Gotowa bibliografia na temat „Oxide Based Electrolytes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Oxide Based Electrolytes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Oxide Based Electrolytes"
Lee, Seokhee, Sang Won Lee, Suji Kim i Tae Ho Shin. "Recent Advances in High Temperature Electrolysis Cells using LaGaO3-based Electrolyte". Ceramist 24, nr 4 (31.12.2021): 424–37. http://dx.doi.org/10.31613/ceramist.2021.24.4.06.
Pełny tekst źródłaLee, Seokhee, Sang Won Lee, Suji Kim i Tae Ho Shin. "Recent Advances in High Temperature Electrolysis Cells using LaGaO3-based Electrolyte". Ceramist 24, nr 4 (31.12.2021): 424–37. http://dx.doi.org/10.31613/ceramist.2021.24.4.42.
Pełny tekst źródłaYao, Yong Li, Yan Gai Liu, Zhao Hui Huang i Ming Hao Fang. "Study on Multi-Doped Ceria-Based Solid Electrolytes". Key Engineering Materials 519 (lipiec 2012): 28–31. http://dx.doi.org/10.4028/www.scientific.net/kem.519.28.
Pełny tekst źródłaMichalska-Domańska, Marta, Magdalena Łazińska, Justyna Łukasiewicz, Johannes M. C. Mol i Tomasz Durejko. "Self-Organized Anodic Oxides on Titanium Alloys Prepared from Glycol- and Glycerol-Based Electrolytes". Materials 13, nr 21 (23.10.2020): 4743. http://dx.doi.org/10.3390/ma13214743.
Pełny tekst źródłaAbels, Gideon, Ingo Bardenhagen, Julian Schwenzel i Frederieke Langer. "Thermal Stability of Polyethylene Oxide Electrolytes in Lithium Nickel Manganese Cobalt Oxide Based Composite Cathodes". Journal of The Electrochemical Society 169, nr 2 (1.02.2022): 020560. http://dx.doi.org/10.1149/1945-7111/ac534c.
Pełny tekst źródłaOh, Seeun, Dongyeon Kim i Kang Taek Lee. "High Entropy Perovskite Electrolytes for Reversible Protonic Ceramic Electrochemical Cells". ECS Transactions 111, nr 6 (19.05.2023): 1743–49. http://dx.doi.org/10.1149/11106.1743ecst.
Pełny tekst źródłaLiu, Liyu, Kai Chen, Liguo Zhang i Bong-Ki Ryu. "Prospects of Sulfide-Based Solid-State Electrolytes Modified by Organic Thin Films". International Journal of Energy Research 2023 (6.02.2023): 1–7. http://dx.doi.org/10.1155/2023/2601098.
Pełny tekst źródłaLuo, Zheyu, Yucun Zhou, Xueyu Hu i Meilin Liu. "(Invited) Recent Progress in the Development of Highly Durable and Conductive Proton Conductors for High-Performance Reversible Solid Oxide Cells". ECS Meeting Abstracts MA2022-02, nr 49 (9.10.2022): 1904. http://dx.doi.org/10.1149/ma2022-02491904mtgabs.
Pełny tekst źródłaRozhdestvenska, Liudmyla, Kateryna Kudelko, Volodymyr Ogenko i Menglei Chang. "MEMBRANE MATERIALS BASED ON POROUS ANODIC ALUMINIUM OXIDE". Ukrainian Chemistry Journal 86, nr 12 (15.01.2021): 67–102. http://dx.doi.org/10.33609/2708-129x.86.12.2020.67-102.
Pełny tekst źródłaZhang, L. X., Y. Z. Li, L. W. Shi, R. J. Yao, S. S. Xia, Y. Wang i Y. P. Yang. "Electrospun Polyethylene Oxide (PEO)-Based Composite polymeric nanofiber electrolyte for Li-Metal Battery". Journal of Physics: Conference Series 2353, nr 1 (1.10.2022): 012004. http://dx.doi.org/10.1088/1742-6596/2353/1/012004.
Pełny tekst źródłaRozprawy doktorskie na temat "Oxide Based Electrolytes"
Tomlin, Anthony Stephen. "Conductivity and nuclear magnetic resonance studies on polymer electrolytes based on poly(ethylene oxide)". Thesis, University of St Andrews, 1988. http://hdl.handle.net/10023/15520.
Pełny tekst źródłaKirk, Thomas Jackson. "A solid oxide fuel cell using hydrogen sulfide with ceria-based electrolytes". Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/11270.
Pełny tekst źródłaJung, Doh Won. "Conductivity and stability of bismuth oxide-based electrolytes and their applications for IT-SOFCs". [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024943.
Pełny tekst źródłaCastillo, Martinez Ian Altri. "Solution plasma synthesis of CeO₂-based powders for solid oxide fuel cell electrolytes from liquid precursors". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80004.
Pełny tekst źródłaChen, Yan. "Scandia and ceria stabilized zirconia based electrolytes and anodes for intermediate temperature solid oxide fuel cells: Manufacturing and properties". Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5921.
Pełny tekst źródłaPh.D.
Doctorate
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
Hirschfeld, Julian [Verfasser], Hans [Akademischer Betreuer] Lustfeld, Peter [Akademischer Betreuer] Entel i Lars [Akademischer Betreuer] Bergqvist. "Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes / Julian Hirschfeld. Gutachter: Peter Entel ; Lars Bergqvist. Betreuer: Hans Lustfeld". Duisburg, 2013. http://d-nb.info/1036113744/34.
Pełny tekst źródłaHirschfeld, Julian Arndt [Verfasser], Hans [Akademischer Betreuer] Lustfeld, Peter [Akademischer Betreuer] Entel i Lars [Akademischer Betreuer] Bergqvist. "Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes / Julian Hirschfeld. Gutachter: Peter Entel ; Lars Bergqvist. Betreuer: Hans Lustfeld". Duisburg, 2013. http://nbn-resolving.de/urn:nbn:de:hbz:464-20130305-122730-4.
Pełny tekst źródłaSANTANA, LEONARDO de P. "Estudo de conformacao de ceramicas a base de zirconia para aplicacao em celulas a combustivel do tipo oxido solido". reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11727.
Pełny tekst źródłaMade available in DSpace on 2014-10-09T14:06:02Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Hernández, Rodríguez Elba María. "Solid Oxide Electrolysis Cells electrodes based on mesoporous materials". Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/665269.
Pełny tekst źródłaUna de las principales desventajas de las fuentes de energías renovables es que producen energía eléctrica de forma discontinua. Los electrolizadores de alta temperatura basados en óxidos sólidos (SOEC) se presentan como una tecnología prometedora para el almacenamiento de energía eléctrica. Alcanzando eficiencias mayores de un 85%, los electrolizadores SOEC permite convertir energía eléctrica en energía química mediante la reducción de las moléculas de agua (H2O), dióxido de carbono (CO2), o la combinación de ambas; generándose hidrógeno (H2), monóxido de carbono (CO) o gas de síntesis (H2 +CO) como producto. El trabajo que se presenta en esta tesis tiene como objetico mejorar el rendimiento de los electrolizadores SOEC mediante la utilización de óxidos metálicos mesoporosos, caracterizados por poseer alta área superficial y ser estables a altas temperaturas. Esta tesis está organizada en ocho capítulos. Los capítulos 3, 4, 5, 6 y 7 presentan los resultados alcanzados: El capítulo 3 presenta la caracterización estructural de los materiales mesoporosos y de los electrodos fabricados. Además, la temperatura de adhesión del material mesoporoso ha sido optimizada y se ha fijado a 900 °C. El capítulo 4 compara electrolizadores fabricados soportados por el electrodo de combustible y por el electrolito. Los resultados muestran que las densidades de corriente más altas fueron inyectadas en los electrolizadores soportados por el electrodo de combustible, considerándose esta configuración la más apropiada. El capítulo 5 presenta la influencia de la microstructura de la intercara del electrodo de oxígeno en el rendimiento de los electrolizadores SOEC. La caracterización electroquímica, apoyada por la caracterización microestructural, ha demostrado que la máxima densidad de corriente ha sido inyectada por el electrolizador cuya barrera de difusión ha sido depositado por láser pulsado (PLD) y la capa funcional del electrodo de oxígeno mediante infiltración de materiales mesoporosos. El capítulo 6 estudia el electrodo de oxígeno optimizado. Durante 1400 h de operación continua y caracterización microstructural, se ha demostrado la estabilidad de este electrodo. Por último, el capítulo 7 muestra los resultados obtenidos del escalado de los electrodos mesoporosos en celdas de mayor área (25 cm2). La caracterización electroquímica muestra alta flexibilidad ante las composiciones de gases utilizadas, y estabilidad de los electrodos mesoporosos propuestos.
Boisset, Aurelien. "Electrolytes pour supercondensateurs asymétriques à base de MnO2". Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4038/document.
Pełny tekst źródłaThe aim of this thesis was to investigate the performances of asymmetric supercapacitors based on manganese dioxide (birnessite) and activated carbon electrode materials using various electrolytes. From this work, it appears that neutral aqueous electrolytes containing inorganic salts have the best electrochemical performances. Furthermore, the nature and the structure of both ions (cations and anions) in solution seem to impact strongly the electrochemical performances of the supercapacitors, as well as, the MnO2’s structure stability and affinity. In the case of aqueous-based electrolyte, a device degradation mechanism has been proposed as a function of salt ions structure and nature to further understand the supercapacitor’s life-cycling when a large potential window is applied. Some novel synthesis ways and/or modifications were investigated to further improve the electrochemical properties of MnO2 material. Additionaly, original non-aqueous electrolytes has been also formulated and then characterized, particularly the ‘Deep Eutectic’ Solvents, based on the N-methylacetamide mixed with a lithium salt. However, these electrolytes don’t have a good affinity with manganese oxide-based materials. Interestingly, these Deep Eutectic Solvents show good cycling results with activated carbon. In fact, these electrolytes seem to be promising for high temperature energy storage applications, especially using activated carbon or insertion electrode material like the lithium ferrophosphate
Książki na temat "Oxide Based Electrolytes"
Gross, Oliver John. Fabrication and structural characterization of a tape cast bismuth oxide-based solid electrolyte. Ottawa: National Library of Canada, 1993.
Znajdź pełny tekst źródłaZhu, Bin, Liangdong Fan, Rizwan Raza i Chunwen Sun. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices. Wiley & Sons, Incorporated, John, 2020.
Znajdź pełny tekst źródłaZhu, Bin, Liangdong Fan, Rizwan Raza i Chunwen Sun. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices. Wiley & Sons, Limited, John, 2020.
Znajdź pełny tekst źródłaSolid Oxide Fuel Cells: From Electrolyte-Based Toelectrolyte-Free Devices. Wiley-VCH Verlag GmbH, 2020.
Znajdź pełny tekst źródłaZhu, Bin, Liangdong Fan, Rizwan Raza i Chunwen Sun. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices. Wiley & Sons, Incorporated, John, 2020.
Znajdź pełny tekst źródłaZhu, Bin, Liangdong Fan, Rizwan Raza i Chunwen Sun. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices. Wiley & Sons, Incorporated, John, 2020.
Znajdź pełny tekst źródłaMetal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-air Batteries. Elsevier, 2021. http://dx.doi.org/10.1016/c2018-0-03980-8.
Pełny tekst źródłaKorotcenkov, Ghenadii, Yaovi Holade i Teko Napporn. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries. Elsevier, 2021.
Znajdź pełny tekst źródłaKorotcenkov, Ghenadii, Teko W. Napporn i Yaovi Holade. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries. Elsevier, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Oxide Based Electrolytes"
Takada, Kazunori. "Solid-State Batteries with Oxide-Based Electrolytes". W Next Generation Batteries, 181–86. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_17.
Pełny tekst źródłaLanger, Frederieke, Robert Kun i Julian Schwenzel. "Li7La3Zr2O12 and Poly(Ethylene Oxide) Based Composite Electrolytes". W Solid Electrolytes for Advanced Applications, 195–215. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31581-8_9.
Pełny tekst źródłaRaghavan, Prasanth, P. P. Abhijith, N. S. Jishnu, Akhila Das, Neethu T. M. Balakrishnan, Fatima M. J. Jabeen i Jou-Hyeon Ahn. "Polyethylene Oxide (PEO)-Based Solid Polymer Electrolytes for Rechargeable Lithium-Ion Batteries". W Polymer Electrolytes for Energy Storage Devices, 57–80. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-3.
Pełny tekst źródłaVenkatasubramanian, A., P. Gopalan i T. R. S. Prasanna. "Electrical Conductivity of Composite Electrolytes Based on BaO-CeO2-GdO1.5 System in Different Atmospheres". W Advances in Solid Oxide Fuel Cells VI, 121–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470943984.ch13.
Pełny tekst źródłaKajitani, Masahiro, Motohide Matsuda, Akinori Hoshikawa, Takashi Kamiyama, Fujio Izumi i Michihiro Miyake. "Investigation of the Oxide Ion Conduction Mechanism in LaGaO3-Based Electrolytes through High-Temperature Neutron Powder Diffraction". W Electroceramics in Japan X, 147–50. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-449-9.147.
Pełny tekst źródłaKawakami, Akira. "Quick-Start-Up Type SOFC Using LaGaO3-Based New Electrolyte". W Perovskite Oxide for Solid Oxide Fuel Cells, 205–16. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77708-5_10.
Pełny tekst źródłaIshihara, Akimitsu. "Polymer Electrolyte Fuel Cells, Oxide-Based Cathode Catalysts". W Encyclopedia of Applied Electrochemistry, 1675–79. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_206.
Pełny tekst źródłaYamada, T., N. Chitose, H. Eto, M. Yamada, K. Hosoi, N. Komada, T. Inagaki i in. "Application of Lanthanum Gallate Based Oxide Electrolyte in Solid Oxide Fuel Cell Stack". W Advances in Solid Oxide Fuel Cells III, 79–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339534.ch9.
Pełny tekst źródłaWang, Changzhen. "Solid Electrolytes Based on Rare Earth Oxides and Fluorides". W Theory and Application of Rare Earth Materials, 91–107. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-4178-8_6.
Pełny tekst źródłaSuzuki, Toshio, Toshiaki Yamaguchi, Hirofumi Sumi, Koichi Hamamoto i Yoshinobu Fujishiro. "Low temperature operable micro-tubular SOFCS using Gd doped ceria electrolyte and Ni based anode". W Advances in Solid Oxide Fuel Cells X, 97–104. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119040637.ch10.
Pełny tekst źródłaStreszczenia konferencji na temat "Oxide Based Electrolytes"
Hopmann, Eric, Haizeng Li i Abdulhakem Y. Elezzabi. "Dual-ion electrochromic battery with long lifetime based on dimethyl sulfoxide (DMSO)-nanocluster modified hydrogel electrolytes". W Oxide-based Materials and Devices XI, redaktorzy Ferechteh H. Teherani, David C. Look i David J. Rogers. SPIE, 2020. http://dx.doi.org/10.1117/12.2544020.
Pełny tekst źródłaRaza, Rizwan, Ghazanfar Abbas i Bin Zhu. "GDC-Y2O3 Oxide Based Two Phase Nanocomposite Electrolytes". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33322.
Pełny tekst źródłaZhu, Bin, Juncai Sun, Xueli Sun, Song Li, Wenyuan Gao, Xiangrong Liu i Zhigang Zhu. "Compatible Cathode Materials for High Performance Low Temperature (300–600°C) Solid Oxide Fuel Cells". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97279.
Pełny tekst źródłaFU, QINGXI, XING FAN, DINGKUN PENG, GUANGYAO MENG i BIN ZHU. "INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS USING CERIA-BASED COMPOSITE ELECTROLYTES". W Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0085.
Pełny tekst źródłaWEN, Z. Y., Z. X. LIN, J. D. CAO, T. ITOH i O. YAMAMOTO. "CHARACTERISTICS OF COMPOSITE POLYMER ELECTROLYTES BASED ON POLY(ETHELYENE OXIDE) AND INORGANIC FIBER". W Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0060.
Pełny tekst źródłaMajumdar, Simantini, Sanchari Sarkar i Ruma Ray. "Dielectric and transport studies of graphene oxide@chitosan based solid biopolymer nanocomposite electrolytes". W DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112979.
Pełny tekst źródłaChristenn, C., A. Ansar, A. Haug, S. Wolf i J. Arnold. "The Solution Precursor Plasma Spray Process for Making Zirconia based Electrolytes". W ITSC2011, redaktorzy B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima i A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p1184.
Pełny tekst źródłaSEKHON, S. S., i MANOJ KUMAR. "PLASTICIZED PROTON CONDUCTING POLYMER ELECTROLYTES BASED ON POLYETHYLENE OXIDE AND AMMONIUM SALTS NH4X:X=F-, BF4-". W Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0042.
Pełny tekst źródłaZheng, Qian Ying, Linlong Tang, Liangping Xia, Chunlei Du i Hongliang Cui. "An effective THz modulator with graphene tuned under low voltage with polyethylene oxide-based electrolytes". W Infrared, Millimeter-Wave, and Terahertz Technologies VI, redaktorzy Xi-Cheng Zhang, Masahiko Tani i Cunlin Zhang. SPIE, 2019. http://dx.doi.org/10.1117/12.2537569.
Pełny tekst źródłaAtkinson, A., S. Baron, N. P. Brandon, A. Esquirol, J. A. Kilner, N. Oishi, R. Rudkin i B. C. H. Steele. "Metal-Supported Solid Oxide Fuel Cells for Operation at Temperatures of 500–650°C". W ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1759.
Pełny tekst źródłaRaporty organizacyjne na temat "Oxide Based Electrolytes"
Tang, Eric, Tony Wood, Casey Brown, Micah Casteel, Michael Pastula, Mark Richards i Randy Petri. Solid Oxide Based Electrolysis and Stack Technology with Ultra-High Electrolysis Current Density (>3A/cm2) and Efficiency. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1513461.
Pełny tekst źródłaChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova i Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Pełny tekst źródła