Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Oseen problem.

Artykuły w czasopismach na temat „Oseen problem”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oseen problem”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Medková, Dagmar, Mariya Ptashnyk i Werner Varnhorn. "Generalized Darcy-Oseen resolvent problem". Mathematical Methods in the Applied Sciences 39, nr 6 (29.02.2016): 1621–30. http://dx.doi.org/10.1002/mma.3872.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, Lei, Jian Li i Pengzhan Huang. "An efficient iterative algorithm for the natural convection equations based on finite element method". International Journal of Numerical Methods for Heat & Fluid Flow 28, nr 3 (5.03.2018): 584–605. http://dx.doi.org/10.1108/hff-03-2017-0101.

Pełny tekst źródła
Streszczenie:
Purpose This paper aims to propose a new highly efficient iterative method based on classical Oseen iteration for the natural convection equations. Design/methodology/approach First, the authors solve the problem by the Oseen iterative scheme based on finite element method, then use the error correction strategy to control the error arising. Findings The new iterative method not only retains the advantage of the Oseen scheme but also saves computational time and iterative step for solving the considered problem. Originality/value In this work, the authors introduce a new iterative method to solve the natural convection equations. The new algorithm consists of the Oseen scheme and the error correction which can control the errors from the iterative step arising for solving the nonlinear problem. Comparing with the classical iterative method, the new scheme requires less iterations and is also capable of solving the natural convection problem at higher Rayleigh number.
Style APA, Harvard, Vancouver, ISO itp.
3

Dallmann, Helene, Daniel Arndt i Gert Lube. "Local projection stabilization for the Oseen problem". IMA Journal of Numerical Analysis 36, nr 2 (7.07.2015): 796–823. http://dx.doi.org/10.1093/imanum/drv032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hamilton, Steven, Michele Benzi i Eldad Haber. "New multigrid smoothers for the Oseen problem". Numerical Linear Algebra with Applications 17, nr 2-3 (9.02.2010): 557–76. http://dx.doi.org/10.1002/nla.707.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

ur Rehman, M., C. Vuik i G. Segal. "SIMPLE-type preconditioners for the Oseen problem". International Journal for Numerical Methods in Fluids 61, nr 4 (10.10.2009): 432–52. http://dx.doi.org/10.1002/fld.1957.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Medková, Dagmar. "OSEEN SYSTEM WITH CORIOLIS TERM". International Journal of Mathematics, Statistics and Operations Research 2, nr 1 (2022): 29–41. http://dx.doi.org/10.47509/ijmsor.2022.v02i01.03.

Pełny tekst źródła
Streszczenie:
This paper is devoted to solutions of the Dirichlet problem for the Oseen system with Coriolis term –�u(z) + �� 1 u(z) – (� × z) � �u(z) + �� × u(z) + �p(z) = f (z), � . � in �, u = g on �� in the homogeneous Sobolev space 1, 3 ( ; ) ( )q q W L� � �� � with 2 � q < 3. Here �� � � 3 is an exterior domain. Kracmar, Necasová and Penel proved that if � has boundary of class � 2 , g � 0 and f � D –1,q (�; � 3 ), then there exists a unique solution of the problem. This paper shows that this result holds true even for domains with Lipschitz boundary. Moreover, we prove unique solvability of the problem for general g � W 1–1/q,q (��;� � 3 ) and f � D –1,q (�; � 3 ).
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Aiwen, Xin Zhao, Peihua Qin i Dongxiu Xie. "An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations". Abstract and Applied Analysis 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/520818.

Pełny tekst źródła
Streszczenie:
We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e.,Q1−P0andP1−P0). Firstly, in contrast to other stabilized methods, they are parameter free, no calculation of higher-order derivatives and edge-based data structures, implemented at the element level with minimal cost. In addition, the Oseen two-level stabilized method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh with mesh sizeH, a large general Stokes equation on the fine mesh with mesh sizeh=O(H)2. The Oseen two-level stabilized finite-element method provides an approximate solution (uh,ph) with the convergence rate of the same order as the usual stabilized finite-element solutions, which involves solving a large Navier-Stokes problem on a fine mesh with mesh sizeh. Therefore, the method presented in this paper can save a large amount of computational time. Finally, numerical tests confirm the theoretical results. Conclusion can be drawn that the Oseen two-level stabilized finite-element method is simple and efficient for solving the 2D/3D steady Navier-Stokes equations.
Style APA, Harvard, Vancouver, ISO itp.
8

Ervin, Vincent J., Hyesuk K. Lee i Louis N. Ntasin. "Analysis of the Oseen-viscoelastic fluid flow problem". Journal of Non-Newtonian Fluid Mechanics 127, nr 2-3 (maj 2005): 157–68. http://dx.doi.org/10.1016/j.jnnfm.2005.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Farhloul, Mohamed. "Mixed finite element methods for the Oseen problem". Numerical Algorithms 84, nr 4 (24.01.2020): 1431–42. http://dx.doi.org/10.1007/s11075-020-00879-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wabro, Markus. "Coupled algebraic multigrid methods for the Oseen problem". Computing and Visualization in Science 7, nr 3-4 (październik 2004): 141–51. http://dx.doi.org/10.1007/s00791-004-0138-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Farwig, R., Antonín Novotný i M. Pokorný. "The Fundamental Solution of a Modified Oseen Problem". Zeitschrift für Analysis und ihre Anwendungen 19, nr 3 (2000): 713–28. http://dx.doi.org/10.4171/zaa/976.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Amrouche, Chérif, i Ulrich Razafison. "Weighted estimates for the Oseen problem in R3". Applied Mathematics Letters 19, nr 1 (styczeń 2006): 56–62. http://dx.doi.org/10.1016/j.aml.2005.01.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kračmar, S., D. Medková, Š. Nečasová i W. Varnhorn. "A maximum modulus theorem for the Oseen problem". Annali di Matematica Pura ed Applicata 192, nr 6 (21.02.2012): 1059–76. http://dx.doi.org/10.1007/s10231-012-0258-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Medková, Dagmar, Emma Skopin i Werner Varnhorn. "The Robin problem for the scalar Oseen equation". Mathematical Methods in the Applied Sciences 36, nr 16 (27.02.2013): 2237–42. http://dx.doi.org/10.1002/mma.2749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

AMROUCHE, CHÉRIF, i ULRICH RAZAFISON. "ON THE OSEEN PROBLEM IN THREE-DIMENSIONAL EXTERIOR DOMAINS". Analysis and Applications 04, nr 02 (kwiecień 2006): 133–62. http://dx.doi.org/10.1142/s0219530506000735.

Pełny tekst źródła
Streszczenie:
In this paper, we prove existence and uniqueness results for the Oseen problem in exterior domains of ℝ3. To prescribe the growth or decay of functions at infinity, we set the problem in weighted Sobolev spaces. The analysis relies on a Lp-theory for any real p such that 1 < p < ∞.
Style APA, Harvard, Vancouver, ISO itp.
16

Hussain, Shahid, i Sajid Hussain. "STABILIZED NUMERICAL METHODS FOR THE TWO KINDS OF PROBLEMS OF INCOMPRESSIBLE FLUID FLOWS". Journal of Mountain Area Research 6 (9.09.2021): 25. http://dx.doi.org/10.53874/jmar.v6i0.90.

Pełny tekst źródła
Streszczenie:
A mixed finite element method (MFEM) stabilized for the two kinds of problems related to the incompressible fluid flow is demonstrated. In the first kind, the Newtonian fluid flow is illustrated with the MFEM and considered discontinuous scheme. Initially, the model equations are considered nonlinear and un-stabilize. The model equations are solved for linear terms with the special technique first and then the model equation with the extra added term is utilized later to stabilize the model equations. A steady-state viscoelastic Oseen fluid flow model with Oldroyd-B type formulations was demonstrated in the second kind of problem with SUPG method. The nonlinear problems are linearized through the Oseen scheme. Numerical results for both the model equations are given and compared. The SUPG method is found more suitable and active.
Style APA, Harvard, Vancouver, ISO itp.
17

Li, Yuan, i Rong An. "Two-Level Iteration Penalty Methods for the Navier-Stokes Equations with Friction Boundary Conditions". Abstract and Applied Analysis 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/125139.

Pełny tekst źródła
Streszczenie:
This paper presents two-level iteration penalty finite element methods to approximate the solution of the Navier-Stokes equations with friction boundary conditions. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh sizeHin combining with solving a Stokes, Oseen, or linearized Navier-Stokes type variational inequality problem for Stokes, Oseen, or Newton iteration on a fine mesh with mesh sizeh. The error estimate obtained in this paper shows that ifH,h, andεcan be chosen appropriately, then these two-level iteration penalty methods are of the same convergence orders as the usual one-level iteration penalty method.
Style APA, Harvard, Vancouver, ISO itp.
18

Feistauer, M., i C. Schwab. "Coupling of an Interior Navier—Stokes Problem with an Exterior Oseen Problem". Journal of Mathematical Fluid Mechanics 3, nr 1 (marzec 2001): 1–17. http://dx.doi.org/10.1007/pl00000961.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Deuring, Paul, Stanislav Kračmar i Šárka Nečasová. "NOTE ON THE PROBLEM OF MOTION OF VISCOUS FLUID AROUND A ROTATING AND TRANSLATING RIGID BODY". Acta Polytechnica 61, SI (10.02.2021): 5–13. http://dx.doi.org/10.14311/ap.2021.61.0005.

Pełny tekst źródła
Streszczenie:
We consider the linearized and nonlinear systems describing the motion of incompressible flow around a rotating and translating rigid body Ɗ in the exterior domain Ω = ℝ3 \ Ɗ, where Ɗ ⊂ ℝ3 is open and bounded, with Lipschitz boundary. We derive the L∞-estimates for the pressure and investigate the leading term for the velocity and its gradient. Moreover, we show that the velocity essentially behaves near the infinity as a constant times the first column of the fundamental solution of the Oseen system. Finally, we consider the Oseen problem in a bounded domain ΩR := BR ∩ Ω under certain artificial boundary conditions on the truncating boundary ∂BR, and then we compare this solution with the solution in the exterior domain Ω to get the truncation error estimate.
Style APA, Harvard, Vancouver, ISO itp.
20

Boulmezaoud, T. Z., i U. Razafison. "On the steady Oseen problem in the whole space". Hiroshima Mathematical Journal 35, nr 3 (listopad 2005): 371–401. http://dx.doi.org/10.32917/hmj/1150998318.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Benzi, Michele, i Maxim A. Olshanskii. "An Augmented Lagrangian‐Based Approach to the Oseen Problem". SIAM Journal on Scientific Computing 28, nr 6 (styczeń 2006): 2095–113. http://dx.doi.org/10.1137/050646421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Olshanskii, Maxim A., i Yuri V. Vassilevski. "Pressure Schur Complement Preconditioners for the Discrete Oseen Problem". SIAM Journal on Scientific Computing 29, nr 6 (styczeń 2007): 2686–704. http://dx.doi.org/10.1137/070679776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Borne, Sabine Le. "Preconditioned Nullspace Method for the Two-Dimensional Oseen Problem". SIAM Journal on Scientific Computing 31, nr 4 (styczeń 2009): 2494–509. http://dx.doi.org/10.1137/070691577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Braack, M., E. Burman, V. John i G. Lube. "Stabilized finite element methods for the generalized Oseen problem". Computer Methods in Applied Mechanics and Engineering 196, nr 4-6 (styczeń 2007): 853–66. http://dx.doi.org/10.1016/j.cma.2006.07.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kress, Rainer, i Sascha Meyer. "An inverse boundary value problem for the Oseen equation". Mathematical Methods in the Applied Sciences 23, nr 2 (25.01.2000): 103–20. http://dx.doi.org/10.1002/(sici)1099-1476(20000125)23:2<103::aid-mma106>3.0.co;2-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

LUBE, GERT, i GERD RAPIN. "RESIDUAL-BASED STABILIZED HIGHER-ORDER FEM FOR A GENERALIZED OSEEN PROBLEM". Mathematical Models and Methods in Applied Sciences 16, nr 07 (lipiec 2006): 949–66. http://dx.doi.org/10.1142/s0218202506001418.

Pełny tekst źródła
Streszczenie:
In many numerical schemes for standard turbulence models for the nonstationary, incompressible Navier–Stokes equations, the problem is split into linearized auxiliary problems of advection-diffusion-reaction and of Oseen type. Here we present the numerical analysis of a conforming hp-version for stabilized Galerkin methods of SUPG/PSPG-type of the latter problem whereas the analysis of the former problem is reviewed in Ref. 22. We prove a modified inf–sup condition with a constant, which is independent of the spectral order and the viscosity. Moreover, the analysis of the stabilization parameters highlights the role of grad-div stabilization, in particular in case of div-stable velocity-pressure approximation.
Style APA, Harvard, Vancouver, ISO itp.
27

Amrouche, Chérif, i Ulrich Razafison. "Anisotropically weighted Poincaré-type inequalities; Application to the Oseen problem". Mathematische Nachrichten 279, nr 9-10 (lipiec 2006): 931–47. http://dx.doi.org/10.1002/mana.200310403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Medková, Dagmar. "Weak solutions of the Robin problem for the Oseen system". Journal of Elliptic and Parabolic Equations 5, nr 1 (7.05.2019): 189–213. http://dx.doi.org/10.1007/s41808-019-00038-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Mehaddi, R., F. Candelier i B. Mehlig. "Inertial drag on a sphere settling in a stratified fluid". Journal of Fluid Mechanics 855 (24.09.2018): 1074–87. http://dx.doi.org/10.1017/jfm.2018.661.

