Rozprawy doktorskie na temat „Orogeny”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Orogeny.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Orogeny”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kerrison, Aidan P. "Spatial-temporal-compositional evolution of syn-orogenic magmatism in the northern New England Orogen: Implications for the Permo-Triassic eastern Gondwanan margin". Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/228970/1/Aidan_Kerrison_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
This project investigated the evolution of igneous activity in eastern Australia during the Permian and Triassic. In Queensland, this Permo-Triassic igneous activity was previously thought to be synchronous with an Andean-scale mountain building event. This study utilised uranium-lead dating, whole rock and mineral isotopic geochemistry to test this hypothesis. The resulting dates and geochemical compositions demonstrate discrete pulses of igneous activity before, during, and following mountain building, providing updated tectonic models for the Permian and Triassic in eastern Australia.
Style APA, Harvard, Vancouver, ISO itp.
2

Shen, Wenlue. "Post-orogenic extension in the Pearl River Delta region (South China) an integrated morphological, structural, geophysical and thermochronological study /". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/HKUTO/record/B39558587.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Brocka, Christopher G. "Laramide stress conditions and deformation mechanisms during the formation of Derby and Dallas Domes, Weiser Pass Quadrangle, Wind River Mountains, Wyoming". Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4922.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 15, 2009) Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
4

Reed, Robert Mark. "Emplacement and deformation of late syn-orogenic, Grenville-age granites in the Llano uplift, central Texas /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Texas at Austin, 1999.
Vita. Four folded maps in pocket. Includes bibliographical references (leaves 254-271). Available also in a digital version from Dissertation Abstracts.
Style APA, Harvard, Vancouver, ISO itp.
5

Bendall, Betina R. "Metamorphic and geochronological constraints on the Kimban Orogeny, Southern Eyre Peninsula /". Title page, abstract and contents only, 1994. http://web4.library.adelaide.edu.au/theses/09SB/09sbb458.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Riley, Dean Nolan. "Granites, orogeny, and the deblois pluton complex in Eastern Maine, USA". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1087232113.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xliv, 546 p.; also includes graphics. Includes bibliographical references (p. 517-546).
Style APA, Harvard, Vancouver, ISO itp.
7

Kashubin, Artem. "Seismic Studies of Paleozoic Orogens in SW Iberia and the Middle Urals". Doctoral thesis, Uppsala universitet, Geofysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9405.

Pełny tekst źródła
Streszczenie:
Controlled source seismic methods were employed in this study to investigate the reflectivity and velocity structure of two Hercynian orogens – the Uralides and Variscides. Conventional common depth point (CDP) sections from five reflection seismic campaigns and a velocity model obtained from tomographic inversion of wide-angle observations were the main datasets studied from the Middle Urals. These were complemented with the near-vertical seismic sections and velocity models from the Southern Urals. In the Variscides, conventional CDP processing, along with non-standard processing and synthetic data modeling, were used to obtain and interpret reflection seismic images of the Southwestern Iberian crust. Although, the Uralian and Variscan belts were formed in Late Paleozoic time in apparently similar plate collisional settings, a comparison of the seismic results show that the crust of these two orogens looks quite different at depth. In the Urals, collision of Baltica with Asian terranes (Siberia and Kazakhstan) resulted in a highly diversely reflective crust of 40-45 km thickness. The axial zone of the orogen is characterized by a high velocity crustal root of diffuse reflectivity and an imbricated Moho, with a crustal thickness reaching 55-60 km. The Moho discontinuity is marked by a sharp decrease in reflectivity and is well imaged in most locations except in the crustal root zone. The Southwestern Iberian Variscan crust is 30-35 km thick and is characterized by a highly reflective two-layered structure that resulted from collision of Luarussia and Gondwana, including terranes in-between them. This type of crustal structure is very similar to those imaged in other regions of the Variscan belt in the Europe. The Moho discontinuity is flat and appears to be the deepest reflection. This thesis compares the deep structure of the two orogens and interprets mountain building processes related to late Paleozoic plate movements.
Style APA, Harvard, Vancouver, ISO itp.
8

Scheiner, Scott W. "Refining Paleoproterozoic Sedimentary Sequence Boundaries in East-Central Minnesota, Carlton County: Implications for Source, Age, Correlations, and Tectonic Histories". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1350923963.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Spencer, Christopher J. "Generation and preservation of continental crust in collisional orogenic systems". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/11966.

Pełny tekst źródła
Streszczenie:
The continental crust is the archive of Earth history. Much of what we know about the development of Earth is learned from the continental crust, and it is within the crust that many natural resources are found. Hence, understanding its formation and evolution is a key aspect to a deeper knowledge of the Earth system. This thesis is a study of the processes that have formed and shaped the distribution of continental crust, with specific focus on crustal development associated with the Rodinian supercontinent and the Grenville Orogeny spanning ca. 1200 to 900 Ma. Specifically it addresses an aspect of the incompleteness of the record of continental crust formation. The preserved continental crust is punctuated with periods of lesser and greater frequency of geologic features, e.g., the temporal distribution of the ages of mineral deposits, juvenile granitoids, eclogites, granulites, and the U-Pb crystallization ages of zircons now preserved in modern and ancient sediments (see Gastil, 1960; Barley and Groves, 1992; Condie, 1998; Campbell and Allen, 2008; Brown, 2007; Bradley, 2011). In addition, interpretive features in the geologic record also have an apparent episodic distribution such as passive margins (Bradley, 2011) and supercontinents (Condie, 1998). The episodic nature of these geologic phenomena implies either an episodic formation or preferential preservation of continental crust. These two end member models have been explained through a number of geologic processes such as eruption of superplumes, global disruption of thermal structure of the mantle, assembly of supercontinents, collisional orogenesis. Through the chapters outlined below, this thesis explores the connection of these episodic geologic events with key isotopic signals, principally U-Pb, Hf, and O isotopes in zircon supplemented by sedimentology, structural geology, and igneous geochemistry. It comprises a series of chapters developed around manuscripts prepared for publication.
Style APA, Harvard, Vancouver, ISO itp.
10

Pʻu-chʻüan, Ting. "Structural and tectonic evolution of the Eastern Arunta Inlier in the Harts Range area of Central Australia /". Title page, contents and abstract only, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phd5839.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Adelaide, 1989.
Typescript (Photocopy). Copies of 4 published papers co-authored by author, and 7 maps, in back cover pocket. Includes bibliographical references (leaves 203-218).
Style APA, Harvard, Vancouver, ISO itp.
11

Stewart, Martyn. "Kinematic evolution of the Great Glen Fault Zone, Scotland". Thesis, Oxford Brookes University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Jiaxin, Zhou. "Geochemistry of the Kilmelford intrusives, West Scotland, in relation to the Caledonian orogeny". Thesis, Imperial College London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Hales, Tristram Charles. "Role of lithospheric delamination and ice-driven rockfall erosion in the evolution of mountainous landscapes /". view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1280144241&sid=2&Fmt=2&clientId=11238&RQT=309&VName=PQD.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Oregon, 2006.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 115-137). Also available for download via the World Wide Web; free to University of Oregon users.
Style APA, Harvard, Vancouver, ISO itp.
14

Baldim, Maurício Rigoni 1983. "O domo gnáissico Alto Alegre, transição embasamento-greenstone belt do Rio Itapicuru : evolução e significado tectônico". [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/286596.

Pełny tekst źródła
Streszczenie:
Orientador: Elson Paiva de Oliveira
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências
Made available in DSpace on 2018-08-26T10:50:20Z (GMT). No. of bitstreams: 1 Baldim_MauricioRigoni_M.pdf: 19163752 bytes, checksum: da3d83e0ed883c0984d79ed906f0528c (MD5) Previous issue date: 2014
Resumo: Domos gnáissicos são estruturas que podem estar associadas tanto aos orógenos extensionais quanto aos colisionais. Em orógenos colisionais, normalmente balizam os distintos terrenos dispondo-se em corredores estruturais. Na região nordeste do Cráton São Francisco, Bloco Serrinha, localiza-se o Greenstone Belt Paleoproterozoico do Rio Itapicuru, interpretado como arco continental acrecionado a um Complexo de alto grau mesoarqueano. Mapeamento geológico realizado no segmento norte da transiçao, embasamento-greenstone, revelou a ocorrência de um domo gnáissico-migmatítico que limita dois terrenos, um arqueano e outro paleoproterozoico, que destoa litoestruturalmente de outros domos reconhecidos a sul do greenstone (e.g. domos do Ambrósio, Salgadália e Pedra Alta). Além disso, dados estruturais mostram que a evolução tectônica da área ocorreu a partir de tectônica compressiva em D1 com direção E-W, seguido de transcorrência N-S em D2, possivelmente associados a transpressão. O domo, denominado Alto Alegre, possui núcleo granito-diatexítico, sendo delineado por faixas anfibolíticas concêntricas e preserva paragênese de alto grau metamórfico. Análises de elementos maiores e traços revelam que as faixas de anfibolitos do referido domo possuem características geoquímicas semelhantes aos diques máficos que cortam o embasamento, e destoam dos basaltos toleíticos do greenstone belt. Dados geocronológicos e de campo revelam idades de ca. 3080 Ma para o embasamento arqueano e para gnaisses do domo Alto Alegre, e idades de ca. 2080 Ma para o granito que intrude a porção central do domo. Os dados mostram que o domo Alto Alegre representa o embasamento arqueano retrabalhado tectonicamente e influenciado por atividade granítica, durante colisão continente-continente em ca. 2080 Ma
Abstract: Gneiss domes are structures that may be associated with both extensional and collisional orogens. In collisional orogens typically delimit distinct land forming structural corridors. In northeastern of São Francisco craton, Serrinha Block, is located the Paleoproterozoic Rio Itapicuru Greenstone Belt which is interpreted as a continental arc acrecionado to a Mesoarqueano high degree Complex. Geological mapping carried out in the northern segment of the greenstone-basement transition, revealed the occurrence of a gneissic-migmatitic dome that limits two lands, one Archean and another Paleoproterozoic. This dome is different both on litology as structuraly when comparing with other domes recognized in a south of the greenstone (e.g., domes of Ambrose, Salgadália and Pedra Alta). Furthermore, structural data show that the tectonic evolution of the area occurred from compressive tectonics E-W in D1, followed by transcurrent N-S in D2, possibly associated with transpression. The dome, called Alto Alegre, has granite-diatexítico core being outlined by concentric amphibolitic bands that preserves high metamorphic grade paragenesis. Results of major and trace elements analyzes reveal that the amphibolites bands of dome has geochemical characteristics similar to mafic dikes that cut the basement, and differ from Rio Itapicuru greenstone belt basalts. Geochronological and field data reveal ages ca. 3080 Ma for the Archean basement and the dome Alto Alegre gneisses, and ages of ca 2080 Ma for the granite that intrude the central portion of the dome. The data show that the dome Alto Alegre represents the tectonically reworked Archean basement and influenced by granite activity during continent-continent collision at ca 2080 Ma
Mestrado
Geologia e Recursos Naturais
Mestre em Geociências
Style APA, Harvard, Vancouver, ISO itp.
15

Tozer, Craig Hampton. "The influence of inherited structures on the Cenozoic orogeny of the Kyrgyz Tien Shan /". view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3147837.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Oregon, 2004.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 171-180). Also available for download via the World Wide Web; free to University of Oregon users.
Style APA, Harvard, Vancouver, ISO itp.
16

Price, Alun R. "Multiple sheeting as a mechanism of pluton construction : the main Donegal granite, NW Ireland". Thesis, Durham University, 1997. http://etheses.dur.ac.uk/5074/.

Pełny tekst źródła
Streszczenie:
This study is a detailed investigation concerning the construction of granite plutons by the incremental emplacement of granitic sheets. The modem consensus is that sheeted plutons are often controlled by tectonic structures such shear zones. The Main Donegal Granite (MDG), NW Ireland forms the basis to this study. This pluton is the largest presently exposed member of the Caledonian Donegal Batholith (~405 Ma). Field evidence from this highly deformed pluton, attest to emplacement along the long-axis of a sinistral transcurrent shear zone. The presence of long and persistent xenolith "trains" within the pluton has been taken as evidence of an overall sheeted structure; however detailed maps have not been available to test this hypothesis. Two earlier members of the Donegal Batholith, the Ardara and Thorr plutons, whilst having their main outcrops outside the MDG, also occur as xenoliths within the main body. It can be demonstrated in a number of critical situations that these xenoliths are commonly more deformed than the host MDG facies. Furthermore the presence of original country rock contacts implies these xenoliths were originally in situ. These features imply that the shear zone was active prior to the emplacement of the MDG, with it controlling the emplacement of substantial parts of these earlier plutons. Further evidence from the study of parts of the petrographically similar and younger Trawenagh Bay Granite implies the sinistral shear zone was still operational after the majority of the MDG had crystallised. New, detailed (scale 1:250) and reconnaissance mapping of the MDG, reveals its hitherto unrecognised heterogeneity. At least seven major plutonic zones or packages have been identified. All these units have an NE -SW elongate form parallel to the long axis of the pluton and are often, but not always, separated by extensive "raft-trains" of country rock and older plutons. The major packages in the central regions of the pluton are often complex and are composed of three main granitoid phases, ranging in composition form early granodiorites and tonalites to latest porphyritic and to lesser extent equigranular, monzogranites. The early granodiorite and tonalite sheets are now only preserved as xenolithic rafts within the later monzogranites. The broad range in composition/chemistry together allied with field observations implies a complex intrusion history, with these granitoid packages representing sites of long-standing intrusion within the pluton. In contrast, towards the more marginal areas of the pluton there are large units of monzogranite which are characterised by general homogeneity, but in reality are believed to consist of relatively small compostionally similar sheets. On all scales, either meta-sediments, older plutonic material, or early MDG facies are found to lie along the boundaries of younger intrusive units. This implies the pluton is primarily sheeted in character and that the "raft-trains" are partially disrupted, in situ roof material which has been wedged apart during the intrusion of the sheets. The appearance of sheets within the field is dependent on the rheology of the material into which the granitic material was intruded into, i.e. to what extent has the host was crystallised. The degree of crystallisation in the host is related to how fast later sheets were being intruded, i.e. the rate of emplacement. The field relationships, in the central regions of the pluton, between the granodiorites tonalites and the later monzogranites, are interpreted as representing zones of episodic-to slow emplacement, where earlier phases had become essentially competent by the time later units were intruded (i.e. capable of fracture). These earlier phases may be preserved as angular rafts within later sheets. At moderate emplacement rates earlier sheets may still be crystallising but sufficiently viscous to prevent mixing, except at their immediate boundaries with transitional contacts developing. The more homogeneous zones are believed to be related to rapid emplacement with original contacts between pulses being destroyed at the level of emplacement due to homogenisation of pulses which had similar viscosities and hence allowed mixing. The emplacement of granitic melts within active shear zones can lead to the development of a self- perpetuating situation, where melts in a shear zone will enhance deformation rates and cause greater displacements subsequently allowing more melt to enter the shear zone promoting even greater displacement rates. This process is only halted when melts within the source regions are drained; hence the rate of pluton construction and appearance of sheets within plutons is ultimately related to how fast granitic melts are being generated within the source regions.
Style APA, Harvard, Vancouver, ISO itp.
17

McKellar, Zoe. "Sedimentology of the Lower Old Red Sandstone of the northern Midland Valley and Grampian outliers, Scotland : implications for post-orogenic basin development". Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=236193.

