Rozprawy doktorskie na temat „Oxygen Gas Sensors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 44 najlepszych rozpraw doktorskich naukowych na temat „Oxygen Gas Sensors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Blanchard, Jeffrey Allen 1974. "Specific gas sensing using zirconia amperometric oxygen sensors". Thesis, The University of Arizona, 1998. http://hdl.handle.net/10150/278662.
Pełny tekst źródłaMartínez, Hurtado Juan Leonardo. "Gas-sensitive holographic sensors". Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244643.
Pełny tekst źródłaIoannou, Andreas Stylianou. "Development of solid state thick film zirconia oxygen gas sensors". Thesis, Middlesex University, 1992. http://eprints.mdx.ac.uk/6549/.
Pełny tekst źródłaGali, Pradeep. "Development of Indium Oxide Nanowires as Efficient Gas Sensors". Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103318/.
Pełny tekst źródłaKRIK, Soufiane. "Low-operating temperature chemiresistive gas sensors: Fabrication and DFT calculations". Doctoral thesis, Università degli studi di Ferrara, 2021. http://hdl.handle.net/11392/2488099.
Pełny tekst źródłaI sensori di gas basati sugli ossidi metallici semiconduttori (MOX) si sono rivelati negli ultimi anni una tecnologia estremamente vantaggiosa. Nonostante i progressi fatti in questo campo, questi dispositivi presentano ancora alcuni punti deboliche spingono la ricerca ad effettuare ulteriori indagini per perfezionare il loro funzionamento. I ricercatori hanno cercato di risolvere questi svantaggi in diversi modi, focalizzandosi sullo sviluppo di MOX innovativi, tra cui il drogaggio tramite l’utilizzo di additivi o l’introduzione nel materiale di vacanze di ossigeno a concentrazione controllata. Questa’alternativa sta attirando l’attenzione di molti gruppi di ricerca, anche se, ad oggi, la letteratura scientifica presenta una mancanza di studi su come la disposizione e concentrazione di vacanze di ossigeno influenzano le performance di sensing e solo alcuni lavori preliminari hanno portato a risultati interessanti. Per cercare di ovviare ai limiti dei sensori MOX, una seconda via è stata lo sviluppo e di materiali 2D basati su solfuri metallici, grafene o similari. Il fosforene è uno dei migliori candidati per tale applicazione tecnologica, poiché mostra un'attività elettrica anche a temperatura ambiente, anche se studi preliminari hanno evidenziato un alto tasso di degradazione nel tempo del materiale durante il suo utilizzo. L'obiettivo di questo lavoro è quello di diminuire la temperatura di funzionamento di sensori di gas basati su SnO2 sfruttando il controllo delle vacanze di ossigeno. A tale scopo, è stato fatto inizialmente uno studio della letteratura e un’analisi analitica nell’ambito della DFT per indagare come le vacanze di ossigeno influenzano le proprietà fisico-chimiche del materiale. È stato studiato l'effetto di due diverse concentrazioni di vacanze di ossigeno sulle proprietà chimico-fisiche dello SnO2 bulk. Successivamente è stata studiata la formazione della vacanze in superficie per investigare l'adsorbimento di molecole di ossigeno dall'atmosfera circostante sulla superficie dello SnO2 è stato sintetizzato tramite sintesi sol-gel e la riduzione è stata ottenuta tramite trattamento termico in presenza di H2 a diverse temperature. I risultati hanno mostrato un'alta risposta dei sensori basati su SnO2-x in presenza di basse concentrazioni di NO2 spostando a 130 °C la temperatura ottimale di funzionamento del dispositivo. Questa diminuzione della temperatura operativa implica una diminuzione del consumo energetico del dispositivo Come menzionato precedentemente, il fosforene è uno dei materiali 2D più promettenti per lo sviluppo di sensori di gas chemoresistivi, ma presenta ancora alcuni svantaggi. Molti studi sono stati sviluppati sulla decorazione del fosforene con atomi metallici al fine di migliorare le sue prestazioni per diverse applicazioni tecnologiche, ma non sono stati ancora condotti studi specifici su questa particolare forma di fosforene decorato per applicazioni di sensoristica gassosa. Nello studio qui proposto, sono stati eseguiti calcoli DFT per spiegare come il nichel influenzi le proprietà elettroniche del fosforene, poiché la decorazione con nichel ha mostrato una migliore stabilità del sensore e un’alta sensibilità all’NO2. Tramite simulazione DFT è stato possibile investigare l'adsorbimento delle molecole di ossigeno sul Fosforene tal quale e decorato con nichel. I risultati hanno evidenziato che le molecole di ossigeno si dissociano sullo strato di fosforene tal quale e reagiscono con gli atomi di fosforo, ossidandolo, mentre in presenza dei cluster di nichel è quest’ultimo a svolgere il ruolo di catalizzatore, interagendo con le molecole di ossigeno. Infine, il meccanismo di interazione tra NO2 e la superficie del fosforene tal quale e funzionalizzato è stato caratterizzato teoricamente studiando il trasferimento di carica che avviene sulla superficie del materiale in esame.
Benammar, Mohieddine. "Development of instrumentation incorporating solid state gas sensors for measurement of oxygen partial pressure". Thesis, Middlesex University, 1991. http://eprints.mdx.ac.uk/6532/.
Pełny tekst źródłaSpirig, John Vincent. "A new generation of high temperature oxygen sensors". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1188570727.
Pełny tekst źródłaXiong, Linhongjia. "Amperometric gas sensing". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a8dcbf36-14b6-4627-b380-3b81e83d446c.
Pełny tekst źródłaPoudel, Chhetri Tej Bahadur. "EFFECTS OF LIGHT ILLUMINATION, TEMPERATURE AND OXYGEN GAS FLOW ON THE ELECTRICAL TRANSPORT PROPERTIES OF Sb-DOPED ZnO MICRO AND NANOWIRES". Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501776637539529.
Pełny tekst źródłaBrien, Stephanie. "Characterisation of a novel planar single cell zirconium dioxide oxygen gas sensor". Thesis, University of the West of Scotland, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.732972.
Pełny tekst źródłaAnand, Manoj. "Study of tin oxide for hydrogen gas sensor applications". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001003.
Pełny tekst źródłaSotter, Solano Edgar Alexander. "Development of a thick film gas sensor for oxigen detection at trace level". Doctoral thesis, Universitat Rovira i Virgili, 2006. http://hdl.handle.net/10803/8471.
Pełny tekst źródłaEn alguns d'aquests, els nivells d'oxigen han de ser detectats i controlats fins i tot en el rang de les ppm. Encara que ja es coneguin molts mètodes, ja provats per a la detecció d'oxigen, la majoria d'ells són costosos i complexes. Altres mètodes més accessibles com els sensors Lambda i les cel·les electroquímiques també presenten alguns problemes. Els primers requereixen d'elevades concentracions d'oxigen o bé de controls de temperatura força precisos amb la finalitat de treballar sense interferència d'altres gasos. Els segons es poden veure afectats per temps d'exposició massa perllongats a gasos "àcids" com el diòxid de carboni i no es recomana el seu ús en atmosferes amb un contingut de més del 25% d'aquests gas.
Són moltes les avantatges dels sensors de gasos: baix cost, mida reduïda i solidesa entre d'altres. Això fa que aquests dispositius despuntin com a solució per a la detecció d'oxigen. Molts autors han fet esment a la detecció d'oxigen a nivells de ppm emprant aquests tipus de sensors. De totes formes, la majoria s'han desenvolupat mitjançant tecnologia de capa fina. En aplicacions industrials, la tecnologia més usada és la de capa gruixuda, ja que aquests sensors són més fàcils de fabricar i de dopar que els de capa fina. En el cas dels sensors de capa gruixuda la detecció de traces d'oxigen és una tasca encara difícil i es necessita treballar a elevades temperatures (> 700 ºC).
El mecanisme de detecció d'oxigen en els sensors basats en òxids semiconductors es basa en la interdependència de la conductivitat elèctrica d'aquests òxids i la pressió parcial d'oxigen en l'ambient. El diòxid de titani és l'òxid semiconductor que més s'usa en la detecció d'oxigen. Els sensors basats en òxid de titani (en fase cristal·lina rutil) necessiten d'elevades temperatures per a un correcte funcionament (700 ºC-1000 ºC), ja que la detecció d'oxigen en la fase rutil es deu principalment a la difusió dels ion d'aquests gas en el volum del material. Per a que es produeixi la reacció en el volum o propi cos del material es necessiten elevades temperatures. Això comporta un consum també elevat de potència, que a la llarga serà un problema en determinades aplicacions industrials.
Al tenir l'òxid de titani en fase anatasa més electrons lliures, la reacció de l'oxigen amb aquests material es pot associar a una reacció superficial. Aquesta reacció es pot donar a temperatures més baixes, al voltant dels 400 ºC-500 ºC i per tant, mantenir la fase anatasa en l'òxid permet disminuir la temperatura de treball, la qual cosa és desitjable per al disseny del sensor.
Tal i com es reflecteix en algunes referències bibliogràfiques, en dopar l'òxid de titani amb ions pentavalents com el Nb5+, aquests ions s'introdueixen en l'estructura cristallina de l'òxid de titani en fase anatasa, creant certa tensió interna que provoca una resistència al canvi de fase anatasa a rutil, inhibint el creixement del gra.
Per altra banda, també s'ha posat de manifest en moltes fonts que el dopatge d'òxid de titani amb niobi augmenta la sensibilitat d'aquests material vers l'oxigen. Aquests dopatge fa que l'òxid presenti una impedància menor, per la qual cosa es facilita el disseny de l'electrònica associada al sensor.
Tenint en compte aquestes dues premisses, un dels objectius d'aquesta tesi ha estat la síntesi, mitjançant la tècnica del sol-gel, de diferents tipus d'òxid de titani per a la fabricació d'un sensor d'oxigen que operi en una marge de temperatura relativament moderat (300 ºC-600 ºC). Es treballà amb òxids sense dopar i amb òxids dopats amb un 3 % de niobi.
Cadascun es calcinà a diferents temperatures: 600 ºC, 700 ºC, 800 ºC i 900 ºC.
Amb l'objectiu de correlacionar l'estructura i la sensibilitat i selectivitat dels òxids sintetitzats, aquests es van sotmetre a diferents tècniques de caracterització. En primer lloc l'espectrometria de plasma acoblada inductivament (ICP) s'utilitzà amb el fi de determinarne la composició química i quantificar la proporció de cada component. En segon lloc també es va fer servir la difracció de raigs X (XRD) per a determinar les fases cristallines de l'òxid i la mida dels cristalls. També es va analitzar la porositat i es van fer mesures de l'àrea superficial (BET) dels nanopols . En darrer lloc, la microscopia d'escàner d'electrons (SEM) fou aplicada amb la finalitat d'obtenir detalls de l'estructura de la capa activa i de la grandària dels grans. Per a l'anàlisi quantitatiu i també qualitatiu de les capes s'utilitzà l'espectroscopia de dispersió d'energia per raig X (EDS).
Com a substrat, es va desenvolupar un substrat d'alúmina que pot albergar quatre capes actives treballant a una mateixa temperatura, conformant així una matriu de sensors.
Treballant amb aquests substrat aparegueren certs inconvenients (relacionats amb l'encapsulat del sensor) operant a temperatures superiors als 450 ºC. Això comportà un retard en l'obtenció de resultats amb aquests substrat i es decidí introduir-ne un de nou, resistent a altes temperatures i adquirit en l'Institut Kurchatov (Moscou, Rússia). Tots els resultats presentats en aquesta tesi es van obtenir amb l'ús d'aquests últim substrat. En l'actualitat s'està treballant amb el primer d'ells.
Un cop fabricat els sensors, es provà la sensibilitat d'aquests en un sistema de flux continu. Es provaren tres diferents concentracions: 20 ppm d'O2 amb balanç de N2, 30 ppm d' O2 amb balanç CO2 i 15 ppm d'O2 amb balanç CO2. També es testaren les respostes dels sensors cap a altres gasos interferents (SO2, CH4, H2S i C2H4) per a determinar la selectivitat d'aquests sensor vers l'O2 en presència d'interferents.
La millor resposta vers l'oxigen s'aconseguí amb els sensors dopats i calcinats a 700 ºC. Aquesta millora es pot atribuir al dopatge amb niobi. Aquets metall inhibeix el creixement del gra i per tant s'aconsegueixen òxids amb major àrea superficial. Un altre motiu pot ser el retard del pas de la fase rutil a la fase anatasa induït també pel dopatge de Niobi.
La sensibilitat denotada pels òxids dopats amb niobi i calcinats a 600 ºC fou molt baixa tot i que en principi aquests òxids presentaven característiques físiques potencialment millors que els calcinats a 700 ºC. Aquests fet es pot explicar degut a la presència d' alguns depòsits de carboni que no es pogueren eliminar durant la calcinació. La presència d'aquests dipòsits fou confirmada per l'anàlisi Raman d'aquests materials. Les estructures de carboni presents en aquests residus cobreixen gran part de la superfície de l'òxid i contribueixen a la desactivació del procés catalític que té lloc en aquesta superfície.
Concernint a les mesures realitzades sota atmosfera de CO2, els òxids dopats amb niobi i calcinats a 700 ºC també respongueren a l'oxigen. La resposta en el cas de 15 ppm d'O2 s'invertí del tipus oxidant a tipus reductor. A baixes concentracions d'oxigen els ion CO- provinents de la dissociació del CO2 s'adsorbeixen a la superfície del material actiu.
L'oxígen, enlloc de deplexionar-se, interactua amb aquests ions per a formar CO2, alliberant electrons a la capa activa i això fa que la natura de la resposta sigui reductora. Les respostes vers altres gasos contaminants com SO2, CH4, H2S foren tipus reductor com era esperat, la qual cosa indicava que el canvi de resposta no era atribuïble al canvi de l'òxid conductor de tipus n a tipus p, si no més aviat en un canvi en la naturalesa de la reacció.
Amb l'objectiu de millorar la sensibilitat de l'òxid dopat es provà d'incrementar la seva àrea superficial i porositat utilitzant un surfactant com a motlle durant el procés de síntesi. El surfactant usat fou la dodecilamina, que forma una estructura miscel·lar que fa de motlle en el procés de nucleació de l'òxid, generant així grans menors amb major àrea superficial i major porositat. De tres diferents temptatives, els millors resultats es varen obtenir quan s'addicionaven 8 ml de dodecilamina a la solució del sol-gel immediatament desprès de la hidròlisi dels alcòxids. Les proves XRD mostraren que l'addició del surfactant retarda encara més la transició de les fases rutil a anatasa i també inhibeix el creixement dels cristalls. Aquests resultats es recolzen sobre les micrografies del SEM i l'anàlisi BET, que revelaren un creixement en la porositat del material i un gra menor. Malgrat aquests resultats prometedors en la determinació estructural, les mesures de l'oxigen amb aquests sensors revelaren una poca sensibilitat dels sensors modificats amb el surfactant. Els espectres RAMAN mostraren alguns pics corresponents a diferents morfologies de carboni.
Els dipòsits d'aquests material en la superfície, tal i que com s'ha mencionat anteriorment, inhibeixen la resposta de la capa activa vers l'oxigen.
El control de los niveles de oxígeno es una etapa crítica en muchos procesos industriales. En algunos de estos procesos, los niveles de oxígeno deben ser detectados y controlados incluso en el rango de las ppm. Aunque existen varios métodos ya probados para la detección de oxígeno en estos sistemas de control, la mayoría de ellos son costosos y complejos. Otros métodos de detección más accesible como los sensores Lambda o las celdas electoquímicas también presentan problemas: los primeros requieren de altas concentraciones de oxígeno, o de controles de temperatura bastante precisos para poder trabajar sin interferencias de otros gases Los segundos pueden verse afectados por una prolongada exposición a gases "ácidos" como el dióxido de carbono y no se recomienda para uso continuo en atmósferas con un contenido de mas del 25 % de dicho gas.
Debido a muchas ventajas tales como su bajo costo, tamaño reducido y solidez, los sensores basados en semiconductores aparecen como una solución para la detección de oxígeno. Algunos autores han reportado la detección de oxígeno a niveles ppm empleando este tipo de sensores. Sin embargo, la mayoría de ellos han sido desarrollados mediante tecnología de capa fina. En aplicaciones industriales, la tecnología más usada es la de capa gruesa, ya que estos sensores son más fáciles de fabricar y de dopar que los sensores de capa fina. En los sensores de capa gruesa, la detección de trazas de oxígeno es aun una tarea difícil de alcanzar, siendo normalmente necesarias altas temperaturas (> 700 ºC) para lograrlo.
El mecanismo de detección de oxígeno en los sensores basados en óxidos semiconductores esta basado en la fuerte dependencia de la conductividad eléctrica de estos materiales a la presión parcial de oxígeno en el ambiente. El dióxido de titanio es el óxido semiconductor más ampliamente usado en la detección de oxígeno. Los sensores basados en TiO2 (usualmente en la fase cristalina rutilo) necesitan trabajar a elevadas temperaturas (700 ºC - 1000 ºC), ya que la detección de oxígeno en la fase rutile se debe principalmente a la difusión de los iones de oxígeno en el volumen del material. Para que se produzca la reacción en el volumen hacen falta altas temperaturas, lo que conlleva un alto consumo de potencia que puede ser un handicap en determinadas aplicaciones industriales.
Por otro lado, el dióxido de titanio en fase anatase posee más electrones libres, así que la detección de oxígeno en este material puede asociarse a una reacción de superficie, la cual tiene lugar a no tan altas temperaturas (400 ºC - 500 ºC).Por lo tanto, puede concluirse que mantener la fase anatase permitiría la detección de oxígeno a temperaturas moderadas, lo cual es deseable para el diseño del sensor.
Se ha reportado que cuando el TiO2 es dopado con iones pentavalentes, i.e. Nb5+, tales iones se introducen en la estructura cristalina de dicho óxido en estado anatase, obstruyendo la transformación de dicha fase a rutile, inhibiendo el crecimiento del grano.
También se ha reportado que el dopado con niobio aumenta la sensibilidad del dióxido de titanio hacia el oxígeno. El óxido dopado también presenta una impedancia más baja a temperaturas de trabajo menores, por lo que se facilita el diseño de la electrónica asociada al sensor.
Basándonos en estos puntos, uno de los objetivos de esta tesis fue la síntesis, mediante un proceso de sol-gel, de diferentes tipos de dióxido de titanio para la fabricación de un sensor de oxígeno que opere en un margen de temperaturas moderado (300 ºC - 600 ºC). Para ello se desarrollaron óxidos dopados con un 3 % de niobio y óxidos sin dopar.
Cada uno de ellos fue calcinado a diferentes temperaturas: 600 ºC, 700 ºC, 800 ºC y 900 ºC.
Con el objetivo de correlacionar la estructura y la sensibilidad y selectividad de los óxidos sintetizados, estos se sometieron a diferentes técnicas de caracterización. La espectroscopia de Plasma Acoplado Inductivamente (ICP) fue empleada para determinar la composición química de las muestras y cuantificar la porción de cada componente. La Difracción de Rayos-X (XRD) fue usada para establecer las fases presentes en la estructura cristalina del material y para determinar el tamaño el tamaño de los cristales en cada material. Se realizaron medidas de área BET con los nanopolvos para conocer el área superficial y la porosidad de cada material. La Microscopia de Escáner de Electrones (SEM) fue aplicado para obtener detalles de la estructura de la capa y del tamaño de las partículas.
Para hacer un análisis cuantitativo y cualitativo de las capas se utilizó la Espectroscopia de Dispersión de Energía por Rayos -X (EDS).
Para realizar las medidas, se desarrolló un substrato de alúmina para ser usado en el sensor de oxígeno. Este substrato puede soportar cuatro capas activas trabajando a la misma temperatura formando una matriz de sensores. Sin embargo, debido a algunos problemas relacionados con el encapsulado del substrato cuando las temperaturas de trabajo sobrepasaban los 450 ºC, su empleo para el sensor de oxígeno se retrasó y los resultados obtenidos con el mismo no estaban lo suficientemente completos para ser presentados en este trabajo. Para solventar la necesidad de un substrato que pudiese resistir altas temperaturas para aplicaciones de detección de oxígeno, se introdujo un nuevo substrato adquirido en el Instituto Kurchatov (Moscú - Rusia). Los resultados expuestos en este trabajo se obtuvieron con este último substrato.
Una vez fabricados los sensores, las capacidades de sensado de los materiales fueron probadas. La sensibilidad hacia el oxígeno fue medida en tres situaciones diferentes: 20 ppm de O2 en balance de N2, 30 ppm y 15 ppm de O2 en balance de CO2. Las respuestas de los sensores hacia otros gases contaminantes (SO2, CH4, H2S y C2H4) también fueron probadas para observar la influencia de dichos gases en el proceso de detección de oxígeno.
La mejor respuesta hacia el oxígeno se consiguió con los sensores basados en materiales dopados calcinados a 700 ºC. Esto puede atribuirse a los iones de niobio que inhiben el crecimiento del grano y por lo tanto producen un aumento del área superficial de dichos materiales, que beneficia al mecanismo de detección, y a su fase cristalina, mayoritariamente anatase, la cual permite la detección a las temperaturas deseadas (300 ºC - 600 ºC). Las especies de niobio también contribuyen al proceso de catálisis.
Otro motivo puede ser la fase cristalina, mayoritariamente anatase, la cual permite la detección a las temperaturas deseadas (300 ºC - 600 ºC).
Por otro lado, los materiales dopados calcinados a 600 ºC tuvieron una pobre respuesta, a pesar de que estos tienen mejores características físicas que los calcinados a 700 ºC. Este hecho puede explicarse por la presencia de algunos depósitos de carbono, residuales del proceso de síntesis, que no pudieron ser eliminados durante la calcinación. La presencia de estos depósitos fue confirmada mediante los análisis Raman de estos materiales.
Ya que estas estructuras de carbono cubren gran parte de la superficie del material, y que además son poco catalíticas, el resultado es una desactivación de la catálisis.
Concerniente a las medidas realizadas en atmósfera de CO2, los óxidos dopados con niobio y calcinados a 700 ºC también respondieron al oxígeno. Sin embargo, la respuesta hacia 15 ppm de oxígeno presentó una inversión de tipo oxidante a tipo reductora. A bajas concentraciones de oxígeno, los iones de CO-, provenientes de la disociación del CO2, se adsorben en la superficie del material activo. El oxígeno, en lugar de deplexionarse, interactúa con estos iones para formar CO2, liberando electrones a la capa activa, dando lugar así a una respuesta reductora. Por otra parte, las respuestas hacia otros gases contaminantes tales como H2S, SO2 y CH4 fueron de tipo reductora, como era esperado, lo cual indica que el cambio de respuesta no puede atribuirse al cambio del óxido conductor de tipo n a tipo p, sino más bien a un cambio en la naturaleza de la reacción.
Para mejorar la sensibilidad de los óxidos dopados, se intentó incrementar su área superficial y porosidad usando un surfactante como plantilla o molde durante el proceso de síntesis. El surfactante empleado fue dodecylamina, la cual forma una estructura micelar que hace de molde durante el proceso de nucleación del óxido, generando así granos menores con mayor área superficial y mayor porosidad. Entre tres diferentes intentos, los mejores resultados se obtuvieron cuando 8ml de dodecylamina fueron agregados a la solución del sol-gel inmediatamente después de la hidrólisis de los alkóxidos. Los análisis de XRD de este material mostraron que la adición de surfactante retarda aun más la transición de fase de anatase a rutile y también evita el crecimiento de los cristalitos. Estos resultados son soportados por las microfotografías de SEM y los análisis BET, los cuales mostraron un retardo en el crecimiento del grano y un incremento del área superficial. El área BET también evidenció un incremento de la porosidad del óxido. Sin embargo, los resultados de las medidas de oxígeno revelaron una pobre respuesta de los sensores basados en el óxido en cuestión. Los espectros Raman de este material mostraron algunos picos correspondientes a carbono con diferentes morfologías. Como fue explicado previamente, estos depósitos de carbono retardan la respuesta de este óxido al oxígeno.
Control of oxygen levels is a critical step in many industrial processes. In some of these processes, levels of oxygen must be detected and controlled even in ppm range.
Although there are several probed methods for oxygen detection in these control systems, most of them are expensive and complex. More accessible methods as Lambda sensors or electrochemical cells present also problems: first ones need high concentration of oxygen, or an extremely accurate temperature control, to work without interference from other gases.
Second ones may be affected by prolonged exposure to "acid" gases such as carbon dioxide and it is not recommended for continuous use in atmospheres which contain more than 25% of CO2.
Due to many advantages as low cost, small size and robustness, semiconductor sensors appear as a good solution for oxygen detection. Some authors had reported detection of oxygen at ppm levels employing this kind of sensors. However, most of them were made through thin film technology. For industrial applications, the most usual technology is thick film, because it is easier to fabricate and to dope than thin film sensors. For thick film sensors, detection of traces of oxygen is still a very difficult goal to reach and usually high temperatures (>700 ºC) are needed.
The basic oxygen sensitivity mechanism of oxygen sensors based on semiconductor oxides is their strong dependencies of electrical conductivity on oxygen partial pressures.
Titanium dioxide is the semiconductor material most widely used for oxygen detection.
Titania (usually rutile crystalline phase) based sensors need to work at high temperatures (700 ºC - 1000 ºC), since oxygen detection in rutile state is mainly due to diffusion of oxygen ions in the bulk of the material. For bulk reaction it is necessary to work at these high temperatures, leading to high power consumption, which is not desirable for electronic applications.
On the other hand, anatase state Titania has more free electrons. So, oxygen detection can be associated to surface reactions, which take place at not so high temperatures (400 ºC - 500 ºC). Then, it can be derived that maintaining an anatase structure would allow the detection of oxygen at medium temperatures, which is desirable for sensor design.
It had been reported that when Titania is doped with pentavalent impurity ions, i.e. Nb5+, such ions get into the anatase Titania crystalline structure, giving rise to a hindering in the phase transformation to rutile and an inhibition in grain growth. It has been also reported that Nb-doped Titania shows higher sensitivity towards oxygen than pure TiO2. The doped material also shows lower impedance at low operating temperatures and hence, it is easier to design associated electronic circuitry.
In this work pure Titania and Niobium doped Titania nanopowders were synthesized by a simplified sol-gel route. Based on the literature, the doping concentration in doped materials was set to Nb/Ti = 3 at%. In order to set the crystalline structure of the active materials, they were calcined at four different temperatures: 600 ºC, 700 ºC, 800 ºC and 900 ºC.
The obtained materials were characterized by different techniques. The objective of these characterizations was to obtain information about the material structure that could be related to its detection properties. Inductively Coupled Plasma (ICP) spectroscopy was employed to determine the chemical composition of the samples and quantify the amount of each component. X-ray Diffraction (XRD) was used to establish the phases present in the crystalline structure of the material and to determine the size of the crystallites in each material. Area BET measurements were done to nanopowders to know the surface area and the porosity of each material. Scanning Electron Microscopy (SEM) was used to obtain details on the film structure and the grain size. To make quantitative and qualitative analysis, Energy-Dispersive X-ray Spectroscopy (EDS) was also applied.
For the measurements, an alumina substrate was developed to be used in the oxygen sensor. This substrate can support four active layers working at the same temperature forming a sensor array. However, due some problems related with the substrate package at working temperatures above 450 ºC, the use of this substrate for oxygen sensor application was delayed and the results obtained whit it were not complete enough to be presented in this work. In order to resolve the necessity of a substrate that can resist high working temperatures for oxygen sensing applications, it was introduced a new substrate acquired from the Kurchatov Institute (Moscow-Russia). The results exposed in this work were obtained by using this last substrate.
Using these substrates, the sensing capabilities of the materials were also tested. The sensitivity toward oxygen was measured under three different conditions: 20 ppm of O2 in N2 balance, 30 ppm and 15 pmm of O2 in CO2 balance. The sensors responses toward other pollutant gases (SO2, CH4, H2S and C2H4) were also tested in order to see the influence of such gases in the oxygen detection process.
The best response toward oxygen was achieved in those sensors based on Nb-doped materials calcined at 700 ºC. This may be attributed to the niobium ions which hinder the grain growth and hence give rise to a high surface area that benefits the detection mechanism. The good response may be also attributed to the crystalline phase, mostly anatase, which allows the detection at desire temperatures (300 ºC - 600 ºC).
On the other hand, the doped materials calcined at 600 ºC had a poor response, in spite of they have better physical characteristics than doped materials calcined at 700 ºC.
This problem was mainly related to some carbon deposits detected in these materials trough Raman analyses. Such carbon deposits may be residual of the synthesis process, which could not be eliminated during the calcination. Since these carbon structures cover a great part of the material surface, and they are also poorly catalytic, the result is a deactivation of the catalysis.
Concerning to the measurements carried out under CO2 atmosphere, Nb-doped Titania calcined at 700 ºC also responded to oxygen. However, the response toward 15 ppm of oxygen presented an inversion from oxidative type to reductive type. At low oxygen concentrations, the CO- ions from CO2 disassociation are adsorbed on the active material surface. The oxygen, instead deplexing, interacts with these ions forming CO2, liberating electrons to the active layer giving rise to a reductive type response. On the other hand, the responses toward other pollutant gases such H2S, SO2, C2H4 and CH4 were of reduction type, as they were expected, which support the idea that the change in the response type is not due to the change in the physics of the semiconductor oxide from n type to p type, but to a change in the reaction nature.
In order to improve the sensing capabilities of doped materials, it was attempted to increase their surface area and porosity by using a surfactant as a template during the synthesis process. The surfactant employed was dodecylamine, which forms a micellar structure that works as template in the nucleation process of the oxide, generating small grains with higher surface area and porosity. Among three different attempts, the best results were obtained when 8 ml of surfactant were added to the sol-gel solution just after the hydrolysis of the metal alkoxides. XRD analyses of this material showed that the addition of surfactant retards even more the phase transition from anatase to rutile and also hinder the crystallites growth. These results were supported by SEM micrographs and BET analysis, which show a hinder in grain growth and an increase of the surface area. Area BET also evidences an increment of the material porosity. However, the results of the oxygen measurement reveal a poor response of the considered material. The Raman spectroscopy of this oxide shows some peaks that correspond to carbon with different morphologies. As it was explained before, these deposits of carbon retard the response of this material toward oxygen.
Xu, Xiaolong. "Nanostructured W-O thin films by reactive sputtering : application as gas sensors". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCA003/document.
Pełny tekst źródłaThis thesis is focused on the reactive sputter deposition of W-O thin films. In order to play with their composition, the Reactive Gas Pulsing Process (RGPP) is implemented and allows tunable oxygen and tungsten concentrations. Similarly, the GLancing Angle Deposition (GLAD) technique is developed to produce various architectures, namely inclined columns, zigzags and spirals, and increases the surface-to-volume ratio of the films. The GLAD co-sputtering approach is also investigated by means of two inclined and separated W and WO3 targets. Relationships between microstructure, composition, electronic and optical properties of W-O films are systematically studied. They are finally applied as active layers for resistive sensors in order to improve detection of dodecane vapor and ozone gas. The high porous microstructure of inclined columns produced by GLAD combined to the suitable composition adjusted by RGPP leads to define a range of W-O films attractive for sensing performances
Jelínek, Tomáš. "Detekce kyslíku pomocí senzoru plynů". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219763.
Pełny tekst źródłaAcuautla, Meneses Monica Isela. "Development of ozone and ammonia gas sensors on flexible substrate". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4337/document.
Pełny tekst źródłaNowadays the emerging of new applications in the micro and nanotechnology field required to reduce fabrication costand to improve electronic devices with properties such as flexibility, portability, lightweight, and low cost. Traditional methods involve expensive and long production steps, and chemical vapor deposition. The purpose of this work is to present the conception and characterization of flexible ammonia and ozone sensors fabricated by photolithography and laser ablation processes. The flexible platform is composed of Kapton substrate with interdigitated Ti/Pt electrodes for gas detection and a micro-heater device. The circuit patterns were realized by photolithography and laser ablation. Photolithography is a well-known and reliable patterning process used on rigid substrate. The application of laser ablation process not only reduces fabrication time, but also represents an excellent viable alternative instead of chemical processes. ZnO thin films deposited by drop coating have been used as sensitive materials due to their excellent properties in the gas detection. The gas sensing condition and the performances of the devices are investigated for ozone and ammonia at different gas concentrations and different thin film thicknesses. In order to test a deposit methodology used in large scale industrial production, an ultrasonic spray deposition was done. The sensor provides a wide range of detection from 5 ppb to 500 ppb for ozone and from 5 ppm to 100 ppm for ammonia. Their best sensibilities were obtained at 200°C for ozone and 300 °C for ammoniac with good repeatability, stability and fast response/recovery time
Alrammouz, Rouba. "Conception et réalisation d’un système de détection de gaz à faible coût sur substrat flexible". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS134.
Pełny tekst źródłaCurrent concerns for environmental protection and public health focus on air quality in industries, cities and households. Nowadays, paper-based gas sensors are of increasing interest due to their low cost, biodegradability, flexibility and applications in e-textiles, e-dressings and e-packaging.Graphene oxide is a derivative of graphene with exceptional electrical, mechanical and thermal properties. Graphène oxide is a promising material for the development of low-cost room temperature gas sensors.In this context, this thesis aims to integrate a graphene oxide sensing layer inside a porous paper substrate for humidity and ammonia detection. The first part of this work focuses on the fabrication, functionalization and optimization of capacitive porous gas sensors on paper. A new local reduction process of graphene oxide into electrodes is introduced. The process is hot-plating, a low cost technique compatible with large scale productionThe second part of this work studies the humidity and ammonia sensing capabilities of the sensors. Graphene oxide on paper exhibits a high sensitivity towards ammonia, with humidity as an interfering gas. The local reduction of graphène oxide into electrodes, and its functionalization with zinc oxide increased the sensitivity and selectivity of the device towards humidity. The fabricated sensors exhibit a good repeatability, reproducibility and flexibility
Lee, Szu-Hsuan. "Capteurs de gaz sélectifs à base de matériaux hybrides organooxoétain et d'oxyde d'étain". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0034.
Pełny tekst źródłaThe ultimate objective of this research is to draw new prospects in the gas sensing field by finely tuning the chemical nature, the texture and the morphology of the active layer to develop new type selective gas sensors. High gas selectivity has been a challenging issue during the past decades in the gas sensing area. Our approach is based on the design of molecular single precursors – alkynylorganotins which contain suitable functionalities required to obtain stable hybrid materials by the sol-gel method exhibiting selective gas detection towards harmful/toxic gases. Their gas sensing properties have been compared with those of tin dioxide (SnO2) nanoparticles synthesized by the hydrothermal route. A series of functional organooxotin-based materials have been processed as films by the spin or drop coating method and characterized by XRD, FT-IR, RAMAN, AFM, SEM, TEM, N2 sorption and TGA-DTA measurements. Gas sensing studies show that one of the hybrid organotin oxides exhibits an outstanding selective gas sensing response towards various gases, such as CO, H2, ethanol, acetone and NO2 whereas SnO2 nanoparticles present non-selective gas sensing ability under the same experimental condition. Thus, the best gas selectivity toward CO (at 100 and 200 ppm), H2 (at 100, 200 and 400 ppm) and NO2 (at 1, 2, 4 and 8 ppm) was achieved at 100 °C for the hybrid organooxotin-based film, however, it showed no response to ethanol/acetone at the same working temperature. On the other hand, the nanoparticulate SnO2 films prepared are sensitive to all the gases tested at low concentrations (CO: 10~100 ppm; NO2: 0.5~4 ppm; H2: 100~800 ppm; acetone: 25~200 ppm; ethanol: 10~100 ppm) in an operating temperature range from 200 to 400 °C. Moreover, the selectivity of SnO2 materials towards NO2 (between 0.5 ~ 4 ppm) can be optimized by well-manipulating the sensing temperatures. Finally, both organooxotin-based and tin oxide-based materials display superior gas sensing ability at low gas concentrations which opens a fully new class of gas sensing materials as well as a new possibility to integrate organic functionality in gas sensing metal oxides
Wierzbowska, Katarzyna Barbara. "Studies of electronic and sensing properties of epitaxial InP surfaces for applications in gas sensor devices". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00926562.
Pełny tekst źródłaOuali, Hela. "Simulations numériques ab initio de l'adsorption de l'ozone O3 par des couches d'oxydes de cuivre CuxO pour une application capteurs de gaz". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4380/document.
Pełny tekst źródłaMicro-sensors (IM2NP) and gas sensors (LMMA) team develop sensors based on CuO and Cu2O thin layers and study their electrical responses to O3. The aim of this thesis is a better understanding of the solid-gas interactions at the atomic scale by simulating the adsorption of O3 molecule on the (111) surfaces of CuO and Cu2O. Simulations were performed using the DF T (Density Functional Theory) within two functional approximations : the LDA (Local Density Appriximation) and GGA (Generalized Gradient Approximation). In the case of CuO, the Hubbard correction (DF T + U) was taken into account to properly reproduce the semiconductor and antiferromagnetic behaviors of the material. All calculations were performed with the SIESTA code and show that for the CuO as for Cu2O, O3 is adsorbed on the defect-free surface, without dissociating inducing a p-doping of the material. This observation is consistent with the decrease in electrical resistance measured experimentally under ozone. In a second stage ozone dissociates into a molecule of O2 and an oxygen atom which remains adsorbed. This step does not appear to change the doping. However, when the sensor is no longer in the presence of ozone, O2 molecule is desorbed and doping disappears. In this mechanism, the energies involved during the adsorption or the dissociation of ozone are of the same order of magnitude for CuO or Cu2O (ranging from −1 eV to −3 eV). Aiming to develop a gas sensor, and since the CuO material is easier to obtain by standard deposition techniques (RF sputtering), it seems to be more appropriate than the Cu2O, which has a similar response (even lower) but is more difficult to synthesize in a pure phase
Bailly, Guillaume. "Développement de la transduction microonde appliquée à la détection d'ammoniac : du nanomatériau au capteur large bande, compréhension des mécanismes et influence des traces d'eau". Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK029/document.
Pełny tekst źródłaThe main objective of this thesis is to propose an analysis of the microwave transduction specificities in the framework of ammonia sensing applications. The two main features of this transduction are its broadband characterization (1 to 8 GHz) as well as its sensitive materials (dielectrics). This transduction method is based on the interaction between a polluting gas and a sensitive material deposited on the surface of a microwave-specific propagating structure. The response of the sensor is not directly induced by the dielectric properties of the gaseous target molecule, but rather by those of the target species adsorbed on the surface of the sensitive material. This adsorption causes a modification of the sensor parameters measured by a vector network analyzer. Unlike more conventional transducers such as conductimetry, this principle works at room temperature with any type of material, including electrical insulators.The first work carried out during this thesis led to the development of a new experimental bench adapted specifically for the study of microwave gas sensors by measuring the S-parameters in reflection and transmission modes. This development includes the design of two new generations of sensors, coated with metal oxides (iron or titanium oxides) commercially available or synthesized during the study. The first sensor comprises interdigital circuits while the second sensor is a trapezoidal resonator. The latter is characterized by a series of frequencies of interest regularly distributed between 1 and 8 GHz. The association of a mass spectrometer with the measurement bench allowed to follow the adsorption and desorption behavior of the target species which is ammonia (10-100 ppm), but also the behavior of the vector gas conventionally used, argon, and water initially adsorbed on the sensitive material or intentionally added during the experiment. The objective is to study the role of water as interfering with the detection of ammonia, the main target species. A third molecule of interest, ethanol, was also used during the experiments in order to estimate the possible differences in the detected molecules behaviors. The experimental results were exploited using specific data processing protocols established during this thesis. Temporal treatments were carried out to study the kinetic behavior of the sensor, while spectral treatments allowed to apprehend the broadband aspect of the sensor response in the presence of pollutants.The first major result is the significant increase in sensitivity to ammonia, which significantly lowered the detection threshold to ammonia concentrations in the 10 ppm range. Titanium dioxide has been identified as a good candidate for ammonia detection, with reflection coefficient variations up to 6 dB for 300 ppm. The role of the water initially adsorbed on the sensitive material has been elucidated, showing that its influence is significant only during the first few minutes of the experiments. Thus, it is possible to detect ammonia in the presence of residual moisture. The processes induced by the gaseous exposures and particularly by the carrier gas were identified, and confirmed that the sensor response was solely due to its interaction with the target molecules. Another major result is the definition of the operating conditions that are necessary for the establishment of the selectivity. Our theoretical analysis clearly demonstrated the interest of broadband measurements in terms of discrimination of target molecules. This analysis has been tested in multitarget experiments using ammonia, water and ethanol. These observations allowed to establish the specifications of a new generation of microwave sensors, guaranteeing systematic discrimination between these three molecules
Saoudi, Hanen. "Synthèse et caractérisation des matériaux La0,8Ca0,1Pb0,1Fe1-xCoxO3 (0,00 ≤ x ≤ 0,20) : application dans le domaine de capteurs de gaz de NH3 et CO". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0381/document.
Pełny tekst źródłaThis thesis deals with the elaboration and study of the effect of iron substitution by cobalt on the physical properties (structural, morphological and magnetic) and particularly the detection of the two reducing gases NH3 and CO of the compounds La0.8Ca0.1Pb0.1Fe1-xCoxO3 (x = 0.00, 0.05, 0.10, 0.15 and 0.20). The decrease of valume was subsequently confirmed by the SGGA + U approximation using the Density Functional Theory (DFT). Similarly, the morphological study reveals porous micrographs presenting aggregated and agglomerated particles of nanometric size and irregular shape. Structural and morphological analyzes predicted that the compound with x = 0.05 could be considered as a good candidate for application in the field of gas detection. The results of the electrical measurements have shown that the resistance decreases for Co rate below 0.10 and then increases with higher rate. Similarly, electrical responses under gas have shown that our compounds are able to detect gases, with a variation of the electrical resistance easily measurable following exposure under different concentrations of both gases (NH3 and CO) and to deduce that the compound La0.8Ca0.1Pb0.1Fe0.95Co0.05O3 (x = 0.05) presents the best response towards the two tested gases
Favard, Alexandre. "Multicapteurs intégrés pour la détection des BTEX". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0123/document.
Pełny tekst źródłaOutdoor air quality is subjected to the law LAURE since 1996. In 2008, the european directive 2008/50/EC introduced measurement requirements and thresholds that should not be exceeded for certain pollutants on a european scale. According to several toxicological and epidemiological studies, air pollution causes respiratory failure, asthma, cardiovascular diseases and cancers. In Europe, air pollution is responsible for more than 300 000 early deaths a year.Volatile organic compounds (VOCs), particularly benzene, toluene, ethylbenzene and xylenes (BTEX compounds) are proven pollutants and play a major role in the degradation of indoor and outdoor air quality. This thesis is dedicated to the development of a metal oxide based multi-gas sensor for the detection of traces of BTEX within the framework of the SMARTY project (SMart AiR qualiTY). A complete electrical characterization system was designed and implemented for the detection of sub-ppm concentrations of BTEX.Based on the state-of-art, several materials were selected (WO3, ZnO, SnO2). The electrical characterizations of the selected sensitive layers were carried out under dry air and under different humidity levels in the presence of BTEX and interfering gases (NO2, CO2). Tungsten oxide (WO3) exhibits the best performance in the presence of moisture and is chosen for the technology transfer that accompanies the new patented AMU transducers. The WO3-based multi-sensor has a lower limit of detection (LOD) of 1 ppb at 50% relative humidity and effectively detects and quantifies BTEX
Sendi, Aymen. "Nez électronique communicant pour le contrôle de la qualité de l'air intérieur". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30245.
Pełny tekst źródłaMeasuring indoor air quality is a relatively recent need. Humans spend more than 90% of their time in a closed environment that contains several gaseous pollutants. The existence of such gaseous contaminants in the indoor air as well as short or long term exposure to these pollutants can causes many respiratory problems and several chronic diseases. Studies show that the indoor air quality has an impact on well-being and productivity. VOCs (volatile organic compounds) such as acetaldehyde and formaldehyde are strongly presented in indoor air. This type of pollutants come from materials used in interior design (computer equipment, furniture, paints, fabrics, floors, etc.). We can also found in close envirements many others contaminants such as CO2, CO, and NO2 which come from urban pollution, intensive use of location and poor ventilation. Offices, meeting rooms, classrooms and practical work rooms in universities and / or schools are therefore potentially polluted. In a densely occupied and poorly ventilated room, the measurement of the VOC/CO2 rate may exceed the regulatory thresholds. These gaseous pollutants in the air in high concentrations, due to lack of sufficient ventilation and air quality control, can cause drowsiness and decreased productivity. Measuring and monitoring indoor air quality is therefore essential to ensure a better quality life in workspaces. This thesis is being carried out within the framework of the neOCampus GIS (scientific interest group), led by Paul Sabatier University and dedicated to the development of an innovative, connected and sustainable campus for a better quality life for users. We are interested by the development of micro-gas sensors MOS (metal oxide sensors) and the indoor air quality monitoring in offices, classrooms and meeting rooms. The objective of this study is to control these pollution levels in order to correct them through measures to ventilate the premises. Making a decision about how to correct air quality is an essential step in the process. For example: regulating ventilation in a room if the authorized threshold is exceeded for the identified pollutants. As part of this work, we produced prototypes of miniaturized multi-gas sensors integrated with their electronic card in a witness room and capable of detecting levels of indoor air pollution. These prototypes include a multi-sensor cell (with 4 independent cells), proximity electronics allowing the control and recovery of data from these cells, an IOT (internet of things) type communication module based on the LoRA protocol allowing send to the "Cloud NeoCampus", remotely and wirelessly, an indoor air quality status signal. This multi-sensor is based on semiconductor sensors based on nanostructured metal oxides synthesized at the LCC (coordination chemistry laboratory). [...]
Dufour, Nicolas. "Conception et réalisation d'un multicapteur de gaz intégré à base de plateformes chauffantes sur silicium et de couches sensibles à oxyde métallique pour le contrôle de la qualité de l'air habitacle". Phd thesis, Université Paul Sabatier - Toulouse III, 2013. http://tel.archives-ouvertes.fr/tel-00956669.
Pełny tekst źródłaEl, Younsi Imane. "Elaboration et caractérisation de nouvelles couches sensibles pour la réalisation de capteurs de CO2". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30344/document.
Pełny tekst źródłaThe measure of the rate of CO2 is a recent need. The works on the use of new materials for the conception of gas sensors based semiconductor oxides, effective and not expensive; arouse a huge interest in our society. The objective of this thesis is the elaboration and the characterization of new sensitive layers obtained by RF sputtering for the realization of the sensors of CO2. Thin films were deposited using two targets: CuFeO2 and CuO, under three conditions by varying argon pressure and RF power. First of all, the structure and the microstructure were studied for the as-deposited samples. Surface investigations carried out by Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Raman spectroscopy, BET measurements and MEB-FEG images have shown a strong influence of deposition technique parameters on film surface topography and morphology. In a second step, the thin films were annealed in air in order to oxidize the phase. For the composite CuO/CuFe2O4, Glow discharge optical emission spectrometry technique showed a structure in two layers stacked on top of each other for the thinner films. For the cupric films, no changes on both structure and microstructure have been revealed. Our films have then been evaluated for CO2 detection. The sensitive layers with different thicknesses were sensitive to 5000 ppm of CO2. The deposition parameters are optimized to obtain microstructure features which can enhance the sensitivity of the thin films as gas sensors. Best response was obtained for a cupric sample deposited in P2 30W conditions and was close to 50% at T = 250°C. We have demonstrates that cupric oxide alone can detect the CO2 gas and that the growth conditions determine the film surface characteristics. The gas sensing characteristics of these films are strongly influenced by both surface morphology and microstructure
Gao, Jing. "Etude et mise au point d'un capteur de gaz pour la detection sélective de NOx en pot d'échappement automobile". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-01016361.
Pełny tekst źródłaSaadi, Lama. "Etude de l'adsorption des molécules simples sur WO3 : application à la détection des gaz". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4346/document.
Pełny tekst źródłaThe team of micro sensors at IM2NP mainly focuses onthe development of gas sensors based on measurement in conductancevariation in presence of gas. The material used as sensitive element istungsten oxide (WO3) thin film. The objective of present thesis is to studythe surface properties of WO3 in its reconstruction c(2x2), obtained bycleavage along the [001] direction. This study is also followed by a gapanalysis using ab initio calculations based on DFT in both LDA andGGA approximations. Then, the adsorption of molecules of simple gases((O3, COx NOx) for these surfaces (more or less rich in oxygen), is performed.To simulate these systems, we have chosen the SIESTA code based onDFT which is used for the larger number of atoms as compared to other codes
Yang, Xiaojiao. "Synthesis and Characterization of Hybrid Metal-Metallic Oxide Composite Nanofibers by Electrospinning and Their Applications". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1022/document.
Pełny tekst źródłaWe present in this manuscript the elaboration by Electrospinning (ES) process of hybrid metal-metallic oxide composite (HMMOC) nanofibers (NFs), and their physical-chemical characterizations. Their applications, especially the photocatalysis of TiO2-Au composite NFs for photocatalytic degradation for methylene blue (MB) in an aqueous solution and WO3-Au composite NFs for gas sensing of the volatile organic compounds (VOCs) have been investigated. According to the performance evaluation results as photocatalyst or gas sensors, the influence of many parameters have been studied: gold ions concentration, the way to introduce them into or at the NFs surface, typically by mixing them into the polymeric solution (composed of PVP, PAN, or PVA with the metallic oxide precursor) before the ES process or by simple droplet deposition onto the NFs after ES process, and finally the annealing treatment. This latter plays an important role since it both removes the organic components of the polymeric solution, thus forming the metal oxide and in-situ participates to the Au reduction.Concerning the photocatalytic properties, an optimized HMMOC material based on TiO2 NFs including 10 nm Au nanoparticles (NPs) has been obtained and shows 3 times significantly improvement of MB degradation compared to pure TiO2 NFs and the commercial catalyst P25. For gas sensing elaboration, we have shown that a HMMOC material based on WO3 NFs decorated at their surface with 10 nm Au NPs can exhibit 60 times higher response and significantly improved selectivity toward n-butanol compared with pure WO3 NFs
Roumiantseva, Babakina Marina. "Elaboration et caractérisation des couches minces SnO2(Cu,Ni) pour la détection gazeuse". Grenoble INPG, 1996. http://www.theses.fr/1996INPG0178.
Pełny tekst źródłaChen, Mei-Hsing, i 陳美杏. "Design, Fabrication and Characterization of Semiconductor-Type Oxygen Gas Sensors". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/70415944614359811858.
Pełny tekst źródła國立成功大學
工程科學系碩博士班
91
The objective of the study is to design and develop a semiconductor-type oxygen gas sensor for a microscopic energy consumption measurement system, which will be used for monitoring of health condition of premature babies. The sensors are fabricated on silicon substrates using MEMS technologies and compatible with IC process. The device consists of five major components, including a micro-heater, an isolator, conducting electrodes, a sensing film and an etching-stop layer. Doped polysilicon resistor is used as a heater to make the sensor operate at an appropriate temperature, resulting in a better sensitivity to the oxygen gas. Then a layer of silicon oxide is sputtered as an electrical isolator between the heater and the sensing layer. Lastly, the sensing film, tin-dioxide doped with 2wt% Li, is deposited. In order to minimize power consumption, a suspended membrane is formed by backside-etching of Si using KOH. Experimental data show that the micro-heater can heat the membrane up to 150℃ by applying 220 mW. The oxygen sensor can successfully detect oxygen gas with the concentration ranging from 21% to 50%. It is found that the relative change of resistance is linearly proportional to the oxygen concentration while measuring time is 10 minutes. The developed sensor is suitable for clinical applications in the hospital.
Chen, Jau-Rung, i 陳昭蓉. "Study on Sensing Thin Films of Semiconductor-Type Oxygen Gas Sensors". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/50058510147630348192.
Pełny tekst źródła國立成功大學
電機工程學系碩博士班
93
In this study, two fabrication methods were used to deposit the tin dioxide thin film to investigate the influence of the fabrication parameters on the lattice orientation and oxygen gas sensitivity of the tin dioxide thin films. The tin dioxide layer with the 2 wt% doped Li, which served as the sensing materials, was deposited by sputtering with Ar/O2 (3:1) gas mixtures and annealed in an oxygen gas at 600℃ for 2 hours. By the static measurement, the experimental data showed that the maximum sensitivity was 25.1, and it achieved when the tin dioxide film was grown at 300℃. With the spin coating process, the porous films with high surface areas can be generated, and the sensitivity for O2 gas can reach 111. By the static measurement, experimental data also indicated that the pours film will generate the maximum sensitivity when the tin oxide films are grown at 250℃. Thus, the sensitivity of the tin dioxide thin film used the spin coating process deposition is higher than that of sputtering method. In addition, the temperature of the former is also at lower than that of the latter.
Sharma, Rajnish K. "Development and characterization of solid state materials for oxygen gas sensors". Thesis, 1996. http://localhost:8080/iit/handle/2074/4154.
Pełny tekst źródłaKuo, Wei-lun, i 郭維倫. "A study on cerium oxide powders with various morphologies applied in oxygen gas sensors". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/02521704077653976295.
Pełny tekst źródła國立臺灣科技大學
材料科學與工程系
101
Ceria-based materials have been extensively investigated as oxygen gas sensor in automotive exhaust systems due to their excellent properties of fast response time and superior sensitivity. Since the response time and sensitivity are influenced by the ceria parameters of surface area, crystalline size and cerium valence ratio (Ce(III)/(Ce(IV)), these parameters correlate with their particle morphologies.Therefore, manipulation of particle morphology is urgent and important for application in oxygen gas sensors. However, so far, the studies of varying morphologies to investigate response time and sensitivity for the oxygen gas sensors are scarce. So, the morphologies of mesoporous, porous, core-shell and solid spherical ceria powders were prepared by spray pyrolysis, and screen printed on the alumina substrates with platinum wires. The formation of thick films with 5-11μm thickness undergoes the gel decomposition at 500oC for 5h and sintering at 1200oC for 2h, and measured the properties of response time and sensitivity. The morphology, surface area, crystalline size, and cerium valence ratio were characterized by transmission electron microscopy, BET (Brunauer–Emmer–Teller) method, X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The experimental results suggest that higher surface area and smaller crystalline size shorten response time, and higher Ce(III) concentration enhances the sensitivity of oxygen gas sensor. Mesoporous Zr-doped ceria powders were prepared by spray pyrolysis(10ZDC、20ZDC、30ZDC、50ZDC, 10、20、30、50 mole% Zr doped ceria). And, the resistive oxygen gas sensors based on thick film made from this powder were fabricated. The response time of the thick film were investigated. The experimental results suggest that the lattice constant decrease with increasing ZrO2 concentration. Therefore, the electron hopping distance decrease, and the resistance of thick film decrease. The 30ZDC thick film had a lower latiice constant and crystallite size. Hence, it had lower resistance and a shorter response time. The results showed that 30ZDC thick film exhibited superior oxygen sensing properties.
Chang, Kai-Hsin, i 張凱昕. "Design, Preparation and Properties of Zr/Ce Oxide Powders for Application in Oxygen Gas Sensors". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/12666600064321406986.
Pełny tekst źródła逢甲大學
材料科學所
99
In this study, nanocrystalline zirconia-added ceria powder was prepared from cerium nitrate hydrate (CeNH) and zirconium nitrate hydrate (ZrNH) by precipitation method. Zirconia with various additions, 0, 5, 10, and 15 at.%, was added into ceria as CeO2, 5ZDC, 10ZDC and 5ZDC. The modification of the oxygen sensing characteristics of ceria powder was investigated. The influence of different amounts of zirconium ion additions on the electric conductivity, oxygen sensing behavior, and activation energy of electric resistance of ceria coating as a function of temperature was discussed. The experimental results were then applied to a temperature-independent oxygen sensor device in the final part of the study. The experimental results indicated that the ceria powder obtained from precipitation showed an irregular shape with a good crytallinity. The crystallite size was ca. 6 to 7 nm. After heat-treating the powder at 900C and 1200C, zirconia could inhibit the growth of CeO2 crystals significantly and reduce the lattice constant of ceria, shortening the hopping distance of ions. In the mean time, the amount of Ce4+ reacted to Ce3+ was enhanced to cause the increase of electric conductivity of the composite. Ceria powders were then prepared as a resistive oxygen sensor by screen printing technique where the 10ZDC exhibited better electric resistance reduction and oxygen sensing kinetics in this system. The experimental result showed that the connection and porosity influence significantly the electric conduction and gas sensing behavior of the powder coatings. According to the calculation of the activation energy from the temperature vs. electric resistance plots, respective the 5ZDC and the 10ZDC were used as temperature compensating material (TCM) and oxygen partial pressure measurement material (OMM) for the fabrication of resistive oxygen sensor which would not be affected by temperature change. The results showed that the device exhibited excellent temperature-independence and oxygen sensing behaviors.
Li, Wei-Min, i 李偉民. "Study of Using Carbon Nanotubes for Oxygen Gas Sensor". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/72058311911800024665.
Pełny tekst źródła義守大學
電子工程學系碩士班
94
In this thesis, we study on fine field emission characteristic of CNTs and make gas sensor with CNTs film. Various kinds of gas have unique breakdown voltage; we do a discussion to CNTs field emission characteristic in oxygen. Because CNTs has pipe diameter of nanometre-scale, great aspect ratio, steady chemical property and tough mechanical nature, so, it has been a new developing material extremely with potentiality all the time. While measurement of field emission, it’s found CNTs has very excellent characteristic of discharging. We synthesize CNTs film on Si-substrate by CVD, and use this CNTs film for examining to the discharging carried on of the proportion of oxygen to gas specifically under the atmosphere pressure. We design a CNTs gas sensor measurement, differentiate and enter pure nitrogen and pure oxygen, the quantity of carrying on voltage-current is examined. And then regard nitrogen as background gas, examine oxygen which enters the different proportions in chamber in quantity, and analyze I-V Curve; because make use of field emission of CNTs to detect the gas, there is extremely good sensitivity. And detect the proportions of gas with the I-V Curve change of discharging, there are not the questions of adsorption and desorption of gas, and it is not limited by consideration of reversibility, and operate it in the extremely low electric field. So CNTs is quite suitable for regarding as gas sensor.
Hsu, Sheng Ping, i 許聖平. "Sensing Properties Of InGaZnO Thin Film Transistor In Oxygen Gas Sensor". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/23351290022452334772.
Pełny tekst źródła國立高雄海洋科技大學
微電子工程研究所
100
Recently, there are many researches about amorphous oxide semiconductors in optical-electrical applications, such as ZnO and amorphous InGaZnO (a-IGZO). a-IGZO has lots of advantages including high uniformity, high mobility and low fabrication temperature. Therefore, it is suitable to be adopted in the active layers of thin-film transistor sensor (TFTS). In this research, when positive gate-bias stress is imposed on the device in oxygen environment at 80℃, the device exhibits a significant change of electrical characteristics, which can be utilized in oxygen-sensing. The drain current of TFTS is decreased as high as 95.38%, and the maximum value of ΔVt about 16.98 V can be achieved. The sensitivity of oxygen gas sensor is -0.4 mA/mole. The properties of threshold voltage in recovery phenomenon under light illumination demonstrate that de-trapping effect of charge was enhanced under light illumination which is compared to that under dark environment. Furthermore, the adsorbed oxygen on the back channel of IGZO active layer can be desorbed under light illumination, and this feature can be employed for the quick recovery characteristic of IGZO TFTS device.
Matharoo, Inderdeep. "Photonics-based Multi-gas Sensor". Thesis, 2011. http://hdl.handle.net/1807/31334.
Pełny tekst źródłaHSIEH, TSU-HSIU, i 謝祖修. "High Sensitivity NO gas sensor using SnO2 nanofiber by oxygen vacancy engineering". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/43bha3.
Pełny tekst źródłaPan, Kuan-Hsun, i 潘冠勳. "Sensitivity Enhancement of Atomic-layer MoS2 Gas Sensor Through Oxygen Plasma Treatment". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/13342940310564336134.
Pełny tekst źródła國立臺灣大學
電子工程學研究所
104
A novel volatile organic compound (VOC) sensor with the MoS2 atomic-layers was developed in this research. Such sensor was made by transferring the MoS2 atomic-layers grown with the chemical vapor deposition (CVD) method onto the interdigitated electrode manufactured by microelectromechanical systems for indicating the sensing ability by the impedance change. The density of defects on the MoS2 film surface was controlled by the ratio of precursors and surface treatment. The sensing mechanism related to surface defects created was illustrated using the photoluminescence spectrometer. The surface defects were found to be increased with the increasing oxygen plasma treatment (OPT) cycles due to the increase of surface defects. An optimized number of OPT cycles was found to get the excellent gas detection performance. The treated MoS2 gas sensor exhibited the good performance, sensing range, and repeatability. The chemical compounds operated at different temperatures and intensity of light power were also observed. Traditional gas sensors utilizing metal oxide as the sensing material were typically equipped with a heater. Although the gas adsorption and desorption were increased by incorporating a heater, one more photo-masking and additional processing were required to define the heater. With the high temperature heating, it’s not desirable to integrate with CMOS-based circuits and use in explosive environment. In this work, we developed a MoS2-based gas senor which can detect methanol with high sensitivity at room temperature without the extra light-activation and react with many kinds of VOCs. Based on the structure of gas, the gas sensor has the different response that shows a great potential to the environment detection.
Chen, Yi-Feng, i 陳翊烽. "Low Band Gap Polymers for Oxygen Sensors: Syntheses and Band Structure Engineering". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/54508015642881359777.
Pełny tekst źródła國立臺灣大學
材料科學與工程學研究所
100
In this thesis, Stille coupling were employed to synthesize low band conjugated copolymers consisting of electron-donating units (3-hexylthiophene,3HT) and electron-accepting units units, 2,3-bis(2-ethylhexyl)thieno-[3,4-b]pyrazine (TP) in different ratios with varied coplanarity in order to adjust the electronic band structure of the copolymers. Each unit was decorates with long alkyl side chains to enchance the solubility. The compositions of the random copolymers were very different from the feed ratios of the comonomers, which could possibly result from the very distinctive reactivities of the comonomers. Alternating copolymers containing 3HT and TP in 1:1 and 1:2 molar ratios were successfully obstained via Stille coupling, and these copolymers showed reasonable solubility in THF . Thermal decomposition temperatures ranged from 282 oC to 357oC and the thermal stability was enchanced with increasing 3HT content. The wavelengths of the maximum of optical absorption of these copolymers in THF solution were extended to longer wavelengths (557~688nm) comparing to P3HT due to strong intramolecular donor-acceptor interaction, and the optical band gaps were 1.2~1.28 eV. The thin filmsexhibited red shifts in optical absorptions in comparison with the absorptions in solution, and better coplanarity benefited the red shift. HOMO levels (-4.69~-5.39 eV) and LUMO levels (-3.5~3.91eV), obtained from cyclic voltametry, were elevated and lowered respectivity with increasing TP ratio in the copolymer. The copolymers with strong coplanarity would elevated the HOMO. By tuning the composition, the arrangement and the coplanaity of these TP containing low band gap copolymers, they could be potential candicates for oxygen sensors with enhancing sensitivity.
Lin, Chien-Hsueh, i 林建斈. "Study on Ethanol Gas Sensor Based on Tin Dioxide Thin Film by Oxygen Plasma Treatment". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/65d927.
Pełny tekst źródła國立交通大學
電子研究所
107
In this study, a novel material ethanol gas sensor was developed, which uses tin dioxide as a sensing layer to make a resistive gas sensor, and uses lithography process technology to transfer to the interdigitated electrode in the mask, by measuring the current signal as an indicator of the gas response of the sensor, a gas sensor capable of detecting ethanol gas in a general environment is successfully produced with Dual E-Gun Evaporation System and used to realize the process of growing tin dioxide by physical vapor deposition (PVD) and the process of oxygen plasma treatment by atomic layer chemical vapor deposition system, due to the technology of thin film deposition or the technology of the end plasma treatment, etc., causes the surface roughness of the material and to be different from the hydrophilicity of the gas molecules. By changing the time of the oxygen plasma treatment, it is inferred from the literature that the oxygen plasma is treated with the gas of tin dioxide. Sensing mechanisms play an important role and are supported by the relationship between material analysis and electrical measurements. In this study, the optimal processing time was found by oxygen plasma treatment. The tin dioxide gas sensor by oxygen plasma treatment has good sensing performance and has a wide range of applications in life.
Lin, Chang-Hsien, i 林長賢. "A Portable Oxygen, CO and Gas Concentration Detection and Monitor System Using a Smartphone and a Portable Sensor Module". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/93363081844757519505.
Pełny tekst źródła輔仁大學
電機工程學系碩士在職專班
104
In this paper we use both a smartphone and a portable oxygen sensor module to detect and monitor the amount of oxygen, CO and gas concentration by means of Bluetooth communication. When the oxygen, CO and gas concentration exceeds the normal range, our portable oxygen, CO and gas concentration detection and monitor system will notify the user immediately. We use an oxygen, CO and gas sensor both to detect ambient air and to generate the relative voltage value with respect to the oxygen level. This voltage value is amplified first through an instrumentation amplifier and the input to a MCU (Micro Controller Unit). The MCU calculates and transfers the oxygen value to a percentage of data. This design is easy both to read and to ascertain how much oxygen, CO and gas concentration is present in the air. When the time interval of low oxygen or high CO and gas concentration in the environment is longer than the value setting, the smartphone will set off an alarm to remind the user in order to prevent harm to human health.
Rego, Barcena Salvador. "A Passive Mid-infrared Sensor to Measure Real-time Particle Emissivity and Gas Temperature in Coal-fired Boilers and Steelmaking Furnaces". Thesis, 2008. http://hdl.handle.net/1807/11251.
Pełny tekst źródłaSilvanius, Mårten. "The safety relevance of standardized tests for diving equipment". Licentiate thesis, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20419.
Pełny tekst źródła