Pełny tekst źródła
Streszczenie:
We compute the drag force on a sphere settling slowly in a quiescent, linearly stratified fluid. Stratification can significantly enhance the drag experienced by the settling particle. The magnitude of this effect depends on whether fluid-density transport around the settling particle is due to diffusion, to advection by the disturbance flow caused by the particle or due to both. It therefore matters how efficiently the fluid disturbance is convected away from the particle by fluid-inertial terms. When these terms dominate, the Oseen drag force must be recovered. We compute by perturbation theory how the Oseen drag is modified by diffusion and stratification. Our results are in good agreement with recent direct numerical simulation studies of the problem.
Style APA, Harvard, Vancouver, ISO itp.
30

Biswas, Rahul, Asha K. Dond i Thirupathi Gudi. "Edge Patch-Wise Local Projection Stabilized Nonconforming FEM for the Oseen Problem". Computational Methods in Applied Mathematics 19, nr 2 (1.04.2019): 189–214. http://dx.doi.org/10.1515/cmam-2018-0020.

Pełny tekst źródła
Streszczenie:
AbstractIn finite element approximation of the Oseen problem, one needs to handle two major difficulties, namely, the lack of stability due to convection dominance and the incompatibility between the approximating finite element spaces for the velocity and the pressure. These difficulties are addressed in this article by using an edge patch-wise local projection (EPLP) stabilization technique. The article analyses the EPLP stabilized nonconforming finite element methods for the Oseen problem. For approximating the velocity, the lowest-order Crouzeix–Raviart (CR) nonconforming finite element space is considered; whereas for approximating the pressure, two discrete spaces are considered, namely, the piecewise constant polynomial space and the lowest-order CR finite element space. The proposed discrete weak formulation is a combination of the standard Galerkin method, EPLP stabilization and weakly imposed boundary condition by using Nitsche’s technique. The resulting bilinear form satisfies an inf-sup condition with respect to EPLP norm, which leads to the well-posedness of the discrete problem. A priori error analysis assures the optimal order of convergence in both the cases, that is, order one in the case of piecewise constant approximation and \frac{3}{2} in the case of CR-finite element approximation for pressure. The numerical experiments illustrate the theoretical findings.
Style APA, Harvard, Vancouver, ISO itp.
31

Zhang, Qihui, i Yueqiang Shang. "An Oseen-Type Post-Processed Finite Element Method Based on a Subgrid Model for the Time-Dependent Navier–Stokes Equations". International Journal of Computational Methods 17, nr 04 (29.11.2019): 1950002. http://dx.doi.org/10.1142/s0219876219500026.

Pełny tekst źródła
Streszczenie:
An Oseen-type post-processed mixed finite element method based on a subgrid model is presented for the simulation of time-dependent incompressible Navier–Stokes equations. This method first solves a subgrid stabilized nonlinear Navier–Stokes system on a mesh of size [Formula: see text] to obtain an approximate solution pair [Formula: see text] at the given final time [Formula: see text], and then post-processes the solution [Formula: see text] by solving a stabilized Oseen problem on a finer mesh or in higher-order finite element spaces. We prove stability of the stabilized method, derive error estimates for the post-processed solutions, give some numerical results to verify the theoretical predictions and demonstrate the effectiveness of the proposed method.
Style APA, Harvard, Vancouver, ISO itp.
32

Beirão da Veiga, L., F. Dassi i G. Vacca. "Vorticity-stabilized virtual elements for the Oseen equation". Mathematical Models and Methods in Applied Sciences 31, nr 14 (30.12.2021): 3009–52. http://dx.doi.org/10.1142/s0218202521500688.

Pełny tekst źródła
Streszczenie:
In this paper, we extend the divergence-free VEM of [L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier–Stokes problem on polygonal meshes, SIAM J. Numer. Anal. 56 (2018) 1210–1242] to the Oseen problem, including a suitable stabilization procedure that guarantees robustness in the convection-dominated case without disrupting the divergence-free property. The stabilization is inspired from [N. Ahmed, G. R. Barrenechea, E. Burman, J. Guzman, A. Linke and C. Merdon, A pressure-robust discretization of Oseen’s equation using stabilization in the vorticity equation, SIAM J. Numer. Anal. 59 (2021) 2746–2774] and includes local SUPG-like terms of the vorticity equation, internal jump terms for the velocity gradients, and an additional VEM stabilization. We derive theoretical convergence results that underline the robustness of the scheme in different regimes, including the convection-dominated case. Furthermore, as in the non-stabilized case, the influence of the pressure on the velocity error is moderate, as it appears only through higher-order terms.
Style APA, Harvard, Vancouver, ISO itp.
33

Yan, Wenjing, i Jiangyong Hou. "Shape Identification for Stokes-Oseen Problem Based on Domain Derivative Method". Journal of Applied Mathematics and Physics 03, nr 12 (2015): 1662–70. http://dx.doi.org/10.4236/jamp.2015.312191.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Hillairet, Matthieu, i Peter Wittwer. "On the vorticity of the Oseen problem in a half plane". Physica D: Nonlinear Phenomena 237, nr 10-12 (lipiec 2008): 1388–421. http://dx.doi.org/10.1016/j.physd.2008.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Aghili, Joubine, i Daniele A. Di Pietro. "An Advection-Robust Hybrid High-Order Method for the Oseen Problem". Journal of Scientific Computing 77, nr 3 (7.03.2018): 1310–38. http://dx.doi.org/10.1007/s10915-018-0681-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Massing, A., B. Schott i W. A. Wall. "A stabilized Nitsche cut finite element method for the Oseen problem". Computer Methods in Applied Mechanics and Engineering 328 (styczeń 2018): 262–300. http://dx.doi.org/10.1016/j.cma.2017.09.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Medková, Dagmar. "L q -solution of the Robin Problem for the Oseen System". Acta Applicandae Mathematicae 142, nr 1 (13.03.2015): 61–79. http://dx.doi.org/10.1007/s10440-015-0014-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Guenther, Ronald B., i Enrique A. Thomann. "Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions". Journal of Mathematical Fluid Mechanics 9, nr 4 (19.09.2006): 489–505. http://dx.doi.org/10.1007/s00021-005-0209-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Feng, Minfu, Yinnian He i Ruiting Ren. "Computer Implementation of a Coupled Boundary and Finite Element Methods for the Steady Exterior Oseen Problem". Mathematical Problems in Engineering 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/845984.

Pełny tekst źródła
Streszczenie:
We present a numerical technique based on the coupling of boundary and finite element methods for the steady Oseen equations in an unbounded plane domain. The present paper deals with the implementation of the coupled program in the two-dimensional case. Computational results are given for a particular problem which can be seen as a good test case for the accuracy of the method.
Style APA, Harvard, Vancouver, ISO itp.
40

Emmrich, Etienne, i Volker Mehrmann. "Operator Differential-Algebraic Equations Arising in Fluid Dynamics". Computational Methods in Applied Mathematics 13, nr 4 (1.10.2013): 443–70. http://dx.doi.org/10.1515/cmam-2013-0018.

Pełny tekst źródła
Streszczenie:
Abstract. Existence and uniqueness of generalized solutions to initial value problems for a class of abstract differential-algebraic equations (DAEs) is shown. The class of equations covers, in particular, the Stokes and Oseen problem describing the motion of an incompressible or nearly incompressible Newtonian fluid but also their spatial semi-discretization. The equations are governed by a block operator matrix with entries that fulfill suitable inf-sup conditions. The problem data are required to satisfy appropriate consistency conditions. The results in infinite dimensions are compared in detail with those known for the DAEs that arise after semi-discretization in space. Explicit solution formulas are derived in both cases.
Style APA, Harvard, Vancouver, ISO itp.
41

Nokka, Marjaana, i Sergey Repin. "A Posteriori Error Bounds for Approximations of the Oseen Problem and Applications to the Uzawa Iteration Algorithm". Computational Methods in Applied Mathematics 14, nr 3 (1.07.2014): 373–83. http://dx.doi.org/10.1515/cmam-2014-0010.

Pełny tekst źródła
Streszczenie:
Abstract.We derive computable bounds of deviations from the exact solution of the stationary Oseen problem. They are applied to approximations generated by the Uzawa iteration method. Also, we derive an advanced form of the estimate, which takes into account approximation errors arising due to discretization of the boundary value problem, generated by the main step of the Uzawa method. Numerical tests confirm our theoretical results and show practical applicability of the estimates.
Style APA, Harvard, Vancouver, ISO itp.
42

Rukavishnikov, Viktor A., i Alexey V. Rukavishnikov. "New Numerical Method for the Rotation form of the Oseen Problem with Corner Singularity". Symmetry 11, nr 1 (5.01.2019): 54. http://dx.doi.org/10.3390/sym11010054.

Pełny tekst źródła
Streszczenie:
In the paper, a new numerical approach for the rotation form of the Oseen system in a polygon Ω with an internal corner ω greater than 180 ∘ on its boundary is presented. The results of computational simulations have shown that the convergence rate of the approximate solution (velocity field) by weighted FEM to the exact solution does not depend on the value of the internal corner ω and equals O ( h ) in the norm of a space W 2 , ν 1 ( Ω ) .
Style APA, Harvard, Vancouver, ISO itp.
43

Day, Stuart, i Arghir Dani Zarnescu. "Sphere-valued harmonic maps with surface energy and the K13 problem". Advances in Calculus of Variations 12, nr 4 (1.10.2019): 363–92. http://dx.doi.org/10.1515/acv-2016-0033.

Pełny tekst źródła
Streszczenie:
AbstractWe consider an energy functional motivated by the celebrated {K_{13}} problem in the Oseen–Frank theory of nematic liquid crystals. It is defined for sphere-valued functions and appears as the usual Dirichlet energy with an additional surface term. It is known that this energy is unbounded from below and our aim has been to study the local minimisers. We show that even having a critical point in a suitable energy space imposes severe restrictions on the boundary conditions. Having suitable boundary conditions makes the energy functional bounded and in this case we study the partial regularity of the global minimisers.
Style APA, Harvard, Vancouver, ISO itp.
44

Barrenechea, Gabriel R., i Andreas Wachtel. "Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes". ESAIM: Mathematical Modelling and Numerical Analysis 52, nr 1 (styczeń 2018): 99–122. http://dx.doi.org/10.1051/m2an/2017031.

Pełny tekst źródła
Streszczenie:
In this work we present and analyse new inf-sup stable, and stabilised, finite element methods for the Oseen equation in anisotropic quadrilateral meshes. The meshes are formed of closed parallelograms, and the analysis is restricted to two space dimensions. Starting with the lowest order ℚ12 × ℙ0 pair, we first identify the pressure components that make this finite element pair to be non-inf-sup stable, especially with respect to the aspect ratio. We then propose a way to penalise them, both strongly, by directly removing them from the space, and weakly, by adding a stabilisation term based on jumps of the pressure across selected edges. Concerning the velocity stabilisation, we propose an enhanced grad-div term. Stability and optimal a priori error estimates are given, and the results are confirmed numerically.
Style APA, Harvard, Vancouver, ISO itp.
45

He, Yinnian. "Coupling boundary integral and finite element methods for the Oseen coupled problem". Computers & Mathematics with Applications 44, nr 10-11 (listopad 2002): 1413–29. http://dx.doi.org/10.1016/s0898-1221(02)00266-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Apel, Thomas, Tobias Knopp i Gert Lube. "Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem". Applied Numerical Mathematics 58, nr 12 (grudzień 2008): 1830–43. http://dx.doi.org/10.1016/j.apnum.2007.11.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Araya, Rodolfo, Manuel Solano i Patrick Vega. "A posteriori error analysis of an HDG method for the Oseen problem". Applied Numerical Mathematics 146 (grudzień 2019): 291–308. http://dx.doi.org/10.1016/j.apnum.2019.07.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Repin, S. I. "Estimates of Deviations from the Exact Solution of a Generalized Oseen Problem". Journal of Mathematical Sciences 195, nr 1 (17.10.2013): 64–75. http://dx.doi.org/10.1007/s10958-013-1564-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Franz, Sebastian, Katharina Höhne i Gunar Matthies. "Grad-div stabilized discretizations on S-type meshes for the Oseen problem". IMA Journal of Numerical Analysis 38, nr 1 (27.03.2017): 299–329. http://dx.doi.org/10.1093/imanum/drw069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Xu, Chao, Dongyang Shi i Xin Liao. "A new streamline diffusion finite element method for the generalized Oseen problem". Applied Mathematics and Mechanics 39, nr 2 (10.10.2017): 291–304. http://dx.doi.org/10.1007/s10483-018-2296-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii