Artykuły w czasopismach na temat „Organometallic Chemistry”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Organometallic Chemistry.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Organometallic Chemistry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ezquerro, C., A. E. Sepúlveda, A. Grau-Atienza, E. Serrano, E. Lalinde, J. R. Berenguer i J. García-Martínez. "Organometallic phosphors as building blocks in sol–gel chemistry: luminescent organometallo-silica materials". Journal of Materials Chemistry C 5, nr 37 (2017): 9721–32. http://dx.doi.org/10.1039/c7tc02188g.

Pełny tekst źródła
Streszczenie:
When organometallics meet silica, the solid state mimics solution! Condensation of organometallic Ir(iii) and Pt(ii) phosphors with TEOS yields highly stable luminescent hybrid organometallo-silica materials with excellent optical and textural properties.
Style APA, Harvard, Vancouver, ISO itp.
2

Eisenstein, Odile. "Concluding remarks for “Mechanistic Processes in Organometallic Chemistry”: the importance of a multidisciplinary approach". Faraday Discussions 220 (2019): 489–95. http://dx.doi.org/10.1039/c9fd00101h.

Pełny tekst źródła
Streszczenie:
The Faraday Discussions meeting on Mechanistic Processes in Organometallic Chemistry was a brilliant occasion to assemble chemists from diverse sub-disciplines to discuss the progress and limitations of the study of reaction mechanisms using organometallic systems for stoichiometric or catalytic reactions.
Style APA, Harvard, Vancouver, ISO itp.
3

Straub, Bernd F., Rolf Gleiter, Claudia Meier i Lutz H. Gade. "Organometallic chemistry". Beilstein Journal of Organic Chemistry 12 (19.10.2016): 2216–21. http://dx.doi.org/10.3762/bjoc.12.213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Baranoff, Etienne, i John S. Fossey. "Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 108 (2012): 71. http://dx.doi.org/10.1039/c2oc90022j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Fossey, John S., i Etienne Baranoff. "Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 109 (2013): 207. http://dx.doi.org/10.1039/c3oc90017g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fossey, John S. "Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 107 (2011): 91. http://dx.doi.org/10.1039/c1oc90021h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Poli, Rinaldo, i Philippe Kalck. "Organometallic Chemistry". European Journal of Inorganic Chemistry 2012, nr 9 (marzec 2012): 1292–93. http://dx.doi.org/10.1002/ejic.201290022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Green, M. L. H., i W. P. Griffith. "Sir Geoffrey Wilkinson. 14 July 1921 — 26 September 1996". Biographical Memoirs of Fellows of the Royal Society 46 (styczeń 2000): 593–606. http://dx.doi.org/10.1098/rsbm.1999.0103.

Pełny tekst źródła
Streszczenie:
Geoffrey Wilkinson was one of the most influential chemists of the postwar era, a major contributor to the renaissance of inorganic chemistry and probably the most influential founder of modern organometallic chemistry. His scientific career spanned more than fifty years and he worked throughout that entire period with undiminished enthusiasm and intellectual vigour. His work covered most of the elements in the Periodic Table, and he made remarkable and highly individual contributions to radiochemistry, organometallic chemistry, coordination chemistry and homogeneous catalysis.
Style APA, Harvard, Vancouver, ISO itp.
9

Errington, R. J. "Journal of Organometallic Chemistry Library 20: Organometallic Chemistry Reviews." Polyhedron 8, nr 22 (styczeń 1989): 2735. http://dx.doi.org/10.1016/s0277-5387(00)80449-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Brisdon, B. J. "Organometallic chemistry reviews. Journal of organometallic chemistry library, 20". Endeavour 13, nr 3 (styczeń 1989): 143. http://dx.doi.org/10.1016/0160-9327(89)90102-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Dong, Zhi-Bing, i Jin-Quan Chen. "Recent Progress in Utilization of Functionalized Organometallic Reagents in Cross Coupling Reactions and Nucleophilic Additions". Synthesis 52, nr 24 (4.11.2020): 3714–34. http://dx.doi.org/10.1055/s-0040-1706550.