Pełny tekst źródła
Streszczenie:
The 9 km thick Lower Old Red Sandstone succession of the northern part of the Midland Valley Basin, Scotland, ranges from Wenlock to Emsian in age and largely comprises conglomerates in the east passing westwards into sandstones and siltstones. Previously, the depositional and tectonic setting of the basin has been poorly constrained, as has the relationship between sediments of the northern Midland Valley and the Grampian outliers at Aberdeen, Rhynie, Cabrach, Tomintoul and New Aberdour. This study focuses on establishing the stratigraphic framework of the areas and outlining the key controls and source of sedimentation during deposition of the Lower Old Red Sandstone, placing the geological history within the larger Caledonian framework. Sedimentological investigation alongside petrographical point count, heavy mineral and detrital zircon analysis allows the reconstruction of a large distributive fluvial system sourced from the NE within the Caledonian foreland, within which the Lower Old Red Sandstone of the northern Midland Valley Basin was deposited. Sedimentation was continuous across the line of the Highland Boundary Fault. Sedimentation within the Grampian outliers was locally influenced, however facies association development is comparable with the base of the laterally time-equivalent northern Midland Valley Basin stratigraphy. Sedimentary provenance analysis indicates a similar source terrane for the sediments of both areas, with detrital zircon age spectra comparable to those of the Dalradian Supergroup and localised contemporaneous volcanism, with conglomerate clast-size indicating a proximal source. Sedimentation of the Lower Old Red Sandstone of the northern Midland Valley Basin and Grampian outliers is thus attributed to Siluro-Devonian basement uplift in the Caledonian foreland driven by thick-skinned tectonics.
Style APA, Harvard, Vancouver, ISO itp.
18

Chapman, James Benjamin. "Structural relationships and crustal deformation in the Saint Elias Orogen, Alaska". To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Chan, Yau-cheong Ian, i 陳有昌. "Characterizing crustal melt episodes in the Himalayan orogen". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206505.

Pełny tekst źródła
Streszczenie:
Extensive studies have been undertaking in exploring the tectonic evolution of the Himalayan Orogen. Various tectonic models were developed to explain and constraint spatially and temporally critical events including the collision of Indian Plate with the Eurasia Plate, crustal thickening in association with the indentation, crustal spreading of the Tibetan Plateau. Recent study by King et al., 2011 identified two distinct leucogranite suites which were formed by contrasting tectonic actions at Sakya. They are Equigranular Anastomosing Leucogranite (AEG) formed under prograde fluidpresent condition while the Discrete Porphyritic Pluton Leucogranite (DPP) formed with retro-grade fluid-absent environment. Based on the characteristics of AEG and DPP, this study started with the acquisition of geochemistry data of rock samples collected for researches at various locations of the Himalaya Orogen. The two leucogranite suites were characterized through the study of their geochemistry comprised major elements, trace elements and rare earth elements models. Results of the studies concluded the existence of AEGs and DPPs distributed over the eastern area of the Himalaya Orogen beyond longitude 85 degree East. DPPs are also found at the far West location of the orogen. AEGs are typically formed from around 38Ma to 23Ma, while DPPs are of young age from 23Ma to 15Ma. Based on the observation of missing, or paucity in data for AEG and DPPs available to the west of longitude 85 degree East, it is hypothesized that recent collision of the Arabia plate to the Iran Domain inhibited the northward indentation movement of the Indian plate that not only caused the anticlockwise rotation of the Indian plate but also decreased the rate of tectonic movement of the Indian plate in the West relative to Eurasia plate. The slow rate of tectonic movement may result in insufficient thickening/energy developed within the crustal layer to cause any melting. Further studies to examine and development of the hypothesis is recommended.
published_or_final_version
Applied Geosciences
Master
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
20

Linde, G. M., J. H. Trexler, P. H. Cashman, G. Gehrels i W. R. Dickinson. "Three-Dimensional Evolution of the Early Paleozoic Western Laurentian Margin: New Insights From Detrital Zircon U-Pb Geochronology and Hf Isotope Geochemistry of the Harmony Formation of Nevada". AMER GEOPHYSICAL UNION, 2017. http://hdl.handle.net/10150/626478.

Pełny tekst źródła
Streszczenie:
Uranium-lead (U-Pb) geochronology and Hafnium (Hf) isotope geochemistry of detrital zircons of the Harmony Formation of north central Nevada provide new insights into the tectonic evolution of the Late Paleozoic western Laurentian margin. Using laser-ablation inductively coupled plasma mass spectrometry, 10 arenite samples were analyzed for U-Pb ages, and 8 of these samples were further analyzed for Hf isotope ratios. Three of the sampled units have similar U-Pb age peaks and Hf isotope ratios, including a 1.0-1.4Ga peak with epsilon Hf values of +12 to -3 and a 2.5-2.7Ga peak with epsilon Hf values of +7 to -5. The remaining seven samples differ significantly from these three, but are similar to one another; having age peaks of 1.7-1.9Ga with epsilon Hf of +10 to -20 and age peaks of 2.3-2.7Ga with epsilon Hf of +6 to -8. The data confirm the subdivision of the Harmony Formation into two petrofacies: quartzose (Harmony A) and feldspathic (Harmony B). The three samples with 1.0-1.4 and 2.5-2.7Ga peaks are the Harmony A, which originated in the central Laurentian craton. The other seven samples are the Harmony B, which originated in eastern Alberta-western Saskatchewan, north of the Harmony A source. We propose that all Harmony Formation strata were deposited near eastern Alberta and subsequently tectonically interleaved with Roberts Mountains allochthon strata. We interpret that the entire package was tectonically transported south along the western Laurentian margin and then emplaced eastward onto the craton during the Late Devonian-Early Mississippian Antler orogeny.
Style APA, Harvard, Vancouver, ISO itp.
21

Hinojosa-Prieto, Hector R. "Tectonothermal history of the La Noria-Las Calaveras region, Acatlán Complex, southern Mexico implications for Paleozoic tectonic models /". Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1151434573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lock, Jane. "Interpreting how low-temperature thermochronometric data in fold-and-thrust belts : an example from the Western Foothills, Taiwan /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Clements, James Wesley. "Laramide stress conditions and deformations mechanisms during the formation of Hudson and Dallas Domes, Lander Quadrangle, Wind River Mountains, Lander, Wyoming". Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5640.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--University of Missouri-Columbia, 2008.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file and four media files (media file 1.pdf, media file 2.pdf, media file 3.pdf, and media file 4.pdf) Title from title screen of research.pdf file (viewed on August 25, 2008) Vita. Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
24

Buscher, Jamie Todd. "The Impact of Long-Term Glacial Erosion on the Active Chugach-St. Elias Mountains, southern Alaska". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/9618.

Pełny tekst źródła
Streszczenie:
The influence of erosion on uplifting orogens has been demonstrated to be a primary force in landscape development. An understanding of fluvial erosion in mountain belts is fairly well documented, but the impact of glacial erosion is yet to be fully recognized. The uplift of the Chugach-St. Elias Mountains over the last 5-6 Ma under the influence of intense glaciation provides a unique setting to study the impact of glacial erosion on landscape development. The range has been built by rapid convergence (~5 cm/yr) of the Yakutat terrane with North America. Climatic forcing of northward-driven storms has created a disproportionate glacier distribution across strike, where extensive piedmont glaciers (low equilibrium line altitudes) cover the windward side of the range and small isolated glaciers (high equilibrium line altitudes) occupy the leeward side. If glacial erosion is greatest at the equilibrium line altitude, then glaciers will act as "buzzsaws" there to limit topographic development. Exhumation would therefore be expected to increase towards the coast. If glacial erosion is not dominant, exhumation would be expected to increase away from the coast towards the core of the range, where fault dip angles are high and deep crustal rocks are exposed. To determine the impact of long-term glacial erosion on exhumation of the Chugach-St. Elias Mountains, samples were collected along and across the strike of the range and analyzed by the apatite radiogenic helium (AHE) technique. Samples previously dated using the apatite fission track (AFT) method and located adjacent to our field area were also included in the analyses. The low-temperature sensitivity of these thermochronometers allows exhumation rates to be determined for shallow crustal depths. Both glacial and tectonic processes have influenced exhumation of the range. Exhumation rates increase to the south and east towards the collision zone, but coastal rates (0.36-2.5 mm/yr) are significantly higher than inland samples (0.038-0.24 mm/yr). These rates indicate that coastal glaciation plays a dominant role in landscape development and suggest that short-term erosion rates inferred from sediment yields are exaggerated. Although the exhumation rates are lower than expected, the correlation of exhumation patterns, glacier distribution, and equilibrium line altitude supports the "glacial buzzsaw hypothesis".
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
25

Cross, David B. "High-frequency tectonic sequences in the Campanian Castlegate Formation during a transition from the Sevier to Laramide orogeny, Utah, U.S.A". ScholarWorks@UNO, 2016. http://scholarworks.uno.edu/td/2133.

Pełny tekst źródła
Streszczenie:
Though stratigraphic correlations are abundant in the Cordilleran basin-fill, they rarely include along-strike transects providing a spatio-temporal sense of deformation, sediment-supply and subsidence. A new, high-resolution, regional strike-correlation of the Castlegate Formation reveals progressive northward-growth of the San Rafael Swell during two embryonic episodes of Laramide-style deformation in central Utah. The intrabasinal deformation-events produced gentle lithospheric-folding punctuated by erosional-truncation of upwarped regions. The earliest episode occurred at 78 Ma in the southern San Rafael Swell likely causing soft-sediment deformation and stratal-tilting. Following this the alluvial-plain was leveled and rapid, extensive-progradation took place. A second episode, at 75 Ma, where deformation was focused in the northern San Rafael Swell, also caused sediment-liquefaction and erosional beveling. The stratal-tilting and sediment-liquefaction is attributed to seismicity induced by basal-traction between a subducting flat-slab and continental-lithosphere. The south-to north time-transgression of uplift is spatio-temporally consistent with NE-propagation of an oceanic-plateau subducted shallowly beneath the region.
Style APA, Harvard, Vancouver, ISO itp.
26

Bendall, Betina. "Mid-Palaeozoic shear zones in the Strangways Range : a record of intracratonic tectonism in the Arunta Inlier, Central Australia". Title page, contents and introduction only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phb458.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Siqueira, Luzia Helena. "Granito São Domingos : registro de magmatismo pós-tectônico do orógeno intracontinental aguapeí - SW do Cráton Amazônico". Universidade Federal de Mato Grosso, 2015. http://ri.ufmt.br/handle/1/114.

Pełny tekst źródła
Streszczenie:
Submitted by Jordan (jordanbiblio@gmail.com) on 2016-10-20T13:16:35Z No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5)
Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2016-10-20T13:16:58Z (GMT) No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5)
Made available in DSpace on 2016-10-20T13:16:59Z (GMT). No. of bitstreams: 1 DISS_2015_Luzia Helena Siqueira.pdf: 3499968 bytes, checksum: 289d2c36c60121c189c7a71a65733fce (MD5) Previous issue date: 2015-07-31
O Granito São Domingos corresponde a um dos corpos da Suíte Intrusiva Guapé, localizado na Faixa Móvel Aguapeí, relacionado à Orogenia Sunsás, SW do Cráton Amazônico. Trata-se de um corpo com dimensões batolíticas de 150 Km² de área aflorante, levemente alongado segundo direção NE e localizado ao norte do distrito São Domingos, município de Jaurú, estado de Mato Grosso. Constitui-se de rochas holo a leucocráticas, de cor rosa-claro a cinza-rosado, isotrópicas, equi a inequigranulares, por vezes, porfiríticas e pegmatíticas, classificadas como Muscovita biotita monzo a sienogranitos tendo por vezes, granada e monazita como minerais acessórios primários e caracterizadas como granitos do tipo S ou Muscovite bearing Peraluminous Granitoids (MPG). Essas rochas apresentam restritos e elevados teores de sílica, caracterizando-as como muito evoluídas; formadas por magmatismo cálcio alcalino de alto K a shoshonítico, peraluminoso e ferroso. A idade U-Pb (SHRIMP) de 928 ± 5 Ma foi obtida em zircões ígneos, e coincide com idades U-Pb (TIMS) relatadas para este granito. A análise Sm-Nd indica uma idade modelo TDM de 1,58 Ga, e valor ɛND(0,93Ga) negativo (-2,90). Esses resultados indicam que o Granito São Domingos formou-se em um ambiente pós-tectônico, no final da Orogenia Sunsás, cuja origem magmática está associada ao retrabalhamento de crosta continental mesoproterozoica. Três padrões diferentes de ETR foram encontrados para esses litotipos, sugerindo a geração de magmas contemporâneos não cogenéticos, provenientes de fontes crustais distintas.
The São Domingos Granite is an intrusive body of the Guapé Intrusive Suite, located in the Aguapeí mobile belt, corresponding to a branch of the Sunsás Orogeny in SW Amazonian Craton. This body is considered as a batholith slightly elongated in the NE direction, which crops out over an area of ca. 150 km2. It is situated to the north of the São Domingos District, a municipality of the Jauru city, Mato Grosso State. It consists of hololeucocratic to leucocratic rocks ranging from pinky to pinky-gray. They are isotropic, ranging from equigranular to inequigranular grains, sometimes porphyritic and pegmatitic, classified as muscovite-biotite monzo to syenogranites. Sometimes they present garnet and monazite as primary accessory minerals. These features characterize them as S-type granites or Muscovite bearing Peraluminous Granitoides (MPG). The rocks contain high silica content, which characterizes them as very evolved, formed by high-K to shoshonitic, peraluminous, and ferrous calc-alkaline magmatism. A U-Pb age of 928 ± 5 Ma was obtained for one of the analyzed rocks, which agrees with previous U-Pb ages obtained for this granite. Sm-Nd analysis indicates a TDM model age of 1.58 Ga, and negative ND value (-2.90). These results demonstrate that the São Domingos intrusion corresponds to a post tectonic environment, related to the Sunsás orogeny, whose magmatic origin is associated to re-working of the ancient continental crust. Moreover, three different ETR patterns were found for these lithotipes, suggesting the generation of contemporaneous non-cogenetic magmas, involving distinct crustal sources.
Style APA, Harvard, Vancouver, ISO itp.
28

Bayona, German. "CONTROLS ON MIDDLE TO LATE ORDOVICIAN SYNOROGENIC DEPOSITION IN THE SOUTHEASTERN CORNER OF LAURENTIA". UKnowledge, 2003. http://uknowledge.uky.edu/gradschool_diss/364.

Pełny tekst źródła
Streszczenie:
Middle and Upper Ordovician strata in the southernmost Appalachians document initial collision along the southeastern margin of Laurentia during the Blountian orogeny, an early phase of the Taconic orogeny. Coeval drowning and exposure of different parts of the former platform and variations in stratal architecture have been attributed to tectonic and depositional loading along the collisional margin. Stratigraphic correlations, using a bentonite-graptoliteconodont time framework, a palinspastic map, and a map of subsurface basement structures, suggest that basement-fault reactivation, flexural subsidence, and eustasy variously controlled uplift, subsidence, and deposition at different sites within the peripheral foreland basin. This dissertation documents how pre-existing structures in the continental margin and interior affected subsidence, deposition, diagenesis, and composition of foreland strata, and deformation in tectonic loads. Stratigraphic correlations document an early episode of basementfault inversion in the distal foreland, and heterogeneous subsidence and provenance patterns in the middle and proximal foreland. Abrupt variations in depth of erosion of passive-margin strata and in thickness of distal foreland deposits coincide with the boundaries of the intraplate Birmingham graben. Inversion of the former graben increased the magnitude of erosion on inverted upthrown blocks; increased tectonic subsidence in adjacent blocks; supplied chert and quartz detritus to shallow-marine carbonate depocenters; and facilitated influx of meteoric water to aquifers in shallow-marine limestones. Tectonic subsidence of middle and proximal foreland deposits reflects local irregularities in the foreland subsidence and different rates of migration of the flexural wave along strike. Differential subsidence between embayments and promontories may have caused reactivation of transverse basement faults. Relief produced by reactivation of transverse basement faults and flexural normal reactivation of basement faults may provide sources for local conglomerates interbedded with deep-water shales. Differences in orogenicbelt deformation are reflected in provenance analyses that suggest exposure of dominantly feldspar-bearing basement rocks in the orogenic belt adjacent to the promontory and exposure of basement rocks and sedimentary cover in the orogenic belt adjacent to the embayment. Results of this study reveal the importance of considering the effects of pre-existing structures in the interpretation of along- and across-strike variations of foreland strata. Therefore, geodynamic modeling of the Blountian foreland basin needs to consider along-strike variations in the geometry of tectonic loads and reactivation of different basement structures.
Style APA, Harvard, Vancouver, ISO itp.
29

Hamlin, Herbert Scott. "Syn-orogenic slope and basin depositional systems, Ozona sandstone, Val Verde Basin, southwest Texas /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Elswick, Virginia L. "Seismic interpretation and structural evaluation of the Hope Basin, Alaska". Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3014.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--West Virginia University, 2003.
Title from document title page. Document formatted into pages; contains vi, 21, [24] p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 20-21).
Style APA, Harvard, Vancouver, ISO itp.
31

Lagor, Samuel William. "The Relationship Between Magmatism and Deformation During the Acadian Orogeny: A Case Study from Eastern-Central Vermont". ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/566.

Pełny tekst źródła
Streszczenie:
The Silurian-Devonian metasedimentary rocks of the Connecticut Valley-Gaspé trough (CVGT) were subjected to multiple deformational and metamorphic events during the Acadian orogeny in the Middle-Late Devonian. Plutons intruding the Devonian Waits River and Gile Mountain Formations have been considered post-tectonic, but microstructural studies of the intrusions and their metamorphic aureoles indicate some of these plutons intruded syntectonically. This study investigates the relationship between Acadian deformation and intrusion of the Knox Mountain pluton (KMP) of central Vermont. Structural and geochronological data were collected along a c. 15 km transect from the western limit of the CVGT, where the unconformable Richardson Memorial Contact coincides with the Dog River Fault Zone, into the margin of the KMP in the east. Field and microstructural observations indicate the KMP intruded syntectonically. Evidence for Acadian deformation post-dating intrusion includes folded and boudinaged granitic dikes at the margin of the KMP, and microstructures such as flame perthite, myrmekite, deformation twins, and textures associated with grain-boundary migration recrystallization in the granite. In the metamorphic aureole, biotite porphyroblasts overgrow S3, the earliest Acadian secondary foliation, and were deformed during S4 crenulation cleavage development. The KMP intruded at 377±5.2 Ma based on a U-Th-total Pb monazite crystallization age, which is concordant with the published age of the nearby Barre granite. The timing of S4 foliation development in the CVGT is constrained locally by 40Ar/39Ar geochronology at ~365 Ma, consistent with the microstructurally-inferred relative-age relationships. Plateau/weighted mean 40Ar/39Ar ages from across the transect and minimum ages from argon-loss profiles show a general trend of younging towards the east, suggesting these rocks have been affected by Alleghanian and Mesozoic deformation and exhumation.
Style APA, Harvard, Vancouver, ISO itp.
32

Grimes, Stephen Whiteford. "The Grenville orogeny in West Texas : structure, kinematics, metamorphism and depositional environment of the Carrizo Mountain Group /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Texas at Austin, 1999.
Vita. Three folded plates in pocket. Includes bibliographical references (leaves 359-371). Available also in a digital version from Dissertation Abstracts.
Style APA, Harvard, Vancouver, ISO itp.
33

Yao, Weihua. "Evolution of the Lower Palaeozoic Nanhua Foreland Basin and nature of the Wuyi-Yunkai Orogeny, South China". Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/2183.

Pełny tekst źródła
Streszczenie:
This thesis reports results of a combined sedimentological, stratigraphic, detrital provenance, geochronological, isotopic and geochemical study of the early Palaeozoic South China Block (SCB). It reveals the driving mechanism for the Wuyi–Yunkai orogeny, and the sedimentary and provenance evolution of the lower Palaeozoic Nanhua foreland basin. The thesis further explores possible tectonic interactions between the SCB and northern India during the assembly of Gondwanaland in late Neoproterozoic to early Palaeozoic time.
Style APA, Harvard, Vancouver, ISO itp.
34

McNeice, Gary Wayne. "Magnetotelluric investigation of the Appalachians, Newfoundland, Canada". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0026/MQ36152.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Rose, Shellie. "Timing constraints and significance of Paleoproterozoic metamorphism within the Penokean orogen, northern Wisconsin and Michigan (USA)". Ohio University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1090940526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Misiewicz, Julian Edward. "The geology and metallogeny of the Otavi mountain land, Damara orogen, SWA/Namibia, with particular reference to the Berg Aukas Zn-Pb-V deposit a model of ore genesis". Thesis, Rhodes University, 1988. http://hdl.handle.net/10962/d1005571.

Pełny tekst źródła
Streszczenie:
The Olavi Mountain Land is a 10 000 km2 mineral province located at the eastern extremity of the exposed Northern Platform of the Damara Pan African orogenic belt. The Olavi Mountain Land is tbe most important mineral province on the Northern Platform. Exploitation of tbe Cu-Pb-Zn-V province has been on-going since the possession of the territory by the German colonial authority in 1890. Production has been mostly from four mines which in order of importance are Tsumeb, Kombat, Berg Aukas and Abeoab. A second mineral province on the Northern Platform located in the west is centred on Sesfontein where as yet only insignificant mineralization has been noted. Besides these localities, the Northern Platform is conspicuously devoid of notable mineralization. The aim of this thesis has been to document tbe Berg Aukas deposit, an important end-member type of mineralization in the Otavi Mountain Land. The basic premise bas been to show tbat the derivation and localization of the mineralization is a consequence of two broad controls which can be simply summarised as features of the basement and of the carbonate sequences. The geodynamic evolution of the Damara Belt commenced with intra-continental rifting approximately 900 Ma ago. Rift grabens trending north-east were filled by the Nosib Group which comprises mostly clastic lithologies but also some volcanics. The earliest and largest rift is referred to as the Northern Rift. Separation of the Congo, Kalahari, and proto-South American cratons resulted in rifting and rapid downwarping so that an encroaching sea and an Olavi Group carbonate shelf developed along the northern margin of the Northern Rift. Significantly, the carbonates only covered the Northern Rift in the area of the Otavi Mountain Land where a basinal dome, referred to as the Grootfontein Basement High, marked the basin edge. In the west, the carbonates covered the less important Sesfonfein Rift, and it is only in these two areas where Nosib sequences underlie the carbonate platform. Carbonate sedimentation was interrupted by a major period of crustal readjustment and the deposition of an extensive mixtite throughout the geosynclinal Swakop Trough and Northern Platform. This is referred to as the Chuos Formation and subdivides the Olavi Group into a lower Abenab and an upper Tsumeb Subgroup. Reversal of spreading led to plate collision and subduction of tbe Kalahari craton beneath the Congo craton. It was accompanied by orogenesis which resulted in F1 folding of the Northern Platform into a series of north-easterly trending intermontane basins into which a molasse sequence known as the Mulden Group was unconformably deposited. Following this major north-south deformation mild east-west compression initiated F2 folding and the formation of doubly plunging synclines. The Berg Aukas Syncline represents a primary depositional basin which was subsequently folded. The original basin was formed by late Nosib rifting wben spreading caused the Swakop geosynclinal Trough to form. Carbonates of the basal Berg Aukas Formation were deposited in a lagoonal setting typified by reef and fore-reef facies witb peri-platform conditions. Rapid subsidence caused these sediments to be overlain by deep water carbonates of the Gauss Formation. Two styles of mineralization known as the Tsumeb-type and Berg Aukas-type are stratigraphically, isotopically, and mineralogically distinct. The Tsumeb-type is a cupriferous variety of discordant bodies confined to the upper sequences beneath the Mulden unconformity. The Berg Aukas-type is a Zn-Pb variety confined to tbe basal unconformity. The Berg Aukas deposit comprises three ore bodies known as the Northern Ore Horizon, the Central Ore Body, and the Hanging Wall Ore Body. Sphalerite and galena constitute the bypogene ore. Willemite, smithsonite, cerussite, and descloizite are important supergene ores. A review of genetic models concludes that a magmatic origin initially proposed for tbe Tsumeb deposit is entirely rejected and a basin dewatering model in line with Mississippi Valley-type deposits is proposed. The syntectonic nature of mineralization at Berg Aukas and elsewhere in the Otavi Mountain Land indicates that orogenesis encouraged dewatering and leaching of metals from a broad mineralizing front along the margin of the Swakop Trough. These were transported by acidic saline brines which migrated along the clastic aquifers and structural conduits provided by the Northern Rift. Fluid inclusion studies indicate that the hydrothermal fluids at Berg Aukas were very saline (23% TDS) and were transported at temperatures ranging between 92° to 210°C. Hydrothermal fluids which mineralized Berg AukaS-type deposits migrated along the basal unconformity towards the basement high and were responsible for hydrothermally altering the basement granites and gabbros and the Nosib clastic rocks. Tsumeb-type deposits resulted by migration of fluids through the carbonate pile and along north-easterly trending basement geofractures. As a consequence of variation in transport, the Berg Aukas-type and Tsumeb-type fluids leached different sources and therefore derived mineralogically and isotopically seperable characteristics. The localization of the Berg Aukas ores was controlled by the carbonate stratigraphy and structure. Hydrothermal karsting and ore deposition took place on the contact between Massive Grey and Light Grey Dolostones which represents a permeability contrast. The movement of the hydrothermal fluids was controlled by north-south trending vertical fractures caused by F2 folding which resulted in a peric1inal structure. Hydrothermal karsting was accompanied by ca1citic, dolomitic and silicic alteration. The heated acidic fluids initiated solution collapse and a variety of breccia types. Supergene processes resulted in oxidation and upgrading of the ore. Vanadium derived indirectly from gabbros in the basement complex were transported as calcium metavanadate complexes and deposited on contact with the oxidizing base metal sulphides.
Style APA, Harvard, Vancouver, ISO itp.
37

Labadie, Julia E. Schermer Elizabeth. "The structural and tectonic history of the Mt. Formidable region, North Cascades, Washington /". Online version, 2010. http://content.wwu.edu/cdm4/item_viewer.php?CISOROOT=/theses&CISOPTR=333&CISOBOX=1&REC=14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Fitz-Gerald, Dudley Braden. "Evidence for an Archean Himalayan-style orogenic event in the northern Teton Range, Wyoming". Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1798480821&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Tabaud, Anne-Sophie. "Le magmatisme des Vosges : conséquence des subductions paléozoïques (datation, pétrologie, géochimie, ASM)". Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAH003/document.

Pełny tekst źródła
Streszczenie:
Les Vosges sont caractérisées par la présence de nombreuses intrusions et extrusions magmatiques d’affinités variées. Elles constituent donc un excellent site d’étude pour contraindre, par la datation et la géochimie, l’évolution des évènements de ce segment de l’orogène Varisque. Ce travail révèle ainsi deux successions d’évènements magmatiques identiques, décalées dans le temps, caractérisent les domaines Moldanubien (360 à 320 Ma) et Saxothuringien (335 à 295 Ma). Ces successions d’évènements magmatiques résultent de deux processus majeurs. L’avancée des croûtes continentales subduites et sous-plaquées au niveau du Moho sous les blocs continentaux permet le passage du magmatisme calco-alcalin au magmatisme calco-alcalin riche en potassium. L’apport de chaleur par désintégration des éléments radiogéniques (K, U et Th) présents dans ces croûtes continentales subduites permet, dans un premier temps, la formation du magmatisme magnésio-potassique en profondeur. Dans un second temps, elle permet la formation du magmatisme d’origine crustale par l’intrusion du magmatisme magnésio-potassique, riche en K, U et Th, à la limite croûte moyenne - croûte supérieure. Ces successions d’évènements magmatiques et particulièrement, la présence des granites magnésio-potassiques, relient clairement les Vosges à la partie Est de l’orogène Varisque (Forêt Noire, Massif de Bohème, Alpes et Corse-Sardaigne)
The Vosges Mountains are characterized by the presence of numerous magmatic intrusions and extrusions of varied affinities. Accordingly, they constitute the best site to investigate, by dating and geochemistry, the evolution of the events affecting this segment of the Variscan orogeny. Two successions of identical magmatic events, shifted in the time, are identified, characterizing both Moldanubian (360 to 320 Ma) and the Saxothuringian (335 to 295 Ma) domains. These successions of magmatic events result of two major process. The progress of subducted and underplated continental crusts at Moho depth under continental blocks permits to shift from calc-alkaline to high potassic calc-alkaline magmatism. The radiogenic heat production from latter underplated continental crusts, in a first time, permits to generate magnesio-potassic magmas at depth. Then, this radiogenic heat permits to generate crustal magmas by intrusion of magnesio-potassic magmas rich in K, U and Th at mid-upper crust boundarie. These successions of magmatic events and particularly, the presence of the magnesio-potassic granites, imply a strong link between the Vosges Mts. and the eastern part of the Variscan orogeny (Black Forest, Bohemian Massif, the Alps and Corsica Batholith)
Style APA, Harvard, Vancouver, ISO itp.
40

Moe, Aung. "Structural development of a volcanic sequence of the Lahn area during the variscan orogeny in the Rhenohercynian belt (Germany)". [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961466162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Shen, Yunqing. "Gravitational collapse of orogenic belts : a preliminary study /". free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Lillydahl-Schroeder, Hosanna. "New Petrological and In-situ Electron Microprobe Monazite Age Constrainsts on the Timing of the Foxe Orogeny, Melville Penninsula, Nunavut, Canada". Thesis, Boston College, 2013. http://hdl.handle.net/2345/3032.

Pełny tekst źródła
Streszczenie:
Thesis advisor: Yvette D. Kuiper
The Paleoproterozoic Foxe Fold Belt (FFB) is composed of the Penrhyn Group, a Paleoproterozoic passive margin sequence, and supracrustal Archean basement. These units were interfolded and metamorphosed at amphibolite to lower granulite facies conditions during the 1883-1865 Ma Foxe orogeny, a part of the Trans-Hudson orogeny. The purpose of this study was to constrain the timing of metamorphism and deformation within the Penrhyn Group, in order to determine the role of the Foxe orogeny within the Trans-Hudson orogeny. Petrographic analysis, P-T-X pseudosections, monazite composition, and in-situ electron microprobe U-Th-Pb geochronology from sampled metapelites were used to determine the age and significance of metamorphic and deformation events related to monazite age populations. Population 1 is composed of 1926 ± 8 Ma monazite interpreted as detrital. Population 2 consists of 1892 ± 9 Ma monazite, the youngest detrital ages seen in the Penrhyn Group. Population 3 is composed of 1853 ± 5 Ma high-Y + HREE monazite predating an episode of pervasive garnet growth. Population 4 contains 1839 ± 8 Ma lower-Y + HREE monazite related to pervasive garnet growth. Population 5 is 1819 ± 16 Ma lowest-Y + HREE monazite with high LREE and Th/U, linked to the interpreted peak reaction: Bt + Sil + Pl = Grt + Crd + Kfs + melt. Monazite constraints on deformation fabrics indicate that deformation was ongoing locally as early as 1853 ± 9 Ma and continued until at least 1814 ± 14 Ma, pre- to syn-peak metamorphism. Rare 1794-1776 Ma monazite is interpreted to constrain the age of retrograde metamorphism as the Trans-Hudson orogeny waned. These data support interpreted clockwise P-T-t-D paths consistent with metamorphism initiated by crustal thickening in an orogenic belt
Thesis (MS) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Earth and Environmental Sciences
Style APA, Harvard, Vancouver, ISO itp.
43

Strack, Cody M. "Petrologic Study of the Danburg, Sandy Hill, and Delhi Intrusions: Constraints on Magmatism in the Southern Appalachians". Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1439388136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Graessner, Thorsten. "Thermal evolution of the continental crust of Calabria during the Hercynian orogeny constraints from metamorphic phase equilibria and isotopic dating /". [S.l. : s.n.], 1999. http://e-diss.uni-kiel.de/diss=/d327.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

MacKenzie, Douglas James, i n/a. "Structural controls on orogenic gold mineralisation in the Otago Schist, New Zealand and the Klondike Schist, Canada". University of Otago. Department of Geology, 2008. http://adt.otago.ac.nz./public/adt-NZDU20080704.085108.

Pełny tekst źródła
Streszczenie:
Orogenic gold mineralisation in schist terranes with few or no contemporaneous igneous intrusions is poorly understood. It is proposed in this thesis that the structural evolution of such terranes controls the generation of hydrothermal fluid pathways and thus the location of orogenic mineral deposits. Gold mineralisation in the Otago Schist, New Zealand and the Klondike Schist, Canada occurred in the latter phases of greenschist facies metamorphism as well as after metamorphism during Paleozoic-Mesozoic exhumation. In Otago, gold mineralisation occurred at a number of different times and structural levels as the schist belt was exhumed and rocks were brought up through the brittle-ductile transition. In Klondike Schist, gold mineralisation occurred in relatively brittle rocks after a period of regional compression and crustal shortening caused by the stacking of thrust sheets. Gold mineralisation in both schist belts is not associated with any coeval igneous activity. The earliest stage of gold mineralisation in the Otago Schist occurred in the Jurassic when mineralising fluids were progressively focussed into late metamorphic ductile shear zones such as the Hyde-Macraes Shear Zone (HMSZ), east Otago and Rise and Shine Shear Zone (RSSZ), central Otago. Both of these gold-bearing mineralised zones occur along mappable structural discontinuities or boundaries that separate structurally, metamorphically and lithologically distinct blocks. The HMSZ occurs in the hangingwall of an underlying low angle normal fault that juxtaposes mineralised lower greenschist facies rocks on to unmineralised upper greenschist facies rock. The RSSZ occurs in the footwall of an overlying low angle normal fault that juxtaposes unmineralised lower greenschist facies rocks on to mineralised upper greenschist facies rock. The two shear zones did not form as part of a single homogeneous structure. There are several other prospective late metamorphic boundaries that are different from later brittle faults that disrupt the schist. Late metamorphic gold mineralisation is characterised by both ductile and brittle structures, foliation-parallel shears, disseminated gold with sulphides in deformed schist and minor steeply dipping extensional veins. This style of mineralisation is the most prospective but can be subtle in areas without quartz veins. Hydrothermally altered rocks are enriched in gold, arsenic, tungsten and sulphur with minor enrichment of bismuth, antimony, mercury and molybdenum. Disseminated mineralisation in the HMSZ is associated with hydrothermal graphite however there is no hydrothermal graphite in the RSSZ. The next stage of gold mineralisation occurred in the Cretaceous during post-metamorphic exhumation of the schist belt and is characterised by steeply dipping, fault-controlled quartz veins, silicified breccias and negligible wall rock alteration. Most post-metamorphic veins strike northwest such as the ~25 km long Taieri river gold vein swarm, but there are other stibnite and gold mineralised structures that strike northeast (e.g., Manuherikia Fault system) and east-west (e.g., Old Man Range vein systems). The latest recognised stage of gold mineralisation is controlled by structures related to the initiation of the Alpine Fault in the Miocene and is characterised by steeply dipping quartz veins with abundant ankeritic carbonate in veins and ankeritic carbonate with gold in altered rocks. Hydrothermally altered rocks are enriched in arsenic, carbon dioxide and sulphur with minor enrichment of antimony. Gold-bearing veins at Bullendale, central Otago are of this type and are associated with a broad alteration zone. Gold-silver and gold-silver-mercury alloys occur in both Caples and Torlesse Terranes of the Otago Schist. Almost all mercury-bearing gold occurs in east Otago vein systems and mercury-free gold occurs in central and northwest Otago veins, irrespective of host terrane. There is no relationship between depth of vein emplacement and mercury content of gold. The Klondike Schist was emplaced as a series of stacked thrust slices in the Jurassic and thrust-related fabrics are preserved in all thrust slices. Strongly deformed carbonaceous schist horizons are spatially associated with thrust faults and graphite within these units is concentrated along spaced cleavage surfaces. Kink folding is best developed in the uppermost slices of Klondike Schist and overprints thrust-related fabrics. Gold-bearing veins formed in extension fractures controlled principally by pre-existing weaknesses such as kink fold axial surfaces. Normal faults correlated with a period of Late Cretaceous regional extension crosscut kink folds and offset gold mineralised veins. The main stage of mineralisation occurred after major regional compression and thrust stacking and before Cretaceous normal faulting. Gold-bearing veins are widely dispersed throughout the uppermost slices of Klondike Schist and are considered to be a sufficient source for Klondike gold placer deposits. Disseminated gold with pyrite is associated with gold-bearing veins in some Klondike Schist and this disseminated mineralisation expands the exploration target for these veins. Disseminated gold with pyrite, without quartz veins, occurs in some schist lithologies and is associated with chlorite alteration and weak silicification. The arsenic content of gold-mineralised Klondike Schist is much lower than mineralised Otago Schist and background concentrations of arsenic are much lower in Klondike Schist as well. No shear-related mineralisation has been discovered in Klondike Schist but due to its relatively poor exposure, this belt remains prospective for this style of mineralisation.
Style APA, Harvard, Vancouver, ISO itp.
46

Anderson, Eric Douglas. "PETROLOGIC, GEOCHEMICAL, AND GEOCHRONOLOGIC CONSTRAINTS ON THE TECTONIC EVOLUTION OF THE SOUTHERN APPALACHIAN OROGEN, BLUE RIDGE PROVINCE OF WESTERN NORTH CAROLINA". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/820.

Pełny tekst źródła
Streszczenie:
The Blue Ridge Province of western North Carolina contains a wide variety of metamorphosed igneous and sedimentary rocks that record the tectonic effects of Precambrian and Paleozoic orogenic cycles. Tectonic interpretations of the events that led to the present configuration are varied and often conflicting. This investigation examines metamorphosed mafic rocks that are widely interpreted to have formed during the closure of ocean basins. Metabasites, and specifically eclogites, have a tendency to mark tectonic sutures and frequently preserve pressure (P), temperature (T), and age data (t) that can be gleaned from mineral equilibria and U-Pb isotopic compositions. As such, the examination of the metabasites is considered the key to understanding the orogenic history of the southern Blue Ridge where these metabasites occur. Chapter 2 is an investigation of the retrograde reactions related to the decompression of sodic pyroxenes that react to form diopside-plagioclase-hornblende-quartz symplectites as stability fields are overstepped during isothermal decompression. In Chapter 3 metabasites from the central and eastern Blue Ridge are re-examined and P-T pathways of these lithologies are determined. The argument is made that the Taconic orogeny of the Blue Ridge is the result of a continent-continent collision event that culminated in a mega-mélange that coincides with the Cullowhee terrane and the eastern Blue Ridge mélange of western North Carolina. Chapter 4 contains the results of a geochronological investigation of the Precambrian basement complex of the eastern Great Smoky Mountains. Chapter 5 is a whole rock geochemical study of the same basement complex. In Chapter 6, a potential lithologic correlation between the southern Blue Ridge basement and the Arequipa- Antofalla block of Peru is discussed. The geologic history of western South America from the Mesoproterozoic through Cambrian is summarized, a potential isotope-based lithologic correlation is proposed, and the early tectonic history of the central Blue Ridge is discussed. Chapter 7 contains brief summaries of Chapters 1-6.
Style APA, Harvard, Vancouver, ISO itp.
47

沈文略 i Wenlue Shen. "Post-orogenic extension in the Pearl River Delta region (South China): an integrated morphological, structural,geophysical and thermochronological study". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B39558587.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Tsang, Pui-wai Debbie, i 曾珮蔚. "Thermochronology inferring post-orogenic exhumation model around Greater Pearl River Delta region". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45861432.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Grimm, Ryan P. "Insights Into the Stratigraphic Evolution of the Early Pennsylvanian Pocahontas Basin, Virginia". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/40424.

Pełny tekst źródła
Streszczenie:
Early Pennsylvanian, coal-bearing, siliciclastic strata of the Breathitt Group within the Pocahontas Basin, southwestern Virginia, define a southeasterly thickening clastic wedge deposited in continental to marginal marine environments influenced by recurring, high-magnitude relative sea-level fluctuations and low-frequency changes in tectonic loading. A robust dataset of >1200 well logs, cores and numerous outcrops allowed a unique review of the Central Appalachian lithologic record during both the Late Paleozoic Ice Age and onset of the Alleghanian Orogeny. The tropical depositional landscape produced stacked deposits of braided-fluvial channels, broad alluvial plains, tidally-influenced estuaries and small deltas. Trends in facies associations allowed development of a high-resolution sequence stratigraphic architecture based on regional flooding surfaces and bounding discontinuities. Analysis of vertical stacking patterns of lithofacies on regional cross-sections identified 15 widespread, unconformity-bounded depositional sequences with an average duration of ~80 kyr based on available geochronology. Glacioeustatic control on stratigraphic architecture is supported by corresponding sequence duration within the short-eccentricity periodicity of the Milankovitch band, as well as the magnitude and extent of rapid facies shifts, suggesting that far-a-field variations in overall Gondwanan ice-sheet size and volume impacted base-level changes in the tropical basin. The progressive increase in magnitude of transgressions, as indicated by brackish-marine ichnofacies and other faunal indicators within regional high-frequency transgressive system tracts, indicate extrabasinal trends in ice-volume and eustasy. High-frequency eustatic sequences are nested within four asymmetric composite-sequences, attributed to low-frequency variations in tectonic accommodation. Evidence for tectonic forcing on foreland-basin accommodation is based on abrupt facies shifts, angular stratal terminations and wedge-shaped composite-sequence geometries. Spatial and temporal trends in facies associations within composite-sequences reveal episodic variation in tectonic loading overprinted by recurring high-frequency eustatic events. Petrology and detrital-zircon geochronology indicates that sediment was derived from low-grade metamorphic Grenvillian-Avalonian terranes and recycling of older Paleozoic sedimentary rocks uplifted as part of the Alleghanian orogen towards the southeast and, in part, from the Archean Superior Province to the north. Applications of the observed facies distribution and petrophysics of these coal-bearing sedimentary rocks indicate numerous confining intervals within regional mudstones overlying coalbeds, suggesting the potential for beneficial geological storage of CO2 through enhanced-coal-bed-methane recovery.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
50

Hansman, Reuben. "Constraining the Uplift History of the Al Hajar Mountains, Oman". Licentiate thesis, Stockholms universitet, Institutionen för geologiska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-133409.

Pełny tekst źródła
Streszczenie:
Mountain building is the result of large compressional forces in the Earth’s crust where two tectonic plates collide. This is why mountains only form at plate boundaries, of which the Al Hajar Mountains in Oman and the United Arab Emirates is thought to be an example of. These mountains have formed near the Arabian–Eurasian convergent plate boundary where continental collision began by 30 Ma at the earliest. However, the time at which the Al Hajar Mountains developed is less well constrained. Therefore, the timing of both the growth of the mountains, and the Arabian–Eurasian collision, needs to be understood first to be able to identify a correlation. Following this a causal link can be determined. Here we show, using apatite fission track and apatite and zircon (U-Th)/He dating, as well as stratigraphic constraints, that the Al Hajar Mountains were uplifted from 45 Ma to 15 Ma. We found that the mountains developed 33 Myr to 10 Myr earlier than the Arabian–Eurasian plate collision. Furthermore, the plate collision is ongoing, but the Al Hajar Mountains are tectonically quiescent. Our results indicate that the uplift of the Al Hajar Mountains cannot be correlated in time to the Arabian–Eurasian collision. Therefore the Al Hajar Mountains are not the result of this converging plate boundary.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii