Artykuły w czasopismach na temat „Oxygen Electrochemistry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oxygen Electrochemistry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
HORITA, Kiyoshi, Yukio NAGAOSA i Kenichi NAKATSU. "Oxygen Electrode by Using Oxygen Plasma-Treated Acetylene Black". Denki Kagaku oyobi Kogyo Butsuri Kagaku 60, nr 6 (5.06.1992): 547–49. http://dx.doi.org/10.5796/electrochemistry.60.547.
Pełny tekst źródłaDoyle, Andrew D., Joseph H. Montoya i Aleksandra Vojvodic. "Improving Oxygen Electrochemistry through Nanoscopic Confinement". ChemCatChem 7, nr 5 (30.01.2015): 738–42. http://dx.doi.org/10.1002/cctc.201402864.
Pełny tekst źródłaDoyle, Andrew D., Joseph H. Montoya i Aleksandra Vojvodic. "Improving Oxygen Electrochemistry through Nanoscopic Confinement". ChemCatChem 7, nr 5 (27.02.2015): 709. http://dx.doi.org/10.1002/cctc.201500103.
Pełny tekst źródłaZhou, Daojin, Yin Jia, Hongbin Yang, Wenwen Xu, Kai Sun, Junming Zhang, Shiyuan Wang, Yun Kuang, Bin Liu i Xiaoming Sun. "Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery". Journal of Materials Chemistry A 6, nr 42 (2018): 21162–66. http://dx.doi.org/10.1039/c8ta08862d.
Pełny tekst źródłaTang, Cheng, i Qiang Zhang. "Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?" Journal of Materials Chemistry A 4, nr 14 (2016): 4998–5001. http://dx.doi.org/10.1039/c6ta01062h.
Pełny tekst źródłaGracia, J. "Spin dependent interactions catalyse the oxygen electrochemistry". Physical Chemistry Chemical Physics 19, nr 31 (2017): 20451–56. http://dx.doi.org/10.1039/c7cp04289b.
Pełny tekst źródłaSharon, Daniel, Daniel Hirshberg, Michal Afri, Arnd Garsuch, Aryeh A. Frimer i Doron Aurbach. "LithiumOxygen Electrochemistry in Non-Aqueous Solutions". Israel Journal of Chemistry 55, nr 5 (6.02.2015): 508–20. http://dx.doi.org/10.1002/ijch.201400135.
Pełny tekst źródłaTan, Shu Min, Chun Kiang Chua, David Sedmidubský, Zdenĕk Sofer i Martin Pumera. "Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER". Physical Chemistry Chemical Physics 18, nr 3 (2016): 1699–711. http://dx.doi.org/10.1039/c5cp06682d.
Pełny tekst źródłaLi, Fei, Li-Jun Zheng, Xiao-Xue Wang, Ma-Lin Li, Ji-Jing Xu i Yu Wang. "Driving Oxygen Electrochemistry in Lithium–Oxygen Battery by Local Surface Plasmon Resonance". ACS Applied Materials & Interfaces 13, nr 22 (31.05.2021): 26123–33. http://dx.doi.org/10.1021/acsami.1c06540.
Pełny tekst źródłaNemanick, E. Joseph. "Electrochemistry of lithium–oxygen batteries using microelectrode voltammetry". Journal of Power Sources 247 (luty 2014): 26–31. http://dx.doi.org/10.1016/j.jpowsour.2013.08.043.
Pełny tekst źródłaWang, Liang, Yantao Zhang, Zhenjie Liu, Limin Guo i Zhangquan Peng. "Understanding oxygen electrochemistry in aprotic Li O2 batteries". Green Energy & Environment 2, nr 3 (lipiec 2017): 186–203. http://dx.doi.org/10.1016/j.gee.2017.06.004.
Pełny tekst źródłaIZU, Noriya, Woosuck SHIN, Ichiro MATSUBARA i Norimitsu MURAYAMA. "Resistive Oxygen Sensor Using Hafnium-Doped Cerium Oxide". Electrochemistry 73, nr 7 (5.07.2005): 478–80. http://dx.doi.org/10.5796/electrochemistry.73.478.
Pełny tekst źródłaJiao, Yan, Yao Zheng, Mietek Jaroniec i Shi Zhang Qiao. "Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions". Chemical Society Reviews 44, nr 8 (2015): 2060–86. http://dx.doi.org/10.1039/c4cs00470a.
Pełny tekst źródłaGötz, R., H. K. Ly, P. Wrzolek, M. Schwalbe i I. M. Weidinger. "Surface enhanced resonance Raman spectroscopy of iron Hangman complexes on electrodes during electrocatalytic oxygen reduction: advantages and problems of common drycast methods". Dalton Transactions 46, nr 39 (2017): 13220–28. http://dx.doi.org/10.1039/c7dt01174a.
Pełny tekst źródłaDu, Minshu, Yao Meng, Geju Zhu, Mingze Gao, Hsien-Yi Hsu i Feng Liu. "Intrinsic electrocatalytic activity of a single IrOx nanoparticle towards oxygen evolution reaction". Nanoscale 12, nr 43 (2020): 22014–21. http://dx.doi.org/10.1039/d0nr05780k.
Pełny tekst źródłaYOSHIO, Masaki, Yongyao XIA i Tetsuo SAKAI. "Electrochemical and Physicochemical Behaviors of Oxygen-deficient Manganese Spinel". Electrochemistry 69, nr 7 (5.07.2001): 516–18. http://dx.doi.org/10.5796/electrochemistry.69.516.
Pełny tekst źródłaASANO, Itaru, Yasuyuki HAMANO, Seiya TSUJIMURA, Osamu SHIRAI i Kenji KANO. "Improved Performance of Gas-diffusion Biocathode for Oxygen Reduction". Electrochemistry 80, nr 5 (2012): 324–26. http://dx.doi.org/10.5796/electrochemistry.80.324.
Pełny tekst źródłaDIETHELM, Stefan, Alexandre CLOSSET, Jan VAN HERLE i Kemal NISANCIOGLU. "Oxygen Transport and Nonstoichiometry in SrFeO3-δ". Electrochemistry 68, nr 6 (5.06.2000): 444–50. http://dx.doi.org/10.5796/electrochemistry.68.444.
Pełny tekst źródłaMcCloskey, B. D., D. S. Bethune, R. M. Shelby, G. Girishkumar i A. C. Luntz. "Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry". Journal of Physical Chemistry Letters 2, nr 10 (27.04.2011): 1161–66. http://dx.doi.org/10.1021/jz200352v.
Pełny tekst źródłaSharon, Daniel, Daniel Hirshberg, Michal Afri, Arnd Garsuch, Aryeh A. Frimer i Doron Aurbach. "ChemInform Abstract: Lithium-Oxygen Electrochemistry in Non-Aqueous Solutions". ChemInform 46, nr 28 (25.06.2015): no. http://dx.doi.org/10.1002/chin.201528302.
Pełny tekst źródłaKatsounaros, Ioannis, Serhiy Cherevko, Aleksandar R. Zeradjanin i Karl J. J. Mayrhofer. "Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion". Angewandte Chemie International Edition 53, nr 1 (11.12.2013): 102–21. http://dx.doi.org/10.1002/anie.201306588.
Pełny tekst źródłaNandan, R., A. Gautam i K. K. Nanda. "Maximizing the utilization of Fe–NxC/CNx centres for an air-cathode material and practical demonstration of metal–air batteries". Journal of Materials Chemistry A 5, nr 38 (2017): 20252–62. http://dx.doi.org/10.1039/c7ta06254k.
Pełny tekst źródłaNandan, Ravi, Ajay Gautam i Karuna Kar Nanda. "Anthocephalus cadamba shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst". Journal of Materials Chemistry A 6, nr 41 (2018): 20411–20. http://dx.doi.org/10.1039/c8ta05822a.
Pełny tekst źródłaLaha, S., S. Natarajan, J. Gopalakrishnan, E. Morán, R. Sáez-Puche, M. Á. Alario-Franco, A. J. Dos Santos-Garcia, J. C. Pérez-Flores, A. Kuhn i F. García-Alvarado. "Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe)". Physical Chemistry Chemical Physics 17, nr 5 (2015): 3749–60. http://dx.doi.org/10.1039/c4cp05052e.
Pełny tekst źródłaLu, Xunyu, Hubert M. Chan, Chia-Liang Sun, Chuan-Ming Tseng i Chuan Zhao. "Interconnected core–shell carbon nanotube–graphene nanoribbon scaffolds for anchoring cobalt oxides as bifunctional electrocatalysts for oxygen evolution and reduction". Journal of Materials Chemistry A 3, nr 25 (2015): 13371–76. http://dx.doi.org/10.1039/c5ta02967h.
Pełny tekst źródłaISHIBASHI, Kenji, Seiya TSUJIMURA i Kenji KANO. "Pentacyanoferrate and Bilirubin Oxidase-bound Polymer for Oxygen Reduction Bio-cathode". Electrochemistry 76, nr 8 (2008): 594–96. http://dx.doi.org/10.5796/electrochemistry.76.594.
Pełny tekst źródłaXin, Sen, Zhiwen Chang, Xinbo Zhang i Yu-Guo Guo. "Progress of rechargeable lithium metal batteries based on conversion reactions". National Science Review 4, nr 1 (13.11.2016): 54–70. http://dx.doi.org/10.1093/nsr/nww078.
Pełny tekst źródłaKITANI, Akira, Akihisa YOKOO i Sotaro ITO. "Reduction of Oxygen at Polyaniline Electrodes Modified with Platinum and Iron". Electrochemistry 75, nr 2 (2007): 182–83. http://dx.doi.org/10.5796/electrochemistry.75.182.
Pełny tekst źródłaUCHIDA, Hiroyuki, Hiroshi YANO, Mitsuru WAKISAKA i Masahiro WATANABE. "Electrocatalysis of the Oxygen Reduction Reaction at Pt and Pt-Alloys". Electrochemistry 79, nr 5 (2011): 303–11. http://dx.doi.org/10.5796/electrochemistry.79.303.
Pełny tekst źródłaNAGAMINE, Kuniaki, Shuntaro ITO, Mai TAKEDA, Shingo OTANI i Matsuhiko NISHIZAWA. "An Oxygen Responsive Microparticle-Patterned Hydrogel Sheet for Enzyme Activity Imaging". Electrochemistry 80, nr 5 (2012): 318–20. http://dx.doi.org/10.5796/electrochemistry.80.318.
Pełny tekst źródłaMATSUO, Keishi, Yoshiyuki TAKATSUJI, Masahiro KOHNO, Toshiaki KAMACHI, Hideo NAKADA i Tetsuya HARUYAMA. "Dispersed-phase Interfaces between Mist Water Particles and Oxygen Plasma Efficiently Produce Singlet Oxygen (1O2) and Hydroxyl Radical (•OH)". Electrochemistry 83, nr 9 (2015): 721–24. http://dx.doi.org/10.5796/electrochemistry.83.721.
Pełny tekst źródłaUENO, Mitsushi, Hiroyuki OGURA i Tamotsu SHIROGAMI. "Oxygen Partial Pressure Dependence on Cell Voltage in Phosphoric Acid Fuel Cell". Electrochemistry 67, nr 10 (5.10.1999): 979–84. http://dx.doi.org/10.5796/electrochemistry.67.979.
Pełny tekst źródłaTOSHIMA, Shigero, Tomohisa KANBAYASHI, Kazuhiro KAN, Kazushige AOYAGI i Masato KOBAYASHI. "Measurement of Oxygen Consumption of Biopsied Bovine Embryos using Scanning Electrochemical Microscopy". Electrochemistry 73, nr 11 (5.11.2005): 942–44. http://dx.doi.org/10.5796/electrochemistry.73.942.
Pełny tekst źródłaClausmeyer, Jan, Justus Masa, Edgar Ventosa, Dennis Öhl i Wolfgang Schuhmann. "Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles". Chemical Communications 52, nr 11 (2016): 2408–11. http://dx.doi.org/10.1039/c5cc08796a.
Pełny tekst źródłaSATO, Yuki, Sho KITANO, Damian KOWALSKI, Yoshitaka AOKI, Naoko FUJIWARA, Tsutomu IOROI i Hiroki HABAZAKI. "Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction". Electrochemistry 88, nr 6 (5.11.2020): 566–73. http://dx.doi.org/10.5796/electrochemistry.20-00107.
Pełny tekst źródłaMcKee, Austin, Avik Samanta, Alan Rassoolkhani, Jonathan Koonce, Wuji Huang, Jacob Fields, Scott K. Shaw, Joseph Gomes, Hongtao Ding i Syed Mubeen. "Effect of silver electrode wetting state on oxygen reduction electrochemistry". Chemical Communications 57, nr 65 (2021): 8003–6. http://dx.doi.org/10.1039/d1cc01438b.
Pełny tekst źródłaSours, Tyler, Anjli Patel, Jens Nørskov, Samira Siahrostami i Ambarish Kulkarni. "Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks". Journal of Physical Chemistry Letters 11, nr 23 (12.11.2020): 10029–36. http://dx.doi.org/10.1021/acs.jpclett.0c02889.
Pełny tekst źródłaCheng, Fangyi, i Jun Chen. "Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts". Chemical Society Reviews 41, nr 6 (2012): 2172. http://dx.doi.org/10.1039/c1cs15228a.
Pełny tekst źródłaWei, Jie, Yong-Li Zheng, Zi-Yue Li, Mian-Le Xu, Yan-Xia Chen i Shen Ye. "Electrochemistry of Oxygen at Ir Single Crystalline Electrodes in Acid". Electrochimica Acta 246 (sierpień 2017): 329–37. http://dx.doi.org/10.1016/j.electacta.2017.05.103.
Pełny tekst źródłaJiang, Yuanyuan, Pengjuan Ni, Chuanxia Chen, Yizhong Lu, Ping Yang, Biao Kong, Adrian Fisher i Xin Wang. "Selective Electrochemical H2 O2 Production through Two-Electron Oxygen Electrochemistry". Advanced Energy Materials 8, nr 31 (21.09.2018): 1801909. http://dx.doi.org/10.1002/aenm.201801909.
Pełny tekst źródłaMarusczyk, Anika, Jan-Michael Albina, Thomas Hammerschmidt, Ralf Drautz, Thomas Eckl i Graeme Henkelman. "Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3". Journal of Materials Chemistry A 5, nr 29 (2017): 15183–90. http://dx.doi.org/10.1039/c7ta04164k.
Pełny tekst źródłaUESHIMA, Masato, Katsuo TAKAHASHI i Masaya IWAKI. "Hydrogen Absorption in Palladium Electrode with Structurely Changed by Oxygen Ion Implantation". Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, nr 7 (5.07.1993): 792–93. http://dx.doi.org/10.5796/electrochemistry.61.792.
Pełny tekst źródłaTACHIBANA, Koji, Akihiro TSURUNO, Katsumichi KOBAYASHI i Ken-ichi NAGANUMA. "Preparation of Ni-Co Oxide Electrodes Containing Foreign Elements for Oxygen Evolution". Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, nr 7 (5.07.1993): 800–801. http://dx.doi.org/10.5796/electrochemistry.61.800.
Pełny tekst źródłaKAMEGAYA, Yoichi, Kouki SASAKI, Masayuki OGURI, Tomoyoshi ASAKI i Takashi MITAMURA. "A Newly Designed Titanium Anode for Oxygen Evolution at High Current Densities". Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, nr 7 (5.07.1993): 802–4. http://dx.doi.org/10.5796/electrochemistry.61.802.
Pełny tekst źródłaSATO, Jun, Kazuki HIGURASHI, Katsutoshi FUKUDA i Wataru SUGIMOTO. "Oxygen Reduction Reaction Activity of Pt/Graphene Composites with Various Graphene Size". Electrochemistry 79, nr 5 (2011): 337–39. http://dx.doi.org/10.5796/electrochemistry.79.337.
Pełny tekst źródłaAIKAWA, Hiroaki, Kenji SAKAMOTO, Mikihito SUGIYAMA, Kouji SAIKI i Nagakazu FURUYA. "Deterioration Mechanism of Oxygen Cathode Loaded with Silver Catalyst for Chlor-alkali Electrolysis". Electrochemistry 71, nr 3 (5.03.2003): 169–73. http://dx.doi.org/10.5796/electrochemistry.71.169.
Pełny tekst źródłaITAGAKI, Masayuki, Hajime HASEGAWA, Kunihiro WATANABE i Toshinori HACHIYA. "Electroreduction of Oxygen on Oxidized Silver Electrode Investigated by Channel Flow Double Electrode". Electrochemistry 71, nr 7 (5.07.2003): 536–41. http://dx.doi.org/10.5796/electrochemistry.71.536.
Pełny tekst źródłaJung, Kyu-Nam, Jeonghun Kim, Yusuke Yamauchi, Min-Sik Park, Jong-Won Lee i Jung Ho Kim. "Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes". Journal of Materials Chemistry A 4, nr 37 (2016): 14050–68. http://dx.doi.org/10.1039/c6ta04510c.
Pełny tekst źródłaAnanyev, M. V., E. Kh Kurumchin i N. M. Porotnikova. "Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites". Russian Journal of Electrochemistry 46, nr 7 (lipiec 2010): 789–97. http://dx.doi.org/10.1134/s1023193510070128.
Pełny tekst źródłaÖztaş, B., D. Akyüz i A. Koca. "Immobilization of alkynyl functionalized manganese phthalocyanine via click electrochemistry for electrocatalytic oxygen evolution reaction". Physical Chemistry Chemical Physics 19, nr 38 (2017): 26121–31. http://dx.doi.org/10.1039/c7cp04354f.
Pełny tekst źródła