Pełny tekst źródła
Streszczenie:
AbstractOrganometallic compounds have become increasingly important in organic synthesis because of their high chemoselectivity and excellent reactivity. Recently, a variety of organometallic reagents were found to facilitate transition-metal-catalyzed cross-coupling reactions and nucleophilic addition reactions. Here, we have summarized the latest progress in cross-coupling reactions and in nucleophilic addition reactions with functionalized organometallic reagents present to illustrate their application value. Due to the tremendous contribution made by the Knochel group towards the development of novel organometallic reagents, this review draws extensively from their work in this area in recent years.Introduction1 Transition-Metal-Catalyzed Cross Couplings Involving Organo­zinc Reagents2 Transition-Metal-Catalyzed Cross Couplings Involving Organomagnesium Reagents3 Transition-Metal-Free Cross Couplings Involving Zn and Mg ­Organometallic Reagents4 Nucleophilic Additions Involving Zn and Mg Organometallic Reagents5 Cross-Coupling Reactions or Nucleophilic Additions Involving Mn, Al-, La-, Li-, Sm- and In-Organometallics6 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
12

Govindaraj, A., i C. N. R. Rao. "Organometallic precursor route to carbon nanotubes". Pure and Applied Chemistry 74, nr 9 (1.01.2002): 1571–80. http://dx.doi.org/10.1351/pac200274091571.

Pełny tekst źródła
Streszczenie:
Multi-walled as well as single-walled carbon nanotubes are conveniently prepared by the pyrolysis of organometallic precursors, such as metallocenes and phthalocyanines, in a reducing atmosphere. Pyrolysis of organometallics alone or in mixture with hydrocarbons also yields aligned nanotube bundles with useful field emission properties. By pyrolyzing organometallics in the presence of thiophene, Y-junction nanotubes are obtained in large quantities. The junction nanotubes have a good potential in nanoelectronics. Carbon nano-tubes prepared from organometallics are useful for preparing nanowires and nanotubes of materials such as BN, GaN, SiC, and Si3N4.
Style APA, Harvard, Vancouver, ISO itp.
13

Chen, Fan, Hannah F. Drake, Liang Feng, Joshua A. Powell, Kun-Yu Wang, Tian-Hao Yan i Hong-Cai Zhou. "Metal–Organic Frameworks as Versatile Platforms for Organometallic Chemistry". Inorganics 9, nr 4 (9.04.2021): 27. http://dx.doi.org/10.3390/inorganics9040027.

Pełny tekst źródła
Streszczenie:
Metal–organic frameworks (MOFs) are emerging porous materials with highly tunable structures developed in the 1990s, while organometallic chemistry is of fundamental importance for catalytic transformation in the academic and industrial world for many decades. Through the years, organometallic chemistry has been incorporated into functional MOF construction for diverse applications. Here, we will focus on how organometallic chemistry is applied in MOF design and modifications from linker-centric and metal-cluster-centric perspectives, respectively. Through structural design, MOFs can function as a tailorable platform for traditional organometallic transformations, including reaction of alkenes, cross-coupling reactions, and C–H activations. Besides, an overview will be made on other application categories of organometallic MOFs, such as gas adsorption, magnetism, quantum computing, and therapeutics.
Style APA, Harvard, Vancouver, ISO itp.
14

Lloyd-Jones, Guy C. "3 Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 96 (2000): 107–30. http://dx.doi.org/10.1039/b002647f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Sridharan, Visuvanathar. "3 Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 96 (2000): 85–105. http://dx.doi.org/10.1039/b002054k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Arnold, Polly L., Michał S. Dutkiewicz i Olaf Walter. "Organometallic Neptunium Chemistry". Chemical Reviews 117, nr 17 (30.08.2017): 11460–75. http://dx.doi.org/10.1021/acs.chemrev.7b00192.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Davies, Alwyn G. "Basic organometallic chemistry". Journal of Organometallic Chemistry 294, nr 1 (październik 1985): c14. http://dx.doi.org/10.1016/0022-328x(85)88062-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Liebeskind, Lanny S., Jiri Srogl, Cecile Savarin i Concepcion Polanco. "Bioinspired organometallic chemistry". Pure and Applied Chemistry 74, nr 1 (1.01.2002): 115–22. http://dx.doi.org/10.1351/pac200274010115.

Pełny tekst źródła
Streszczenie:
Given the stability of the bond between a mercaptide ligand and various redox-active metals, it is of interest that Nature has evolved significant metalloenzymatic processes that involve key interactions of sulfur-containing functionalities with metals such as Ni, Co, Cu, and Fe. From a chemical perspective, it is striking that these metals can function as robust biocatalysts in vivo, even though they are often "poisoned" as catalysts in vitro through formation of refractory metal thiolates. Insight into the nature of this chemical discrepancy is under study in order to open new procedures in synthetic organic and organometallic chemistry.
Style APA, Harvard, Vancouver, ISO itp.
19

Lappert, M. F. "Organometallic Chemistry Reviews". Journal of Organometallic Chemistry 368, nr 1 (maj 1989): C22—C23. http://dx.doi.org/10.1016/0022-328x(89)80134-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hill, Anthony F., Nathaniel W. Alcock, Jason C. Cannadine i George R. Clark. "Organometallic macrocycle chemistry". Journal of Organometallic Chemistry 426, nr 2 (marzec 1992): C40—C43. http://dx.doi.org/10.1016/0022-328x(92)83054-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Salzer, A. "Nomenclature of Organometallic Compounds of the Transition Elements (IUPAC Recommendations 1999)". Pure and Applied Chemistry 71, nr 8 (30.08.1999): 1557–85. http://dx.doi.org/10.1351/pac199971081557.

Pełny tekst źródła
Streszczenie:
Organometallic compounds are defined as containing at least one metal-carbon bond between an organic molecule, ion, or radical and a metal. Organometallic nomenclature therefore usually combines the nomenclature of organic chemisty and that of coordination chemistry. Provisional rules outlining nomenclature for such compounds are found both in Nomenclature of Organic Chemistry, 1979 and in Nomenclature of Inorganic Chemistry, 1990This document describes the nomenclature for organometallic compounds of the transition elements, that is compounds with metal-carbon single bonds, metal-carbon multiple bonds as well as complexes with unsaturated molecules (metal-p-complexes).Organometallic compounds are considered to be produced by addition reactions and so they are named on an addition principle. The name therefore is built around the central metal atom name. Organic ligand names are derived according to the rules of organic chemistry with appropriate endings to indicate the different bonding modes. To designate the points of attachment of ligands in more complicated structures, the h, k, and m-notations are used. The final section deals with the abbreviated nomenclature for metallocenes and their derivatives.ContentsIntroduction Systems of Nomenclature2.1 Binary type nomenclature 2.2 Substitutive nomenlcature 2.3 Coordination nomenclature Coordination Nomenclature3.1 General definitions of coordination chemistry 3.2 Oxidation numbers and net charges 3.3 Formulae and names for coordination compounds Nomenclature for Organometallic Compounds of Transition Metals 4.1 Valence-electron-numbers and the 18-valence-electron-rule 4.2 Ligand names 4.2.1 Ligands coordinating by one metal-carbon single bond 4.2.2 Ligands coordinating by several metal-carbon single bonds 4.2.3 Ligands coordinating by metal-carbon multiple bonds 4.2.4 Complexes with unsaturated molecules or groups 4.3 Metallocene nomenclature
Style APA, Harvard, Vancouver, ISO itp.
22

Smith, J. David. "Colin Eaborn. 15 March 1923 – 22 February 2004". Biographical Memoirs of Fellows of the Royal Society 51 (styczeń 2005): 101–18. http://dx.doi.org/10.1098/rsbm.2005.0007.

Pełny tekst źródła
Streszczenie:
Colin Eaborn was a distinguished chemist, best known for his wide–ranging contributions to organosilicon chemistry. His 566 publications, published over a 56–year period, covered a broad area that included physical organic chemistry, organometallic compounds generally, and coordination chemistry. He was a founding professor at the new University of Sussex and exercised considerable influence on the development of university education in chemistry during the big expansion of the 1960s. He served on a number of public committees, including the Council of the Royal Society from 1978 to 1980 and 1988 to 1989, and, as an editor of the Journal of Organometallic Chemistry, played an important part in setting high standards of presentation and clarity in the chemical literature.
Style APA, Harvard, Vancouver, ISO itp.
23

Mingos, D. M. P. "Frontiers in Organometallic Chemistry – the Fifth Journal of Organometallic Chemistry Symposium". Journal of Organometallic Chemistry 689, nr 8 (kwiecień 2004): 1355. http://dx.doi.org/10.1016/j.jorganchem.2004.02.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Gladysz, John A. "Award-Winning Organometallic Chemistry: The 2011 ACS Award in Organometallic Chemistry". Organometallics 30, nr 24 (26.12.2011): 6505. http://dx.doi.org/10.1021/om2012024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Gladysz, John A. "Award-Winning Organometallic Chemistry: The 2012 ACS Award in Organometallic Chemistry". Organometallics 32, nr 8 (22.04.2013): 2277. http://dx.doi.org/10.1021/om4002044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Novikov, Alexander S. "Non-Covalent Interactions in Coordination and Organometallic Chemistry". Crystals 10, nr 6 (23.06.2020): 537. http://dx.doi.org/10.3390/cryst10060537.

Pełny tekst źródła
Streszczenie:
The problem of non-covalent interactions in coordination and organometallic compounds is a hot topic in modern chemistry, material science, crystal engineering and related fields of knowledge. Researchers in various fields of chemistry and other disciplines (physics, crystallography, computer science, etc.) are welcome to submit their works on this topic for our Special Issue “Non-Covalent Interactions in Coordination and Organometallic Chemistry”. The aim of this Special Issue is to highlight and overview modern trends and draw the attention of the scientific community to various types of non-covalent interactions in coordination and organometallic compounds. In this editorial, I would like to briefly highlight the main successes of our research group in the field of the fundamental study of non-covalent interactions in coordination and organometallic compounds over the past 5 years.
Style APA, Harvard, Vancouver, ISO itp.
27

Khalid, Maher, i Shireen Mohammedand Amin Kalo. "Recent Developments in Weinreb Synthesis and Their Applications". Oriental Journal of Chemistry 35, nr 6 (23.12.2019): 1611–26. http://dx.doi.org/10.13005/ojc/350601.

Pełny tekst źródła
Streszczenie:
N-methoxy-N-methyl amides or Weinreb amides are worthy embranchment of amide group and their rich functional groups in organic synthesis become a strong else unfeasible conversion. Weinreb amides are produced as an intermediate product of the reaction of carboxylic acids, acid chloride or esters with organometallic reagents, which was first uncovered in 1981. The direct conversion of carboxylic acids or acid chlorides or esters to ketones or aldehydes using organometallic reagents do not lead in high yields, because the intermediate ketones are still highly reactive toward the organometallic reagent. However, after derivatization to the corresponding Weinreb Amide, reaction with organometallics does give the desired ketones, as the initial adduct is stabilized and doesn't undergo further reactions. A nucleophilic addition to the Weinreb amides results in a unique and stable five-membered cyclic tetrahedral intermediate which protects the over-addition, leading to a selective conversion.
Style APA, Harvard, Vancouver, ISO itp.
28

Snegur, Lubov V. "Modern Trends in Bio-Organometallic Ferrocene Chemistry". Inorganics 10, nr 12 (26.11.2022): 226. http://dx.doi.org/10.3390/inorganics10120226.

Pełny tekst źródła
Streszczenie:
Organometallic sandwich compounds, especially ferrocenes, possess a wide variety of pharmacological activities and therefore are attracting more and more attention from chemists, biologists, biochemists, etc. Excellent reviews concerning biological aspects and design of ferrocene-modified compounds appear regularly in scientific journals. This brief overview highlights recent achievements in the field of bio-organometallic ferrocene chemistry from 2017 to 2022. During this period, new ferrocene-modified analogues of various bio-structures were synthesized, namely, betulin, artemisinin, steroids, and alkaloids. In addition, studies of the biological potential of ferrocenes have been expanded. Since ferrocene is 70 years old this year, a brief historical background is also given. It seemed to me useful to sketch the ‘ferrocene picture’ in broad strokes.
Style APA, Harvard, Vancouver, ISO itp.
29

Stephenson, G. R. "Chapter 8. Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 91 (1994): 251. http://dx.doi.org/10.1039/oc9949100251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lucas, C. Robert, i Kelly A. Walsh. "Organometallic chemistry of molybdenum". Journal of Chemical Education 64, nr 3 (marzec 1987): 265. http://dx.doi.org/10.1021/ed064p265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Meyer, Karsten, i Holger Braunschweig. "Organometallic Chemistry in Europe". Organometallics 37, nr 5 (12.03.2018): 625–27. http://dx.doi.org/10.1021/acs.organomet.8b00012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Arnold, Polly L. "Perspectives in organometallic chemistry". Journal of Organometallic Chemistry 689, nr 10 (maj 2004): 1866. http://dx.doi.org/10.1016/j.jorganchem.2004.02.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yang, Xinzheng, i Thomas Strassner. "Modern computational organometallic chemistry". Journal of Organometallic Chemistry 864 (czerwiec 2018): 1. http://dx.doi.org/10.1016/j.jorganchem.2018.04.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Richter-Addo, George B., i Peter Legzdins. "Recent organometallic nitrosyl chemistry". Chemical Reviews 88, nr 7 (listopad 1988): 991–1010. http://dx.doi.org/10.1021/cr00089a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Calhorda, Maria José, i Carlos C. Romão. "Organometallic Chemistry in Portugal". Journal of Organometallic Chemistry 632, nr 1-2 (sierpień 2001): 1–2. http://dx.doi.org/10.1016/s0022-328x(01)01078-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sobota, Piotr. "Organometallic chemistry and catalysis". Journal of Organometallic Chemistry 645, nr 1-2 (luty 2002): 292. http://dx.doi.org/10.1016/s0022-328x(01)01335-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sokolov, Viatcheslav I. "Organometallic chemistry of fullerenes". Journal of Organometallic Chemistry 599, nr 1 (kwiecień 2000): 1. http://dx.doi.org/10.1016/s0022-328x(99)00714-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Babu, R. P. Kamalesh, S. S. Krishnamurthy i M. Nethaji. "Organometallic chemistry of diphosphazanes". Journal of Organometallic Chemistry 454, nr 1-2 (lipiec 1993): 157–63. http://dx.doi.org/10.1016/0022-328x(93)83236-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Frigo, Dario M. "Organometallic chemistry: An overview". Polyhedron 8, nr 10 (styczeń 1989): 1361. http://dx.doi.org/10.1016/s0277-5387(00)86537-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Colin Eaborn, Prof. "Comprehensive organometallic chemistry II". Journal of Organometallic Chemistry 519, nr 1-2 (lipiec 1996): 285–86. http://dx.doi.org/10.1016/s0022-328x(96)06181-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Petrie, Simon. "Deep Space Organometallic Chemistry". Australian Journal of Chemistry 56, nr 4 (2003): 259. http://dx.doi.org/10.1071/ch03006.

Pełny tekst źródła
Streszczenie:
Interstellar clouds, characterized by extremely low temperatures and very low particle densities, host a variety of commonplace and exotic metal-containing molecules; quantum chemical calculations are ideally suited to their characterization. Such calculations have proven invaluable in unravelling the chemical secrets of cold, gaseous extraterrestrial environments in which metal-based chemistry is beginning to be seen as an active and fruitful field of exploration. By probing the formation of minimalistic metal compounds such as MgNC, we hope to obtain valuable new clues to the distribution of the chemical elements within star- and planet-forming regions.
Style APA, Harvard, Vancouver, ISO itp.
42

Sridharan, Visuvanathar. "Chapter 3. Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 95 (1999): 97–115. http://dx.doi.org/10.1039/a808585d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Lloyd-Jones, Guy C. "Chapter 3. Organometallic chemistry". Annual Reports Section "B" (Organic Chemistry) 95 (1999): 117–36. http://dx.doi.org/10.1039/a808589g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Eisch, John. "Organometallic Chemistry-An Overview". Organometallics 8, nr 9 (wrzesień 1989): 2292. http://dx.doi.org/10.1021/om00111a900.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lappert, Michael F. "Organometallic Chemistry, Volume 13". Journal of Organometallic Chemistry 299, nr 2 (styczeń 1986): C33. http://dx.doi.org/10.1016/0022-328x(86)82028-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Lappert, Michael F. "Organometallic Chemistry, Volume 14." Journal of Organometallic Chemistry 326, nr 1 (maj 1987): C50. http://dx.doi.org/10.1016/0022-328x(87)80144-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Green, Malcolm L. H., Jingui Qin i Dermot O'Hare. "Organometallic solid state chemistry". Journal of Organometallic Chemistry 358, nr 1-3 (grudzień 1988): 375–88. http://dx.doi.org/10.1016/0022-328x(88)87091-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Chaloner, Penny A. "Principles of Organometallic Chemistry". Journal of Organometallic Chemistry 368, nr 1 (maj 1989): C21. http://dx.doi.org/10.1016/0022-328x(89)80132-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kräutler, Bernhard. "Organometallic chemistry of methylcorrinoids". Journal of Inorganic Biochemistry 36, nr 3-4 (sierpień 1989): 192. http://dx.doi.org/10.1016/0162-0134(89)84137-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Balakrishna, M. S., i S. S. Krishnamurthy. "Organometallic chemistry of diphosphazanes". Journal of Organometallic Chemistry 424, nr 2 (luty 1992): 243–51. http://dx.doi.org/10.1016/0022-328x(92)83153-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii