxygen vacancy-enriched ALD NiO sub-50 nm thin films for enhanced triethylamine detection." Applied Physics Letters 121, no. 11 (2022): 111603. http://dx.doi.org/10.1063/5.0104480.
Pełny tekst źródłaCervera Gómez, Javier, Jose Pelegri-Sebastia, and Rafael Lajara. "Circuit Topologies for MOS-Type Gas Sensor." Electronics 9, no. 3 (2020): 525. http://dx.doi.org/10.3390/electronics9030525.
Pełny tekst źródłaNalimova, Svetlana, Zamir Shomakhov, Anton Bobkov, and Vyaсheslav Moshnikov. "Sacrificial Doping as an Approach to Controlling the Energy Properties of Adsorption Sites in Gas-Sensitive ZnO Nanowires." Micro 3, no. 2 (2023): 591–601. http://dx.doi.org/10.3390/micro3020040.
Pełny tekst źródłaMiyata, Shigeru. "Universal Exhaust Gas Oxygen Sensor and Other Sensors for Engine Control." Journal of The Japan Institute of Marine Engineering 39, no. 11 (2004): 759–64. http://dx.doi.org/10.5988/jime.39.759.
Pełny tekst źródłaSuematsu, Kouichi, Takanori Honda, Masayoshi Yuasa, Tetsuya Kida, Kengo Shimanoe, and Noboru Yamazoe. "Effect of Foreign Metal Doping on the Gas Sensing Behaviors of SnO2-Based Gas Sensor." Advanced Materials Research 47-50 (June 2008): 1502–5. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1502.
Pełny tekst źródłaPaz Alpuche, Emilio, Pascal Gröger, Xuetao Wang, Thomas Kroyer, and Stefanos Fasoulas. "Influence of the Sputtering Technique and Thermal Annealing on YSZ Thin Films for Oxygen Sensing Applications." Coatings 11, no. 10 (2021): 1165. http://dx.doi.org/10.3390/coatings11101165.
Pełny tekst źródłaMüller, Gerhard, and Giorgio Sberveglieri. "Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration." Chemosensors 10, no. 5 (2022): 171. http://dx.doi.org/10.3390/chemosensors10050171.
Pełny tekst źródłaLin, Liyang, Susu Chen, Tao Deng, and Wen Zeng. "Oxygen-Deficient Stannic Oxide/Graphene for Ultrahigh-Performance Supercapacitors and Gas Sensors." Nanomaterials 11, no. 2 (2021): 372. http://dx.doi.org/10.3390/nano11020372.
Pełny tekst źródłaHerrmann, Julia, Gunter Hagen, Jaroslaw Kita, Frank Noack, Dirk Bleicker, and Ralf Moos. "Multi-gas sensor to detect simultaneously nitrogen oxides and oxygen." Journal of Sensors and Sensor Systems 9, no. 2 (2020): 327–35. http://dx.doi.org/10.5194/jsss-9-327-2020.
Pełny tekst źródłaRoy, Sandip K., Konstantin V. Vassilevski, Christopher J. O'Malley, Nick G. Wright, and Alton B. Horsfall. "Discriminating High k Dielectric Gas Sensors." Materials Science Forum 778-780 (February 2014): 1058–62. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.1058.
Pełny tekst źródłaKim, Seongyul, Sunil Pal, Pulickel M. Ajayan, Theodorian Borca-Tasciuc, and Nikhil Koratkar. "Electrical Breakdown Gas Detector Featuring Carbon Nanotube Array Electrodes." Journal of Nanoscience and Nanotechnology 8, no. 1 (2008): 416–19. http://dx.doi.org/10.1166/jnn.2008.187.
Pełny tekst źródłaWang, Da Yu, and Eric Detwiler. "Electrode dynamic study of exhaust gas oxygen sensors." Sensors and Actuators B: Chemical 99, no. 2-3 (2004): 571–78. http://dx.doi.org/10.1016/j.snb.2004.01.009.
Pełny tekst źródłaLiu, Xiaohui, Wei Sun, Luyi Zou, et al. "Neutral cuprous complexes as ratiometric oxygen gas sensors." Dalton Trans. 41, no. 4 (2012): 1312–19. http://dx.doi.org/10.1039/c1dt11777g.
Pełny tekst źródłaSouri, M., M. N. Azarmanesh, E. Abbaspour Sani, M. Nasseri, and Kh Farhadi. "An analytical study of resistive oxygen gas sensors." Journal of Physics: Condensed Matter 20, no. 14 (2008): 145204. http://dx.doi.org/10.1088/0953-8984/20/14/145204.
Pełny tekst źródłaPalmeira, J., L. Lopes, A. J. Silva, P. A. S. Jorge, and A. Oliva. "Optimization of Ormosil Glasses for Luminescence Based Dissolved Oxygen Sensors." Solid State Phenomena 161 (June 2010): 1–11. http://dx.doi.org/10.4028/www.scientific.net/ssp.161.1.
Pełny tekst źródłaIswanto, Iswanto, Alfian Ma’arif, Bilah Kebenaran, and Prisma Megantoro. "Design of gas concentration measurement and monitoring system for biogas power plant." Indonesian Journal of Electrical Engineering and Computer Science 22, no. 2 (2021): 726. http://dx.doi.org/10.11591/ijeecs.v22.i2.pp726-732.
Pełny tekst źródłaPlatonov, Vadim, Abulkosim Nasriddinov, and Marina Rumyantseva. "Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase." Polymers 14, no. 17 (2022): 3481. http://dx.doi.org/10.3390/polym14173481.
Pełny tekst źródłaEffendy, Nazrul, Eko David Kurniawan, Kenny Dwiantoro, Agus Arif, and Nidlom Muddin. "The prediction of the oxygen content of the flue gas in a gas-fired boiler system using neural networks and random forest." IAES International Journal of Artificial Intelligence (IJ-AI) 11, no. 3 (2022): 923. http://dx.doi.org/10.11591/ijai.v11.i3.pp923-929.
Pełny tekst źródłaMohammadi, M. R., Mohammad Ghorbani, and Derek J. Fray. "Influence of Secondary Oxide Phases on Microstructural and Gas Sensitive Properties of Nanostructured Titanium Dioxide Thin Films." Advanced Materials Research 47-50 (June 2008): 41–44. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.41.
Pełny tekst źródłaSapkota, Raju, Pengjun Duan, Tanay Kumar, Anusha Venkataraman, and Chris Papadopoulos. "Thin Film Gas Sensors Based on Planetary Ball-Milled Zinc Oxide Nanoinks: Effect of Milling Parameters on Sensing Performance." Applied Sciences 11, no. 20 (2021): 9676. http://dx.doi.org/10.3390/app11209676.
Pełny tekst źródłaEvans, John T., Michael P. Sama, Joseph L. Taraba, and George B. Day. "Automated Calibration of Electrochemical Oxygen Sensors for Use in Compost Bedded Pack Barns." Transactions of the ASABE 60, no. 3 (2017): 957–62. http://dx.doi.org/10.13031/trans.12099.
Pełny tekst źródłaLiu, Chih-Yi, Annada Sankar Sadhu, Riya Karmakar, et al. "Strongly Improving the Sensitivity of Phosphorescence-Based Optical Oxygen Sensors by Exploiting Nano-Porous Substrates." Biosensors 12, no. 10 (2022): 774. http://dx.doi.org/10.3390/bios12100774.
Pełny tekst źródłaShu, Lin, Tao Jiang, Yudong Xia, Xuemin Wang, Dawei Yan, and Weidong Wu. "The Investigation of a SAW Oxygen Gas Sensor Operated at Room Temperature, Based on Nanostructured ZnxFeyO Films." Sensors 19, no. 13 (2019): 3025. http://dx.doi.org/10.3390/s19133025.
Pełny tekst źródłaZhang, Peng, Shuang Cao, Ning Sui, et al. "Influence of Positive Ion (Al3+, Sn4+, and Sb5+) Doping on the Basic Resistance and Sensing Performances of ZnO Nanoparticles Based Gas Sensors." Chemosensors 10, no. 9 (2022): 364. http://dx.doi.org/10.3390/chemosensors10090364.
Pełny tekst źródłaShujah, T., M. Ikram, A. R. Butt, et al. "H2S Gas Sensor Based on WO3 Nanostructures Synthesized via Aerosol Assisted Chemical Vapor Deposition Technique." Nanoscience and Nanotechnology Letters 11, no. 9 (2019): 1247–56. http://dx.doi.org/10.1166/nnl.2019.3011.
Pełny tekst źródłaZhang, Ji, Xu Li, Qinhe Pan, Tong Liu, and Qingji Wang. "Highly Selective Gas Sensor Based on Litchi-like g-C3N4/In2O3 for Rapid Detection of H2." Sensors 23, no. 1 (2022): 148. http://dx.doi.org/10.3390/s23010148.
Pełny tekst źródłaLi, Wenting, and Gu Xu. "Unexpected Selectivity of UV Light Activated Metal-Oxide-Semiconductor Gas Sensors by Two Different Redox Processes." Journal of Sensors 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/4306154.
Pełny tekst źródłaDecataldo, Francesco, Filippo Bonafè, Federica Mariani, et al. "Oxygen Gas Sensing Using a Hydrogel-Based Organic Electrochemical Transistor for Work Safety Applications." Polymers 14, no. 5 (2022): 1022. http://dx.doi.org/10.3390/polym14051022.
Pełny tekst źródłaChang, Sheng-Po, Ren-Hao Yang, and Chih-Hung Lin. "Development of Indium Titanium Zinc Oxide Thin Films Used as Sensing Layer in Gas Sensor Applications." Coatings 11, no. 7 (2021): 807. http://dx.doi.org/10.3390/coatings11070807.
Pełny tekst źródłaSun, Kai, Guanghui Zhan, Hande Chen, and Shiwei Lin. "Low-Operating-Temperature NO2 Sensor Based on a CeO2/ZnO Heterojunction." Sensors 21, no. 24 (2021): 8269. http://dx.doi.org/10.3390/s21248269.
Pełny tekst źródłaSHIN, W., N. IZU, I. MATSUBARA, and N. MURAYAMA. "Millisecond-order response measurement for fast oxygen gas sensors." Sensors and Actuators B: Chemical 100, no. 3 (2004): 395–400. http://dx.doi.org/10.1016/j.snb.2004.02.007.
Pełny tekst źródłaWu, Haiyang, Xiangrui Bu, Minming Deng, et al. "A Gas Sensing Channel Composited with Pristine and Oxygen Plasma-Treated Graphene." Sensors 19, no. 3 (2019): 625. http://dx.doi.org/10.3390/s19030625.
Pełny tekst źródłaSun, Peng. "Gas Sensors Based on Oxide Semiconductors with Porous Nanostructures." Proceedings 14, no. 1 (2019): 13. http://dx.doi.org/10.3390/proceedings2019014013.
Pełny tekst źródłaPriyadarshni, Nivedita, Soumen Mandal, Supradeepa Panual Ganesan, Saurav Halder, Debolina Roy, and Nripen Chanda. "Printed oxygen gas sensor using copper-DTDTPA solid electrolyte." Analyst 146, no. 6 (2021): 1839–43. http://dx.doi.org/10.1039/d0an02391d.
Pełny tekst źródłaBradke, Brian, and Bradford Everman. "Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR)." Biosensors 10, no. 4 (2020): 34. http://dx.doi.org/10.3390/bios10040034.
Pełny tekst źródłaPeyton Jones, J. C., and R. A. Jackson. "Potential and Pitfalls in the Use of dual exhaust gas oxygen sensors for three-way catalyst monitoring and control." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, no. 6 (2003): 475–88. http://dx.doi.org/10.1243/095440703766518104.
Pełny tekst źródłaMaulana, Sony Heri, and Eko Budi Setiawan. "Pemanfaatan Sensor Pada Smartphone Android Untuk Rekomendasi Pembibitan Tanaman." ULTIMATICS 10, no. 2 (2019): 85–92. http://dx.doi.org/10.31937/ti.v10i2.957.
Pełny tekst źródła