Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Oxygen Electrochemistry.

Artykuły w czasopismach na temat „Oxygen Electrochemistry”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oxygen Electrochemistry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

HORITA, Kiyoshi, Yukio NAGAOSA i Kenichi NAKATSU. "Oxygen Electrode by Using Oxygen Plasma-Treated Acetylene Black". Denki Kagaku oyobi Kogyo Butsuri Kagaku 60, nr 6 (5.06.1992): 547–49. http://dx.doi.org/10.5796/electrochemistry.60.547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Doyle, Andrew D., Joseph H. Montoya i Aleksandra Vojvodic. "Improving Oxygen Electrochemistry through Nanoscopic Confinement". ChemCatChem 7, nr 5 (30.01.2015): 738–42. http://dx.doi.org/10.1002/cctc.201402864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Doyle, Andrew D., Joseph H. Montoya i Aleksandra Vojvodic. "Improving Oxygen Electrochemistry through Nanoscopic Confinement". ChemCatChem 7, nr 5 (27.02.2015): 709. http://dx.doi.org/10.1002/cctc.201500103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhou, Daojin, Yin Jia, Hongbin Yang, Wenwen Xu, Kai Sun, Junming Zhang, Shiyuan Wang, Yun Kuang, Bin Liu i Xiaoming Sun. "Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery". Journal of Materials Chemistry A 6, nr 42 (2018): 21162–66. http://dx.doi.org/10.1039/c8ta08862d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tang, Cheng, i Qiang Zhang. "Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?" Journal of Materials Chemistry A 4, nr 14 (2016): 4998–5001. http://dx.doi.org/10.1039/c6ta01062h.

Pełny tekst źródła
Streszczenie:
The investigation of working active sites, insights into the durability, mechanism and bifunctional nature of metal–nitrogen–carbon catalysts render this family of materials promising candidates for oxygen electrochemistry.
Style APA, Harvard, Vancouver, ISO itp.
6

Gracia, J. "Spin dependent interactions catalyse the oxygen electrochemistry". Physical Chemistry Chemical Physics 19, nr 31 (2017): 20451–56. http://dx.doi.org/10.1039/c7cp04289b.

Pełny tekst źródła
Streszczenie:
The technological interest of oxygen reduction and evolution reactions, ORR and OER, for the clean use and storage of energy has resulted in the discovery of multiple catalysts; and the physical and catalytic properties of the most active compositions are only comprehensible with the consideration of magnetic interactions.
Style APA, Harvard, Vancouver, ISO itp.
7

Sharon, Daniel, Daniel Hirshberg, Michal Afri, Arnd Garsuch, Aryeh A. Frimer i Doron Aurbach. "LithiumOxygen Electrochemistry in Non-Aqueous Solutions". Israel Journal of Chemistry 55, nr 5 (6.02.2015): 508–20. http://dx.doi.org/10.1002/ijch.201400135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tan, Shu Min, Chun Kiang Chua, David Sedmidubský, Zdenĕk Sofer i Martin Pumera. "Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER". Physical Chemistry Chemical Physics 18, nr 3 (2016): 1699–711. http://dx.doi.org/10.1039/c5cp06682d.

Pełny tekst źródła
Streszczenie:
The study of the inherent electrochemistry of layered metal chalcogenides, GaSe and GeS, was performed. In particular, their impact towards the electrochemical sensing of redox probes as well as catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions was examined.
Style APA, Harvard, Vancouver, ISO itp.
9

Li, Fei, Li-Jun Zheng, Xiao-Xue Wang, Ma-Lin Li, Ji-Jing Xu i Yu Wang. "Driving Oxygen Electrochemistry in Lithium–Oxygen Battery by Local Surface Plasmon Resonance". ACS Applied Materials & Interfaces 13, nr 22 (31.05.2021): 26123–33. http://dx.doi.org/10.1021/acsami.1c06540.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Nemanick, E. Joseph. "Electrochemistry of lithium–oxygen batteries using microelectrode voltammetry". Journal of Power Sources 247 (luty 2014): 26–31. http://dx.doi.org/10.1016/j.jpowsour.2013.08.043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Wang, Liang, Yantao Zhang, Zhenjie Liu, Limin Guo i Zhangquan Peng. "Understanding oxygen electrochemistry in aprotic Li O2 batteries". Green Energy & Environment 2, nr 3 (lipiec 2017): 186–203. http://dx.doi.org/10.1016/j.gee.2017.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

IZU, Noriya, Woosuck SHIN, Ichiro MATSUBARA i Norimitsu MURAYAMA. "Resistive Oxygen Sensor Using Hafnium-Doped Cerium Oxide". Electrochemistry 73, nr 7 (5.07.2005): 478–80. http://dx.doi.org/10.5796/electrochemistry.73.478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Jiao, Yan, Yao Zheng, Mietek Jaroniec i Shi Zhang Qiao. "Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions". Chemical Society Reviews 44, nr 8 (2015): 2060–86. http://dx.doi.org/10.1039/c4cs00470a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Götz, R., H. K. Ly, P. Wrzolek, M. Schwalbe i I. M. Weidinger. "Surface enhanced resonance Raman spectroscopy of iron Hangman complexes on electrodes during electrocatalytic oxygen reduction: advantages and problems of common drycast methods". Dalton Transactions 46, nr 39 (2017): 13220–28. http://dx.doi.org/10.1039/c7dt01174a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Du, Minshu, Yao Meng, Geju Zhu, Mingze Gao, Hsien-Yi Hsu i Feng Liu. "Intrinsic electrocatalytic activity of a single IrOx nanoparticle towards oxygen evolution reaction". Nanoscale 12, nr 43 (2020): 22014–21. http://dx.doi.org/10.1039/d0nr05780k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

YOSHIO, Masaki, Yongyao XIA i Tetsuo SAKAI. "Electrochemical and Physicochemical Behaviors of Oxygen-deficient Manganese Spinel". Electrochemistry 69, nr 7 (5.07.2001): 516–18. http://dx.doi.org/10.5796/electrochemistry.69.516.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

ASANO, Itaru, Yasuyuki HAMANO, Seiya TSUJIMURA, Osamu SHIRAI i Kenji KANO. "Improved Performance of Gas-diffusion Biocathode for Oxygen Reduction". Electrochemistry 80, nr 5 (2012): 324–26. http://dx.doi.org/10.5796/electrochemistry.80.324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

DIETHELM, Stefan, Alexandre CLOSSET, Jan VAN HERLE i Kemal NISANCIOGLU. "Oxygen Transport and Nonstoichiometry in SrFeO3-δ". Electrochemistry 68, nr 6 (5.06.2000): 444–50. http://dx.doi.org/10.5796/electrochemistry.68.444.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

McCloskey, B. D., D. S. Bethune, R. M. Shelby, G. Girishkumar i A. C. Luntz. "Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry". Journal of Physical Chemistry Letters 2, nr 10 (27.04.2011): 1161–66. http://dx.doi.org/10.1021/jz200352v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Sharon, Daniel, Daniel Hirshberg, Michal Afri, Arnd Garsuch, Aryeh A. Frimer i Doron Aurbach. "ChemInform Abstract: Lithium-Oxygen Electrochemistry in Non-Aqueous Solutions". ChemInform 46, nr 28 (25.06.2015): no. http://dx.doi.org/10.1002/chin.201528302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Katsounaros, Ioannis, Serhiy Cherevko, Aleksandar R. Zeradjanin i Karl J. J. Mayrhofer. "Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion". Angewandte Chemie International Edition 53, nr 1 (11.12.2013): 102–21. http://dx.doi.org/10.1002/anie.201306588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Nandan, R., A. Gautam i K. K. Nanda. "Maximizing the utilization of Fe–NxC/CNx centres for an air-cathode material and practical demonstration of metal–air batteries". Journal of Materials Chemistry A 5, nr 38 (2017): 20252–62. http://dx.doi.org/10.1039/c7ta06254k.

Pełny tekst źródła
Streszczenie:
Maximum exposure of electroactive sites in NCNTs via opening of nitrogen-enriched bamboo compartments for excellent overall oxygen electrochemistry and practical viability in electrochemical energy storage devices.
Style APA, Harvard, Vancouver, ISO itp.
23

Nandan, Ravi, Ajay Gautam i Karuna Kar Nanda. "Anthocephalus cadamba shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst". Journal of Materials Chemistry A 6, nr 41 (2018): 20411–20. http://dx.doi.org/10.1039/c8ta05822a.

Pełny tekst źródła
Streszczenie:
A facile strategy is developed for mimicking Anthocephalus cadamba on the nanoscale to produce FeNi encapsulated in radially grown spatially separated NCNTs for excellent bifunctional oxygen electrochemistry.
Style APA, Harvard, Vancouver, ISO itp.
24

Laha, S., S. Natarajan, J. Gopalakrishnan, E. Morán, R. Sáez-Puche, M. Á. Alario-Franco, A. J. Dos Santos-Garcia, J. C. Pérez-Flores, A. Kuhn i F. García-Alvarado. "Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe)". Physical Chemistry Chemical Physics 17, nr 5 (2015): 3749–60. http://dx.doi.org/10.1039/c4cp05052e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Lu, Xunyu, Hubert M. Chan, Chia-Liang Sun, Chuan-Ming Tseng i Chuan Zhao. "Interconnected core–shell carbon nanotube–graphene nanoribbon scaffolds for anchoring cobalt oxides as bifunctional electrocatalysts for oxygen evolution and reduction". Journal of Materials Chemistry A 3, nr 25 (2015): 13371–76. http://dx.doi.org/10.1039/c5ta02967h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

ISHIBASHI, Kenji, Seiya TSUJIMURA i Kenji KANO. "Pentacyanoferrate and Bilirubin Oxidase-bound Polymer for Oxygen Reduction Bio-cathode". Electrochemistry 76, nr 8 (2008): 594–96. http://dx.doi.org/10.5796/electrochemistry.76.594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Xin, Sen, Zhiwen Chang, Xinbo Zhang i Yu-Guo Guo. "Progress of rechargeable lithium metal batteries based on conversion reactions". National Science Review 4, nr 1 (13.11.2016): 54–70. http://dx.doi.org/10.1093/nsr/nww078.

Pełny tekst źródła
Streszczenie:
Abstract In this review, we focus on the conversion reaction in newly raised rechargeable lithium batteries instanced by lithium–sulfur and lithium–oxygen batteries. A comprehensive discussion is made on the fundamental electrochemistry and recent advancements in key components of both types of the batteries. The critical problems in the Li–S and Li–O2 conversion electrochemistry are addressed along with the corresponding improvement strategies, for the purpose of shedding light on the rational design of batteries to reach optimal performance.
Style APA, Harvard, Vancouver, ISO itp.
28

KITANI, Akira, Akihisa YOKOO i Sotaro ITO. "Reduction of Oxygen at Polyaniline Electrodes Modified with Platinum and Iron". Electrochemistry 75, nr 2 (2007): 182–83. http://dx.doi.org/10.5796/electrochemistry.75.182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

UCHIDA, Hiroyuki, Hiroshi YANO, Mitsuru WAKISAKA i Masahiro WATANABE. "Electrocatalysis of the Oxygen Reduction Reaction at Pt and Pt-Alloys". Electrochemistry 79, nr 5 (2011): 303–11. http://dx.doi.org/10.5796/electrochemistry.79.303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

NAGAMINE, Kuniaki, Shuntaro ITO, Mai TAKEDA, Shingo OTANI i Matsuhiko NISHIZAWA. "An Oxygen Responsive Microparticle-Patterned Hydrogel Sheet for Enzyme Activity Imaging". Electrochemistry 80, nr 5 (2012): 318–20. http://dx.doi.org/10.5796/electrochemistry.80.318.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

MATSUO, Keishi, Yoshiyuki TAKATSUJI, Masahiro KOHNO, Toshiaki KAMACHI, Hideo NAKADA i Tetsuya HARUYAMA. "Dispersed-phase Interfaces between Mist Water Particles and Oxygen Plasma Efficiently Produce Singlet Oxygen (1O2) and Hydroxyl Radical (•OH)". Electrochemistry 83, nr 9 (2015): 721–24. http://dx.doi.org/10.5796/electrochemistry.83.721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

UENO, Mitsushi, Hiroyuki OGURA i Tamotsu SHIROGAMI. "Oxygen Partial Pressure Dependence on Cell Voltage in Phosphoric Acid Fuel Cell". Electrochemistry 67, nr 10 (5.10.1999): 979–84. http://dx.doi.org/10.5796/electrochemistry.67.979.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

TOSHIMA, Shigero, Tomohisa KANBAYASHI, Kazuhiro KAN, Kazushige AOYAGI i Masato KOBAYASHI. "Measurement of Oxygen Consumption of Biopsied Bovine Embryos using Scanning Electrochemical Microscopy". Electrochemistry 73, nr 11 (5.11.2005): 942–44. http://dx.doi.org/10.5796/electrochemistry.73.942.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Clausmeyer, Jan, Justus Masa, Edgar Ventosa, Dennis Öhl i Wolfgang Schuhmann. "Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles". Chemical Communications 52, nr 11 (2016): 2408–11. http://dx.doi.org/10.1039/c5cc08796a.

Pełny tekst źródła
Streszczenie:
Individual Ni(OH)2 nanoparticles deposited on carbon nanoelectrodes are investigated in non-ensemble measurements with respect to their energy storage properties and electrocatalysis for the oxygen evolution reaction (OER).
Style APA, Harvard, Vancouver, ISO itp.
35

SATO, Yuki, Sho KITANO, Damian KOWALSKI, Yoshitaka AOKI, Naoko FUJIWARA, Tsutomu IOROI i Hiroki HABAZAKI. "Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction". Electrochemistry 88, nr 6 (5.11.2020): 566–73. http://dx.doi.org/10.5796/electrochemistry.20-00107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

McKee, Austin, Avik Samanta, Alan Rassoolkhani, Jonathan Koonce, Wuji Huang, Jacob Fields, Scott K. Shaw, Joseph Gomes, Hongtao Ding i Syed Mubeen. "Effect of silver electrode wetting state on oxygen reduction electrochemistry". Chemical Communications 57, nr 65 (2021): 8003–6. http://dx.doi.org/10.1039/d1cc01438b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sours, Tyler, Anjli Patel, Jens Nørskov, Samira Siahrostami i Ambarish Kulkarni. "Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks". Journal of Physical Chemistry Letters 11, nr 23 (12.11.2020): 10029–36. http://dx.doi.org/10.1021/acs.jpclett.0c02889.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Cheng, Fangyi, i Jun Chen. "Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts". Chemical Society Reviews 41, nr 6 (2012): 2172. http://dx.doi.org/10.1039/c1cs15228a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wei, Jie, Yong-Li Zheng, Zi-Yue Li, Mian-Le Xu, Yan-Xia Chen i Shen Ye. "Electrochemistry of Oxygen at Ir Single Crystalline Electrodes in Acid". Electrochimica Acta 246 (sierpień 2017): 329–37. http://dx.doi.org/10.1016/j.electacta.2017.05.103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Jiang, Yuanyuan, Pengjuan Ni, Chuanxia Chen, Yizhong Lu, Ping Yang, Biao Kong, Adrian Fisher i Xin Wang. "Selective Electrochemical H2 O2 Production through Two-Electron Oxygen Electrochemistry". Advanced Energy Materials 8, nr 31 (21.09.2018): 1801909. http://dx.doi.org/10.1002/aenm.201801909.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Marusczyk, Anika, Jan-Michael Albina, Thomas Hammerschmidt, Ralf Drautz, Thomas Eckl i Graeme Henkelman. "Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3". Journal of Materials Chemistry A 5, nr 29 (2017): 15183–90. http://dx.doi.org/10.1039/c7ta04164k.

Pełny tekst źródła
Streszczenie:
Over-lithiated transition metal oxides are currently the most promising high energy cathode materials. DFT calculations show that Li2MnO3 becomes increasingly unstable upon delithiation and experiences a driving force for either oxygen release from the surface or peroxide formation in the bulk. Both mechanisms are shown to be detrimental for the electrochemistry.
Style APA, Harvard, Vancouver, ISO itp.
42

UESHIMA, Masato, Katsuo TAKAHASHI i Masaya IWAKI. "Hydrogen Absorption in Palladium Electrode with Structurely Changed by Oxygen Ion Implantation". Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, nr 7 (5.07.1993): 792–93. http://dx.doi.org/10.5796/electrochemistry.61.792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

TACHIBANA, Koji, Akihiro TSURUNO, Katsumichi KOBAYASHI i Ken-ichi NAGANUMA. "Preparation of Ni-Co Oxide Electrodes Containing Foreign Elements for Oxygen Evolution". Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, nr 7 (5.07.1993): 800–801. http://dx.doi.org/10.5796/electrochemistry.61.800.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

KAMEGAYA, Yoichi, Kouki SASAKI, Masayuki OGURI, Tomoyoshi ASAKI i Takashi MITAMURA. "A Newly Designed Titanium Anode for Oxygen Evolution at High Current Densities". Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, nr 7 (5.07.1993): 802–4. http://dx.doi.org/10.5796/electrochemistry.61.802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

SATO, Jun, Kazuki HIGURASHI, Katsutoshi FUKUDA i Wataru SUGIMOTO. "Oxygen Reduction Reaction Activity of Pt/Graphene Composites with Various Graphene Size". Electrochemistry 79, nr 5 (2011): 337–39. http://dx.doi.org/10.5796/electrochemistry.79.337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

AIKAWA, Hiroaki, Kenji SAKAMOTO, Mikihito SUGIYAMA, Kouji SAIKI i Nagakazu FURUYA. "Deterioration Mechanism of Oxygen Cathode Loaded with Silver Catalyst for Chlor-alkali Electrolysis". Electrochemistry 71, nr 3 (5.03.2003): 169–73. http://dx.doi.org/10.5796/electrochemistry.71.169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

ITAGAKI, Masayuki, Hajime HASEGAWA, Kunihiro WATANABE i Toshinori HACHIYA. "Electroreduction of Oxygen on Oxidized Silver Electrode Investigated by Channel Flow Double Electrode". Electrochemistry 71, nr 7 (5.07.2003): 536–41. http://dx.doi.org/10.5796/electrochemistry.71.536.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Jung, Kyu-Nam, Jeonghun Kim, Yusuke Yamauchi, Min-Sik Park, Jong-Won Lee i Jung Ho Kim. "Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes". Journal of Materials Chemistry A 4, nr 37 (2016): 14050–68. http://dx.doi.org/10.1039/c6ta04510c.

Pełny tekst źródła
Streszczenie:
Lithium–air battery (LAB) technology is currently being considered as a future technology for resolving energy and environmental issues. Here, we introduce recent advances and the remaining technical challenges in the development of LABs, particularly focusing on the cathodes based on a fundamental understanding of Li–O2electrochemistry.
Style APA, Harvard, Vancouver, ISO itp.
49

Ananyev, M. V., E. Kh Kurumchin i N. M. Porotnikova. "Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites". Russian Journal of Electrochemistry 46, nr 7 (lipiec 2010): 789–97. http://dx.doi.org/10.1134/s1023193510070128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Öztaş, B., D. Akyüz i A. Koca. "Immobilization of alkynyl functionalized manganese phthalocyanine via click electrochemistry for electrocatalytic oxygen evolution reaction". Physical Chemistry Chemical Physics 19, nr 38 (2017): 26121–31. http://dx.doi.org/10.1039/c7cp04354f.

Pełny tekst źródła
Streszczenie:
Modified electrodes (ITO/PANI-N3-MnPc and GCE/PANI-N3-MnPc) were constructed by click electrochemistry (CEC). The GCE/PANI-N3-MnPc electrode was tested as a potential electrocatalyst for water splitting reaction.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii