Artykuły w czasopismach na temat „Oxygen Electrocatalysts”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oxygen Electrocatalysts”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jiang, Minhua, Xiaofang Yu, Haoqi Yang i Shuiliang Chen. "Optimization Strategies of Preparation of Biomass-Derived Carbon Electrocatalyst for Boosting Oxygen Reduction Reaction: A Minireview". Catalysts 10, nr 12 (16.12.2020): 1472. http://dx.doi.org/10.3390/catal10121472.
Pełny tekst źródłaQin, Xupeng, Oluwafunmilola Ola, Jianyong Zhao, Zanhe Yang, Santosh K. Tiwari, Nannan Wang i Yanqiu Zhu. "Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction". Nanomaterials 12, nr 11 (25.05.2022): 1806. http://dx.doi.org/10.3390/nano12111806.
Pełny tekst źródłaLiu, Huimin, Xinning Huang, Zhenjie Lu, Tao Wang, Yaming Zhu, Junxia Cheng, Yue Wang i in. "Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc–air batteries". Nanoscale 12, nr 17 (2020): 9628–39. http://dx.doi.org/10.1039/c9nr10800a.
Pełny tekst źródłaCepitis, Ritums, Nadezda Kongi, Vitali Grozovski, Vladislav Ivaništšev i Enn Lust. "Multifunctional Electrocatalysis on Single-Site Metal Catalysts: A Computational Perspective". Catalysts 11, nr 10 (27.09.2021): 1165. http://dx.doi.org/10.3390/catal11101165.
Pełny tekst źródłaCherevko, Serhiy, Konrad Ehelebe, Daniel Escalera López, Julius Knöppel, YuPing Ku i Maja Milosevic. "(Invited) Electrocatalysts Dissolution Assessment in Fuel Cell and Water Electrolysis Research". ECS Meeting Abstracts MA2022-01, nr 49 (7.07.2022): 2052. http://dx.doi.org/10.1149/ma2022-01492052mtgabs.
Pełny tekst źródłaGao, Xiaolan, i Ge Li. "Ultrasmall Co9S8 nanocrystals on Carbon Nanoplates for Efficient Bifunctional Oxygen Electrocatalysis". ECS Meeting Abstracts MA2022-01, nr 49 (7.07.2022): 2074. http://dx.doi.org/10.1149/ma2022-01492074mtgabs.
Pełny tekst źródłaMadan, Chetna, i Aditi Halder. "Nonprecious Multi-Principal Metal Systems As the Air Electrode for a Solid-State Rechargeable Zinc-Air Battery". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2327. http://dx.doi.org/10.1149/ma2022-02642327mtgabs.
Pełny tekst źródłaWang, Chengcheng, Bingxue Hou, Xintao Wang, Zhan Yu, Dawei Luo, Mortaza Gholizadeh i Xincan Fan. "High-Performance A-Site Deficient Perovskite Electrocatalyst for Rechargeable Zn–Air Battery". Catalysts 12, nr 7 (27.06.2022): 703. http://dx.doi.org/10.3390/catal12070703.
Pełny tekst źródłaTariq, Irsa, Muhammad Adeel Asghar, Abid Ali, Amin Badshah, Syed Mustansar Abbas, Waheed Iqbal, Muhammad Zubair, Ali Haider i Shahid Zaman. "Surface Reconstruction of Cobalt-Based Polyoxometalate and CNT Fiber Composite for Efficient Oxygen Evolution Reaction". Catalysts 12, nr 10 (15.10.2022): 1242. http://dx.doi.org/10.3390/catal12101242.
Pełny tekst źródłaNi, Chunsheng, Shuntian Huang, Tete Daniel Koudama, Xiaodong Wu, Sheng Cui, Xiaodong Shen i Xiangbao Chen. "Tuning the Electronic Structure of a Novel 3D Architectured Co-N-C Aerogel to Enhance Oxygen Evolution Reaction Activity". Gels 9, nr 4 (7.04.2023): 313. http://dx.doi.org/10.3390/gels9040313.
Pełny tekst źródłaHung, Sung-Fu. "In-situ X-ray techniques for non-noble electrocatalysts". Pure and Applied Chemistry 92, nr 5 (26.05.2020): 733–49. http://dx.doi.org/10.1515/pac-2019-1006.
Pełny tekst źródłaDong, Dongqi, Zexing Wu, Jie Wang, Gengtao Fu i Yawen Tang. "Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis". Journal of Materials Chemistry A 7, nr 27 (2019): 16068–88. http://dx.doi.org/10.1039/c9ta04972j.
Pełny tekst źródłaSolangi, Muhammad Yameen, Abdul Hanan Samo, Abdul Jaleel Laghari, Umair Aftab, Muhammad Ishaque Abro i Muhammad Imran Irfan. "MnO2@Co3O4 nanocomposite based electrocatalyst for effective oxygen evolution reaction". Sukkur IBA Journal of Emerging Technologies 5, nr 1 (30.06.2022): 32–40. http://dx.doi.org/10.30537/sjet.v5i1.958.
Pełny tekst źródłaDas, Srijib, Souvik Ghosh, Tapas Kuila, Naresh Chandra Murmu i Aniruddha Kundu. "Biomass-Derived Advanced Carbon-Based Electrocatalysts for Oxygen Reduction Reaction". Biomass 2, nr 3 (15.08.2022): 155–77. http://dx.doi.org/10.3390/biomass2030010.
Pełny tekst źródłaZhuang, Linzhou, Shiyi Li, Jiankun Li, Keyu Wang, Zeyu Guan, Chen Liang i Zhi Xu. "Recent Advances on Hydrogen Evolution and Oxygen Evolution Catalysts for Direct Seawater Splitting". Coatings 12, nr 5 (12.05.2022): 659. http://dx.doi.org/10.3390/coatings12050659.
Pełny tekst źródłaWeng, Yu-Ching, Cheng-Jen Ho, Hui-Hsuan Chiao i Chen-Hao Wang. "Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells". Zeitschrift für Naturforschung B 75, nr 12 (16.12.2020): 1029–35. http://dx.doi.org/10.1515/znb-2020-0116.
Pełny tekst źródłaMa, Junchao, Boyan Lu, Sha Wang, Wenxiu He, Xiaojue Bai, Tieqiang Wang, Xuemin Zhang i in. "MOF-derived CuCoNi trimetallic hybrids as efficient oxygen evolution reaction electrocatalysts". New Journal of Chemistry 44, nr 6 (2020): 2459–64. http://dx.doi.org/10.1039/c9nj05562b.
Pełny tekst źródłaWu, Hengbo, Jie Wang, Wei Jin i Zexing Wu. "Correction: Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis". Nanoscale 12, nr 43 (2020): 22340–48. http://dx.doi.org/10.1039/d0nr90231d.
Pełny tekst źródłaZhang, Meng, Wenjie Wu, Zhen Wang, Gang Xie i Xiaohui Guo. "Boosting Water Oxidation Activity via Carbon–Nitrogen Vacancies in NiFe Prussian Blue Analogue Electrocatalysts". Colloids and Interfaces 7, nr 1 (10.02.2023): 14. http://dx.doi.org/10.3390/colloids7010014.
Pełny tekst źródłaJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, Daehyeon Ko, HyukSu Han, Nuri Oh, Sunghwan Yeo, Chisung Ahn i Sungwook Mhin. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions". Nanomaterials 12, nr 6 (16.03.2022): 983. http://dx.doi.org/10.3390/nano12060983.
Pełny tekst źródłaMarques, Inês S., Bruno Jarrais, Israël-Martyr Mbomekallé, Anne-Lucie Teillout, Pedro de Oliveira, Cristina Freire i Diana M. Fernandes. "Synergetic Effects of Mixed-Metal Polyoxometalates@Carbon-Based Composites as Electrocatalysts for the Oxygen Reduction and the Oxygen Evolution Reactions". Catalysts 12, nr 4 (14.04.2022): 440. http://dx.doi.org/10.3390/catal12040440.
Pełny tekst źródłaZheng, Penglun, Quanyi Liu, Xiaoliang Peng, Laiquan Li i Jun Yang. "Constructing Ni–Mo2C Nanohybrids Anchoring on Highly Porous Carbon Nanotubes as Efficient Multifunctional Electrocatalysts". Nano 15, nr 10 (październik 2020): 2050135. http://dx.doi.org/10.1142/s1793292020501350.
Pełny tekst źródłaManivannan, Natarajan, Vijai Shankar Balachandran i V. S. Vasantha. "Carbon Supported Platinum-Molybdenum Alloy Nanoparticles for Oxygen Reduction Reaction". Asian Journal of Chemistry 33, nr 5 (2021): 1153–58. http://dx.doi.org/10.14233/ajchem.2021.23165.
Pełny tekst źródłaLiu, Yong, Tao Wang, Guo Gong i Yong Zhang. "Highly Nitrogen-Doped Porous Carbon Nanosheets Electrocatalyst from Ethylenediaminetetraacetic Acid Ferric Sodium Salt for Oxygen Reduction Reaction". Nanoscience and Nanotechnology Letters 12, nr 3 (1.03.2020): 317–23. http://dx.doi.org/10.1166/nnl.2020.3108.
Pełny tekst źródłaPharkya, Pallavi, Akram Alfantazi i Zoheir Farhat. "Fabrication Using High-Energy Ball-Milling Technique and Characterization of Pt-Co Electrocatalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells". Journal of Fuel Cell Science and Technology 2, nr 3 (2.02.2005): 171–78. http://dx.doi.org/10.1115/1.1895985.
Pełny tekst źródłaWang, Quan, Baosen Mi, Jun Zhou, Ziwei Qin, Zhuo Chen i Hongbin Wang. "Hollow-Structure Pt-Ni Nanoparticle Electrocatalysts for Oxygen Reduction Reaction". Molecules 27, nr 8 (14.04.2022): 2524. http://dx.doi.org/10.3390/molecules27082524.
Pełny tekst źródłaAlbiter, Luis A., Kathleen O. Bailey, Jose Fernando Godinez Salomon i Christopher P. Rhodes. "Ruthenium-Zirconium Oxides As Highly Stable Oxygen Evolution Electrocatalysts". ECS Meeting Abstracts MA2022-02, nr 44 (9.10.2022): 1648. http://dx.doi.org/10.1149/ma2022-02441648mtgabs.
Pełny tekst źródłaGaolatlhe, Lesego, Augustus Kelechi Lebechi, Aderemi Bashiru Haruna, Thapelo Prince Mofokeng, Patrick Vaati Mwonga i Kenneth Ikechukwu Ozoemena. "High Entropy Spinel Oxide As a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2419. http://dx.doi.org/10.1149/ma2022-0272419mtgabs.
Pełny tekst źródłaZhang, Huiyi, Yan Wang, Daqi Song, Liang Wang, Yifan Zhang i Yong Wang. "Cerium-Based Electrocatalysts for Oxygen Evolution/Reduction Reactions: Progress and Perspectives". Nanomaterials 13, nr 13 (23.06.2023): 1921. http://dx.doi.org/10.3390/nano13131921.
Pełny tekst źródłaNagajyothi, Patnamsetty Chidanandha, Krishnapuram Pavani, Rajavaram Ramaraghavulu i Jaesool Shim. "Ce–Metal–Organic Framework-Derived CeO2–GO: An Efficient Electrocatalyst for Oxygen Evolution Reaction". Inorganics 11, nr 4 (11.04.2023): 161. http://dx.doi.org/10.3390/inorganics11040161.
Pełny tekst źródłaTang, Chaoyun, Tewodros Asefa i Nianqiang Wu. "Metal-Coordinated Hydrogels As Efficient Oxygen Evolution Electrocatalysts". ECS Meeting Abstracts MA2022-02, nr 48 (9.10.2022): 1798. http://dx.doi.org/10.1149/ma2022-02481798mtgabs.
Pełny tekst źródłaDing, Xiaoteng, Wei Cui, Xiaohua Zhu, Jianwei Zhang i Yusheng Niu. "Intrinsic poorly-crystallized Fe5O7(OH)·4H2O: a highly efficient oxygen evolution reaction electrocatalyst under alkaline conditions". RSC Advances 9, nr 72 (2019): 42470–73. http://dx.doi.org/10.1039/c9ra06374a.
Pełny tekst źródłaKim, Myeong Gyu, i Yun-Hyuk Choi. "Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis". Nanomaterials 13, nr 6 (12.03.2023): 1021. http://dx.doi.org/10.3390/nano13061021.
Pełny tekst źródłaJeon, In Yup, i Jong Beom Baek. "Iodinated Charcoal as Electrocatalyst for Oxygen Reduction Reaction". Applied Mechanics and Materials 749 (kwiecień 2015): 36–40. http://dx.doi.org/10.4028/www.scientific.net/amm.749.36.
Pełny tekst źródłaKim, Jihun, Dae Hoon Lee, Yang Yang, Kai Chen, Chunli Liu, Jun Kang i Oi Lun Li. "Hybrid Molybdenum Carbide/Heteroatom-Doped Carbon Electrocatalyst for Advanced Oxygen Evolution Reaction in Hydrogen Production". Catalysts 10, nr 11 (8.11.2020): 1290. http://dx.doi.org/10.3390/catal10111290.
Pełny tekst źródłaHe, Yan, Tao Yu, Hui Wen i Rui Guo. "Boosting the charge transfer of FeOOH/Ni(OH)2 for excellent oxygen evolution reaction via Cr modification". Dalton Transactions 50, nr 28 (2021): 9746–53. http://dx.doi.org/10.1039/d1dt01469b.
Pełny tekst źródłaSaha, Sulay, Koshal Kishor i Raj Ganesh S. Pala. "Climbing with support: scaling the volcano relationship through support–electrocatalyst interactions in electrodeposited RuO2 for the oxygen evolution reaction". Catalysis Science & Technology 11, nr 13 (2021): 4342–52. http://dx.doi.org/10.1039/d1cy00375e.
Pełny tekst źródłaBanti, Angeliki, Kalliopi Maria Papazisi, Stella Balomenou i Dimitrios Tsiplakides. "Effect of Calcination Temperature on the Activity of Unsupported IrO2 Electrocatalysts for the Oxygen Evolution Reaction in Polymer Electrolyte Membrane Water Electrolyzers". Molecules 28, nr 15 (2.08.2023): 5827. http://dx.doi.org/10.3390/molecules28155827.
Pełny tekst źródłaZhu, Yan, Haidong Yang, Kai Lan, Kanwal Iqbal, Yang Liu, Ping Ma, Ziming Zhao, Sha Luo, Yutong Luo i Jiantai Ma. "Optimization of iron-doped Ni3S2 nanosheets by disorder engineering for oxygen evolution reaction". Nanoscale 11, nr 5 (2019): 2355–65. http://dx.doi.org/10.1039/c8nr08469f.
Pełny tekst źródłaSamo, A. H., U. Aftab, D. X. Cao, M. Ahmed, M. N. Lakhan, V. Kumar, A. Asif i A. Ali. "Schematic synthesis of cobalt-oxide (Co3O4) supported cobalt-sulfide (CoS) composite for oxygen evolution reaction". Digest Journal of Nanomaterials and Biostructures 17, nr 1 (styczeń 2022): 109–20. http://dx.doi.org/10.15251/djnb.2022.171.109.
Pełny tekst źródłaKim, Hyo-Young, i Young-Wan Ju. "Fabrication of Mn-N-C Catalyst for Oxygen Reduction Reactions Using Mn-Embedded Carbon Nanofiber". Energies 13, nr 10 (18.05.2020): 2561. http://dx.doi.org/10.3390/en13102561.
Pełny tekst źródłaJia, Lisha, Pawel Wagner i Jun Chen. "Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting". Inorganics 10, nr 4 (13.04.2022): 53. http://dx.doi.org/10.3390/inorganics10040053.
Pełny tekst źródłaHe, Shuaijie, Mingjie Wu, Song Li, Zhiyi Jiang, Hanlie Hong, Sylvain G. Cloutier, Huaming Yang, Sasha Omanovic, Shuhui Sun i Gaixia Zhang. "Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage". Molecules 27, nr 24 (7.12.2022): 8644. http://dx.doi.org/10.3390/molecules27248644.
Pełny tekst źródłaKaruppiah, Chelladurai, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li i Chun-Chen Yang. "Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis". Catalysts 11, nr 1 (7.01.2021): 76. http://dx.doi.org/10.3390/catal11010076.
Pełny tekst źródłaKaruppiah, Chelladurai, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li i Chun-Chen Yang. "Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis". Catalysts 11, nr 1 (7.01.2021): 76. http://dx.doi.org/10.3390/catal11010076.
Pełny tekst źródłaXu, Jun, Chan Chen, Zhifei Han, Yuanyuan Yang, Junsheng Li i Qibo Deng. "Recent Advances in Oxygen Electrocatalysts Based on Perovskite Oxides". Nanomaterials 9, nr 8 (14.08.2019): 1161. http://dx.doi.org/10.3390/nano9081161.
Pełny tekst źródłaSung, Yung-Eun, Heejong Shin i Jae Jeong Kim. "(Digital Presentation) Design of Metal/Metal Oxide Nanomaterials for Highly Active, Selective, and Durable Electrocatalysts". ECS Meeting Abstracts MA2022-02, nr 42 (9.10.2022): 1553. http://dx.doi.org/10.1149/ma2022-02421553mtgabs.
Pełny tekst źródłaBae, Youngjoon, Hyeokjun Park, Youngmin Ko, Hyunah Kim, Sung Kwan Park i Kisuk Kang. "Bifunctional Oxygen Electrocatalysts for Lithium−Oxygen Batteries". Batteries & Supercaps 2, nr 4 (6.02.2019): 311–25. http://dx.doi.org/10.1002/batt.201800127.
Pełny tekst źródłaBae, Youngjoon, Hyeokjun Park, Youngmin Ko, Hyunah Kim, Sung Kwan Park i Kisuk Kang. "Bifunctional Oxygen Electrocatalysts for Lithium‐Oxygen Batteries". Batteries & Supercaps 2, nr 4 (kwiecień 2019): 269. http://dx.doi.org/10.1002/batt.201900039.
Pełny tekst źródłaAbruna, Hector. "(Invited) Novel Materials and Operando Methods for Alkaline Electrocatalysis". ECS Meeting Abstracts MA2022-02, nr 43 (9.10.2022): 1614. http://dx.doi.org/10.1149/ma2022-02431614mtgabs.
Pełny tekst źródła