Artykuły w czasopismach na temat „Orthogonal time of flight”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Orthogonal time of flight.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Orthogonal time of flight”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Dawson, J. H. J., i M. Guilhaus. "Orthogonal-acceleration time-of-flight mass spectrometer". Rapid Communications in Mass Spectrometry 3, nr 5 (maj 1989): 155–59. http://dx.doi.org/10.1002/rcm.1290030511.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Guilhaus, M., D. Selby i V. Mlynski. "Orthogonal acceleration time-of-flight mass spectrometry". Mass Spectrometry Reviews 19, nr 2 (2000): 65–107. http://dx.doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bimurzaev, Seitkerim, Nakhypbek Aldiyarov, Yerkin Yerzhigitov, Akmaral Tlenshiyeva i Ruslan Kassym. "Improving the resolution and sensitivity of an orthogonal time-of-flight mass spectrometer with orthogonal ion injection". Eastern-European Journal of Enterprise Technologies 6, nr 5 (126) (28.12.2023): 43–54. http://dx.doi.org/10.15587/1729-4061.2023.290649.

Pełny tekst źródła
Streszczenie:
The theoretical possibilities of increasing the resolution and sensitivity of a time-of-flight mass spectrometer with orthogonal ion injection are considered. The effects are achieved by using inhomogeneous electrostatic fields of special configurations both in the accelerating and focusing parts of the device – a cylindrical immersion objective and a transaxial mirror, respectively. It is shown that the use of an inhomogeneous cylindrical field of a special configuration as an ion accelerator opens up the possibility of a multiple reduction in the energy spread of ions in injected ion packets, associated with the so-called "turnaround time" and, therefore, a significant (two or more times) increase in the limiting resolution of the mass spectrometer. The use of a transaxial electrostatic mirror as a time-of-flight mass analyzer makes it possible to significantly increase the sensitivity of the mass-spectrometer due to the implementation of triple space-time-of-flight focusing of ion packets. Key features include reduced ion energy spread, increased maximum resolution, and improved sensitivity due to triple focusing in space and time of flight. This research lays the foundation for expanding the capabilities of time-of-flight mass spectrometry, providing a more efficient and powerful tool for a wide range of scientific and industrial applications. The effects are achieved by using inhomogeneous electrostatic fields of a special configuration in both the accelerating and focusing parts of the device – a cylindrical immersion lens and a transaxial mirror, respectively. Numerical calculations of the system – a four-electrode cylindrical immersion lens in combination with a three-electrode transaxial mirror – are presented, which confirm the conclusions of the theory
Style APA, Harvard, Vancouver, ISO itp.
4

Belov, Mikhail E., Michael A. Buschbach, David C. Prior, Keqi Tang i Richard D. Smith. "Multiplexed Ion Mobility Spectrometry-Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 79, nr 6 (marzec 2007): 2451–62. http://dx.doi.org/10.1021/ac0617316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Huang, Rongfu, Bochao Zhang, Dongxuan Zou, Wei Hang, Jian He i Benli Huang. "Elemental Imaging via Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 83, nr 3 (luty 2011): 1102–7. http://dx.doi.org/10.1021/ac1029693.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ibrahim, Yehia, Mikhail E. Belov, Aleksey V. Tolmachev, David C. Prior i Richard D. Smith. "Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 79, nr 20 (październik 2007): 7845–52. http://dx.doi.org/10.1021/ac071091m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dodonov, A. F., V. I. Kozlovski, I. V. Soulimenkov, V. V. Raznikov, A. V. Loboda, Zhou Zhen, T. Horwath i H. Wollnik. "High-Resolution Electrospray Ionization Orthogonal-Injection Time-of-Flight Mass Spectrometer". European Journal of Mass Spectrometry 6, nr 6 (grudzień 2000): 481–90. http://dx.doi.org/10.1255/ejms.378.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Huang, Rongfu, Yiming Lin, Lingfeng Li, Wei Hang, Jian He i Benli Huang. "Two-Dimensional Separation in Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 82, nr 7 (kwiecień 2010): 3077–80. http://dx.doi.org/10.1021/ac902981j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Clowers, Brian H., Mikhail E. Belov, David C. Prior, William F. Danielson, Yehia Ibrahim i Richard D. Smith. "Pseudorandom Sequence Modifications for Ion Mobility Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 80, nr 7 (kwiecień 2008): 2464–73. http://dx.doi.org/10.1021/ac7022712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hashimoto, Yuichiro, Izumi Waki, Kiyomi Yoshinari, Tsukasa Shishika i Yasushi Terui. "Orthogonal trap time-of-flight mass spectrometer using a collisional damping chamber". Rapid Communications in Mass Spectrometry 19, nr 2 (2005): 221–26. http://dx.doi.org/10.1002/rcm.1781.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Raska, Christina S., Carol E. Parker, Cai Huang, Jun Han, Gary L. Glish, Marshall Pope i Christoph H. Borchers. "Pseudo-MS3 in a MALDI orthogonal quadrupole-time of flight mass spectrometer". Journal of the American Society for Mass Spectrometry 13, nr 9 (wrzesień 2002): 1034–41. http://dx.doi.org/10.1016/s1044-0305(02)00433-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Woods, Amina S., Michael Ugarov, Shelley N. Jackson, Thomas Egan, Hay-Yan J. Wang, Kermit K. Murray i J. Albert Schultz. "IR−MALDI−LDI Combined with Ion Mobility Orthogonal Time-of-Flight Mass Spectrometry". Journal of Proteome Research 5, nr 6 (czerwiec 2006): 1484–87. http://dx.doi.org/10.1021/pr060055l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gillig, Kent J., Brandon Ruotolo, Earle G. Stone, David H. Russell, Katrin Fuhrer, Marc Gonin i Albert J. Schultz. "Coupling High-Pressure MALDI with Ion Mobility/Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 72, nr 17 (wrzesień 2000): 3965–71. http://dx.doi.org/10.1021/ac0005619.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Guilhaus, M. "Spontaneous and deflected drift-trajectories in orthogonal acceleration time-of-flight mass spectrometry". Journal of the American Society for Mass Spectrometry 5, nr 6 (czerwiec 1994): 588–95. http://dx.doi.org/10.1016/1044-0305(94)90009-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Ibrahim, Yehia M., Mikhail E. Belov, Andrei V. Liyu i Richard D. Smith. "Automated Gain Control Ion Funnel Trap for Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 80, nr 14 (lipiec 2008): 5367–76. http://dx.doi.org/10.1021/ac8003488.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Plumb, Robert, Jose Castro-Perez, Jennifer Granger, Iain Beattie, Karine Joncour i Andrew Wright. "Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry". Rapid Communications in Mass Spectrometry 18, nr 19 (16.09.2004): 2331–37. http://dx.doi.org/10.1002/rcm.1627.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sheil, Margaret M. "Critical Moments in Time: Reflections on the Development of Orthogonal Acceleration Time-of-Flight Mass Spectrometry". Journal of The American Society for Mass Spectrometry 23, nr 8 (6.06.2012): 1301–5. http://dx.doi.org/10.1007/s13361-012-0398-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Husáková, Lenka, Iva Urbanová, Tereza Šídová i Tomáš Mikysek. "Multi-elemental analysis of sulfuric acid by oaTOF-ICP-MS after matrix modification with barium bromide". Analytical Methods 7, nr 12 (2015): 5019–27. http://dx.doi.org/10.1039/c5ay00582e.

Pełny tekst źródła
Streszczenie:
In this work a novel method for the simultaneous multi-elemental analysis of sulfuric acid by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (oaTOF-ICP-MS) after matrix modification with barium bromide was introduced.
Style APA, Harvard, Vancouver, ISO itp.
19

Verentchikov, Anatoli N., Werner Ens i Kenneth G. Standing. "Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction". Analytical Chemistry 66, nr 1 (styczeń 1994): 126–33. http://dx.doi.org/10.1021/ac00073a022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Papanastasiou, D., i A. W. McMahon. "Correlated phase space distributions of ions in an orthogonal time-of-flight mass spectrometer". International Journal of Mass Spectrometry 254, nr 1-2 (lipiec 2006): 20–27. http://dx.doi.org/10.1016/j.ijms.2006.04.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Carado, Anthony, M. K. Passarelli, Joseph Kozole, J. E. Wingate, Nicholas Winograd i A. V. Loboda. "C60Secondary Ion Mass Spectrometry with a Hybrid-Quadrupole Orthogonal Time-of-Flight Mass Spectrometer". Analytical Chemistry 80, nr 21 (listopad 2008): 7921–29. http://dx.doi.org/10.1021/ac801712s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bristow, Tony, Jill Constantine, Mark Harrison i Fabien Cavoit. "Performance optimisation of a new-generation orthogonal-acceleration quadrupole-time-of-flight mass spectrometer". Rapid Communications in Mass Spectrometry 22, nr 8 (2008): 1213–22. http://dx.doi.org/10.1002/rcm.3499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Alabsi, Mohammed, i Travis Fields. "Flight controller learning based on real-time model estimation of a quadrotor aircraft". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, nr 9 (28.08.2018): 3298–312. http://dx.doi.org/10.1177/0954410018795524.

Pełny tekst źródła
Streszczenie:
Aircraft prototyping and modeling is usually associated with resource expensive techniques and significant post-flight analysis. The NASA Learn-To-Fly concept targets the replacement of the conventional ground-based aircraft development and prototyping approaches with an efficient real-time paradigm. The work presented herein describes a learning paradigm of a quadcopter unmanned aircraft that utilizes real-time flight data. Closed-loop parameter estimation of a highly collinear model terms such as those found on a quadrotor is challenging. Using phase optimized orthogonal multisine input maneuvers, collinearity of flight data decreases leading to fast and accurate convergence of the Fourier transform regression estimator. The generated models are utilized to reconfigure a nonlinear dynamic inversion controller in normal, failure, and learning testing conditions. Results show highly accurate model estimation in different testing scenarios. Additionally, the nonlinear dynamic inversion controller easily integrates the identified model parameters without any need for gain scheduling or computationally expensive methods. Overall, the proposed technique introduces an efficient integration between real-time modeling and control adaptation utilizing the limited computational power of the quadcopter’s microcomputer.
Style APA, Harvard, Vancouver, ISO itp.
24

Botrill, Andrew R., Anastassios E. Giannakopulos, Allen Millichope, Ken S. Lee i Peter J. Derrick. "Combination of Time-of-Flight Mass Analysers with Magnetic-Sector Instruments: In-Line and Perpendicular Arrangements. Applications to Poly(Ethylene Glycol) with Long-Chain end Groups". European Journal of Mass Spectrometry 6, nr 2 (kwiecień 2000): 225–32. http://dx.doi.org/10.1255/ejms.341.

Pełny tekst źródła
Streszczenie:
High-energy collision-induced dissociation has been shown to provide extensive and detailed structural information on poly(ethylene glycol) with palmitoyl end-groups. Fragmentation within the end-groups provides direct information on their structures. Both in-line time-of-flight (TOF) and orthogonal TOF have been used for the measurement of fragment ions. Use of TOF as the second stage of mass spectrometry has facilitated exploitation of the pulsed method of ionisation matrix-assisted laser desorption/ionisation (MALDI). The orthogonal TOF instrument is used with a liquid secondary-ion mass spectrometry source. The laboratory-frame collision energies were different for in-line and orthogonal TOF, being 8–12 keV in the former and 800 eV in the latter. The tandem mass spectra were similar for the in-line experiment with either He or Xe collision gas and the orthogonal experiment with Xe. Mechanisms proposed for the fragmentations involve homolytic cleavage (C–H and backbone bonds) and invoke non-ergodicity.
Style APA, Harvard, Vancouver, ISO itp.
25

SHUTTLEWORTH, I. G. "DEVELOPMENT OF A NOVEL DUAL TIME-OF-FLIGHT IMAGING MASS SPECTROMETER: PRINCIPAL, REALIZATION, AND OPTIMAL PERFORMANCE". Surface Review and Letters 15, nr 04 (sierpień 2008): 369–89. http://dx.doi.org/10.1142/s0218625x08011500.

Pełny tekst źródła
Streszczenie:
A novel dual time-of-flight imaging analyzer has been developed for studies of gas phase reactions and the scattering or desorption of ions and molecules from surfaces. The analyzer is capable of experimentally selecting a two-dimensional slice of particles from a three-dimensional flux without the necessity for deconvolution of the resulting velocity images by the Abel transform. The analyzer operates through ionization of the scattered species and their subsequent flight through a field-free region. This initial flight allows a dispersion according to the species natural velocity distribution. The second time of flight deflects the ions through a right angle and through a flight tube allowing dispersion according to mass or charge before detection. The analyzer offers two modes of operation — the first of these produces a mass spectrum of the desorbing species, the second produces a two-dimensional velocity map of the desorbing species. Trial results using an effusive beam source and acetone as a test gas have demonstrated the operation of the analyzer. The operation of the analyzer has been simulated and optimized to reduce ion flight aberrations. A set of orthogonal two-dimensional polynomial functions have been derived to reduce residual aberrations across a broad range of operating conditions. An upper limit to the temporal resolution of the analyzer has been established and a set of working parameters for low distortion electron beam ionization have been presented.
Style APA, Harvard, Vancouver, ISO itp.
26

TAKAMIZAWA, Atsushi, Susumu FUJIMAKI, Shigemitsu OKAZAKI i Kenzo HIRAOKA. "Comparative Study of Laser Spray and Electrospray Using an Orthogonal Time-of-Flight Mass Spectrometer". Journal of the Mass Spectrometry Society of Japan 52, nr 2 (2004): 68–71. http://dx.doi.org/10.5702/massspec.52.68.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Sturgeon, Ralph E., Joseph W. H. Lam i Andrew Saint. "Analytical characteristics of a commercial ICP orthogonal acceleration time-of-flight mass spectrometer (ICP-TOFMS)". Journal of Analytical Atomic Spectrometry 15, nr 6 (2000): 607–16. http://dx.doi.org/10.1039/b000496k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Bohnhorst, Alexander, Ansgar T. Kirk, Marc Berger i Stefan Zimmermann. "Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry". Analytical Chemistry 90, nr 2 (22.12.2017): 1114–21. http://dx.doi.org/10.1021/acs.analchem.7b03200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Blom, Karl F. "Estimating the Precision of Exact Mass Measurements on an Orthogonal Time-of-Flight Mass Spectrometer". Analytical Chemistry 73, nr 3 (luty 2001): 715–19. http://dx.doi.org/10.1021/ac001064v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Yu, Quan, Zhiyu Cao, Lingfeng Li, Bin Yan, Wei Hang, Jian He i Benli Huang. "Femtogram Detection and Quantitation of Residues Using Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 81, nr 20 (15.10.2009): 8623–26. http://dx.doi.org/10.1021/ac901615k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Barnidge, David R., Stefan Nilsson, Karin E. Markides, Håkan Rapp i Klas Hjort. "Metallized sheathless electrospray emitters for use in capillary electrophoresis orthogonal time-of-flight mass spectrometry". Rapid Communications in Mass Spectrometry 13, nr 11 (15.06.1999): 994–1002. http://dx.doi.org/10.1002/(sici)1097-0231(19990615)13:11<994::aid-rcm596>3.0.co;2-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Mahoney, Patrick P., Steven J. Ray, Gary M. Hieftje i Gangqiang Li. "Continuum background reduction in orthogonal-acceleration time-of-flight mass spectrometry with continuous ion sources". Journal of the American Society for Mass Spectrometry 8, nr 2 (luty 1997): 125–31. http://dx.doi.org/10.1016/s1044-0305(96)00199-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Guo, Changjuan, Zhengxu Huang, Wei Gao, Huiqing Nian, Huayong Chen, Jiamo Fu i Zhen Zhou. "Combining a Capillary with a Radio-Frequency-Only Quadrupole as an Interface for a Home-Made Time-of-Flight Mass Spectrometer". European Journal of Mass Spectrometry 13, nr 4 (sierpień 2007): 249–57. http://dx.doi.org/10.1255/ejms.884.

Pełny tekst źródła
Streszczenie:
A heated capillary tube combined with a radio-frequency-only quadrupole has been coupled with a home-made, high-resolution orthogonal-injection, time-of-flight mass spectrometer to improve ion transmission from the atmospheric pressure to the low-pressure regions. With an electrospray ion source, the performance of the interface on the intensity of spectra was investigated. For electrospray ionization, the ion intensity detected on the time-of-flight mass spectrometer was seen to increase three-fold compared with an orifice interface. It has been shown that the enhanced ion inlet designs can not only increase the ion translation efficiency, but also improve the detection limits of the mass spectrometer. Coupling atmospheric pressure matrix-assisted laser desorption/ionization with the improved interface resulted in an instrument detection limit as low as 2.5 fmol.
Style APA, Harvard, Vancouver, ISO itp.
34

Willie, Scott, Zoltán Mester i Ralph E. Sturgeon. "Isotope ratio precision with transient sample introduction using ICP orthogonal acceleration time-of-flight mass spectrometry". Journal of Analytical Atomic Spectrometry 20, nr 12 (2005): 1358. http://dx.doi.org/10.1039/b505309a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Miller, S. W., B. D. Prince i R. J. Bemish. "Orthogonal time-of-flight mass spectrometry of an ion beam with a broad kinetic energy profile". Review of Scientific Instruments 88, nr 10 (październik 2017): 105111. http://dx.doi.org/10.1063/1.5007879.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Fay, Laurent B., Anthony Newton, Hervé Simian, Fabien Robert, David Douce, Peter Hancock, Martin Green i Imre Blank. "Potential of Gas Chromatography−Orthogonal Acceleration Time-of-Flight Mass Spectrometry (GC-oaTOFMS) in Flavor Research". Journal of Agricultural and Food Chemistry 51, nr 9 (kwiecień 2003): 2708–13. http://dx.doi.org/10.1021/jf0261203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Linden, Mathias H., H. Bernhard Linden, Norbert Nieth i Jürgen H. Gross. "Self-Supplied Liquid Injection Field Desorption/Ionization Ion Source for an Orthogonal Time-of-Flight Instrument". Journal of The American Society for Mass Spectrometry 30, nr 11 (2.08.2019): 2358–68. http://dx.doi.org/10.1007/s13361-019-02297-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Li, Lingfeng, Bochao Zhang, Rongfu Huang, Wei Hang, Jian He i Benli Huang. "Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry for Simultaneous Determination of Nonmetallic Elements in Solids". Analytical Chemistry 82, nr 5 (marzec 2010): 1949–53. http://dx.doi.org/10.1021/ac9026912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Selby, D. S., V. Mlynski i M. Guilhaus. "A 20 kV orthogonal acceleration time-of-flight mass spectrometer for matrix-assisted laser desorption/ionization". International Journal of Mass Spectrometry 210-211 (wrzesień 2001): 89–100. http://dx.doi.org/10.1016/s1387-3806(01)00438-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Chen, Y. H., M. Gonin, K. Fuhrer, A. Dodonov, C. S. Su i H. Wollnik. "Orthogonal electron impact source for a time-of-flight mass spectrometer with high mass resolving power". International Journal of Mass Spectrometry 185-187 (kwiecień 1999): 221–26. http://dx.doi.org/10.1016/s1387-3806(98)14152-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Cottee, Frank, Neville Haskins, Duncan Bryant, Christine Eckers i Soraya Monté. "The Use of Accurate Mass Measurement by Orthogonal Time-of-Flight Mass Spectrometry in Pharmaceuticals Research". European Journal of Mass Spectrometry 6, nr 2 (kwiecień 2000): 219–24. http://dx.doi.org/10.1255/ejms.340.

Pełny tekst źródła
Streszczenie:
Allan Maccoll was the founding editor of Organic Mass Spectrometry, the first journal dedicated to the application of mass spectrometry to the analysis of organic structures. Many papers in OMS described the elucidation of structures from natural and synthetic sources. This is still a major application of mass spectrometry today, especially in those fine chemical industries such as Pharmaceuticals which depend on the discovery and development of organic compounds for a variety of applications. In this paper we describe the advances we have made in the last few years, especially utilising time-of-flight (ToF) mass spectrometers, to use accurate mass measurement to determine the structures of minor components contained within drug substance and degraded samples. The additional information obtained from accurate mass measurement is shown to be critical in assigning a particular structure in a number of examples.
Style APA, Harvard, Vancouver, ISO itp.
42

De Winter, Julien, Anne-Lise Goffin, Olivier Coulembier, Philippe Dubois, Robert Flammang i Pascal Gerbaux. "Metastable Processes Investigated on an Orthogonal-Axis Time-of-Flight Instrument: Mass-Scale Calibration and Application". European Journal of Mass Spectrometry 15, nr 3 (czerwiec 2009): 431–37. http://dx.doi.org/10.1255/ejms.973.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Guo, Changjuan, Zhengxu Huang, Wei Gao, Huiqing Nian, Huayong Chen, Junguo Dong, Guoying Shen, Jiamo Fu i Zhen Zhou. "A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet". Review of Scientific Instruments 79, nr 1 (styczeń 2008): 013109. http://dx.doi.org/10.1063/1.2832334.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Husáková, Lenka, Iva Urbanová, Lenka Audrlická-Vavrušová, Jitka Šrámková, Tomáš Černohorský, Marie Bednaříková i Lucie Pilařová. "Multi-element analysis of urine by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry". Microchimica Acta 173, nr 1-2 (14.01.2011): 173–81. http://dx.doi.org/10.1007/s00604-010-0539-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Huang, Rongfu, Quan Yu, Lingfeng Li, Yiming Lin, Wei Hang, Jian He i Benli Huang. "High irradiance laser ionization orthogonal time‐of‐flight mass spectrometry: A versatile tool for solid analysis". Mass Spectrometry Reviews 30, nr 6 (31.01.2011): 1256–68. http://dx.doi.org/10.1002/mas.20331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Palmer, M. E., M. R. Clench, L. W. Tetler i D. R. Little. "Exact mass determination of narrow electrophoretic peaks using an orthogonal acceleration time-of-flight mass spectrometer". Rapid Communications in Mass Spectrometry 13, nr 4 (28.02.1999): 256–63. http://dx.doi.org/10.1002/(sici)1097-0231(19990228)13:4<256::aid-rcm459>3.0.co;2-s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Selby, David S., Victor Mlynski i Michael Guilhaus. "Demonstrating the effect of the ?polarised grid geometry? for orthogonal acceleration time-of-flight mass spectrometers". Rapid Communications in Mass Spectrometry 14, nr 7 (15.04.2000): 616–17. http://dx.doi.org/10.1002/(sici)1097-0231(20000415)14:7<616::aid-rcm914>3.0.co;2-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Mlynski, V., i M. Guilhaus. "Matrix-assisted Laser/Desorption Ionization Time-of-flight Mass Spectrometer with Orthogonal Acceleration Geometry: Preliminary Results". Rapid Communications in Mass Spectrometry 10, nr 12 (wrzesień 1996): 1524–30. http://dx.doi.org/10.1002/(sici)1097-0231(199609)10:12<1524::aid-rcm674>3.0.co;2-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hashimoto, Yuichiro, Hideki Hasegawa i Izumi Waki. "Dual linear ion trap/orthogonal acceleration time-of-flight mass spectrometer with improved precursor ion selectivity". Rapid Communications in Mass Spectrometry 19, nr 11 (2005): 1485–91. http://dx.doi.org/10.1002/rcm.1945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Weaver, Paul J., Alice M. F. Laures i Jean-Claude Wolff. "Investigation of the advanced functionalities of a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer". Rapid Communications in Mass Spectrometry 21, nr 15 (2007): 2415–21. http://dx.doi.org/10.1002/rcm.3052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii