Artykuły w czasopismach na temat „Organic/polymeric Solar Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Organic/polymeric Solar Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mdluli, Siyabonga B., Morongwa E. Ramoroka, Sodiq T. Yussuf, Kwena D. Modibane, Vivian S. John-Denk i Emmanuel I. Iwuoha. "π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells". Polymers 14, nr 4 (13.02.2022): 716. http://dx.doi.org/10.3390/polym14040716.
Pełny tekst źródłaLim, Kyung-Geun, Soyeong Ahn, Young-Hoon Kim, Yabing Qi i Tae-Woo Lee. "Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells". Energy & Environmental Science 9, nr 3 (2016): 932–39. http://dx.doi.org/10.1039/c5ee03560k.
Pełny tekst źródłaA., Venkateswararao, Shun-Wei Liu i Ken-Tsung Wong. "Organic polymeric and small molecular electron acceptors for organic solar cells". Materials Science and Engineering: R: Reports 124 (luty 2018): 1–57. http://dx.doi.org/10.1016/j.mser.2018.01.001.
Pełny tekst źródłaSeco, Cristina Rodríguez, Anton Vidal-Ferran, Rajneesh Misra, Ganesh D. Sharma i Emilio Palomares. "Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells". ACS Applied Energy Materials 1, nr 8 (6.07.2018): 4203–10. http://dx.doi.org/10.1021/acsaem.8b00828.
Pełny tekst źródłaHahn, T., C. Saller, M. Weigl, I. Bauer, T. Unger, A. Köhler i P. Strohriegl. "Organic solar cells with crosslinked polymeric exciton blocking layer". physica status solidi (a) 212, nr 10 (10.06.2015): 2162–68. http://dx.doi.org/10.1002/pssa.201532040.
Pełny tekst źródłaThao, Tran Thi, Do Ngoc Chung, Nguyen Nang Dinh i Vo Van Truong. "Photoluminescence Quenching of Nanocomposite Materials Used for Organic Solar Cells". Communications in Physics 24, nr 3S1 (7.11.2014): 22–28. http://dx.doi.org/10.15625/0868-3166/24/3s1/5073.
Pełny tekst źródłaYe, Huaiying, Wen Li i Weishi Li. "Progress in Polymeric Electron-Donating Materials for Organic Solar Cells". Chinese Journal of Organic Chemistry 32, nr 2 (2012): 266. http://dx.doi.org/10.6023/cjoc1104062.
Pełny tekst źródłaLiu, Feng, Zachariah A. Page, Volodimyr V. Duzhko, Thomas P. Russell i Todd Emrick. "Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells". Advanced Materials 25, nr 47 (18.09.2013): 6868–73. http://dx.doi.org/10.1002/adma.201302477.
Pełny tekst źródłaChen, Lung-Chien. "Organic and Polymeric Thin-Film Materials for Solar Cells: A New Open Special Issue in Materials". Materials 15, nr 19 (26.09.2022): 6664. http://dx.doi.org/10.3390/ma15196664.
Pełny tekst źródłaLee, You-Sun, Ji Young Lee, Su-Mi Bang, Bogyu Lim, Jaechol Lee i Seok-In Na. "A feasible random copolymer approach for high-efficiency polymeric photovoltaic cells". Journal of Materials Chemistry A 4, nr 29 (2016): 11439–45. http://dx.doi.org/10.1039/c6ta04920f.
Pełny tekst źródłaZhou, Yinhua, Canek Fuentes-Hernandez, Jae Won Shim, Talha M. Khan i Bernard Kippelen. "High performance polymeric charge recombination layer for organic tandem solar cells". Energy & Environmental Science 5, nr 12 (2012): 9827. http://dx.doi.org/10.1039/c2ee23294d.
Pełny tekst źródłaAizawa, Naoya, Canek Fuentes-Hernandez, Vladimir A. Kolesov, Talha M. Khan, Junji Kido i Bernard Kippelen. "Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells". Chemical Communications 52, nr 19 (2016): 3825–27. http://dx.doi.org/10.1039/c6cc01022a.
Pełny tekst źródłaHe, Yakun, Ning Li i Christoph J. Brabec. "Single-Component Organic Solar Cells with Competitive Performance". Organic Materials 03, nr 02 (kwiecień 2021): 228–44. http://dx.doi.org/10.1055/s-0041-1727234.
Pełny tekst źródłaDinh, Nguyen Nang, Do Ngoc Chung, Tran Thi Thao i David Hui. "Study of Nanostructured Polymeric Composites Used for Organic Light Emitting Diodes and Organic Solar Cells". Journal of Nanomaterials 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/190290.
Pełny tekst źródłaCao, Yang, Yunlong Li, Thomas Morrissey, Brian Lam, Brian O. Patrick, David J. Dvorak, Zhicheng Xia, Timothy L. Kelly i Curtis P. Berlinguette. "Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell". Energy & Environmental Science 12, nr 12 (2019): 3502–7. http://dx.doi.org/10.1039/c9ee02983d.
Pełny tekst źródłaWen, Jianguo, Dean J. Miller, Wei Chen, Tao Xu, Luping Yu, Seth B. Darling i Nestor J. Zaluzec. "Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells". Microscopy and Microanalysis 20, nr 5 (20.06.2014): 1507–13. http://dx.doi.org/10.1017/s1431927614001615.
Pełny tekst źródłaLee, Donggu, Junmo Kim, Gyeongtae Park, Hyeong Woo Bae, Myungchan An i Jun Young Kim. "Enhanced Operating Temperature Stability of Organic Solar Cells with Metal Oxide Hole Extraction Layer". Polymers 12, nr 4 (24.04.2020): 992. http://dx.doi.org/10.3390/polym12040992.
Pełny tekst źródłaChung, Do, Nguyen Dinh, Tran Thao, Nguyen Nam, Tran Trung i David Hui. "Study of nanostructured polymeric composites used for organic light emitting diodes and organic solar cells". World Journal of Engineering 9, nr 5 (1.10.2012): 399–406. http://dx.doi.org/10.1260/1708-5284.9.5.399.
Pełny tekst źródłaChen, Xianjie, Qian Zhang, Di Wang, Xin Xu, Zukun Wang, Yuhao Li, Haiming Zhu i in. "High‐Efficiency Ternary Organic Solar Cells Based on the Synergized Polymeric and Small‐Molecule Donors". Solar RRL 4, nr 11 (22.09.2020): 2000537. http://dx.doi.org/10.1002/solr.202000537.
Pełny tekst źródłaJeon, Il, Clement Delacou, Hiroshi Okada, Graham E. Morse, Tae-Hee Han, Yuta Sato, Anton Anisimov i in. "Polymeric acid-doped transparent carbon nanotube electrodes for organic solar cells with the longest doping durability". Journal of Materials Chemistry A 6, nr 30 (2018): 14553–59. http://dx.doi.org/10.1039/c8ta03383h.
Pełny tekst źródłaKim, Joo-Hyun, Yeon Joo Choi, Jaewon Lee i Seung Goo Lee. "Highly transparent antireflection coatings on fullerene-free organic solar cells using polymeric nanoparticles". Thin Solid Films 742 (styczeń 2022): 139043. http://dx.doi.org/10.1016/j.tsf.2021.139043.
Pełny tekst źródłaOhnishi, Satomi, i Yoshihito Osada. "Electroconductive organogel. 5. Organic solar cells based on polymeric charge-transfer complex gel". Macromolecules 24, nr 25 (grudzień 1991): 6588–90. http://dx.doi.org/10.1021/ma00025a007.
Pełny tekst źródłaTamilavan, Vellaiappillai, Yanliang Liu, Jihoon Lee, Insoo Shin, Yun Kyung Jung, Bo Ram Lee, Jung Hyun Jeong i Sung Heum Park. "Efficient Polymeric Donor for Both Visible and Near-Infrared-Absorbing Organic Solar Cells". ACS Applied Energy Materials 2, nr 6 (8.05.2019): 4284–91. http://dx.doi.org/10.1021/acsaem.9b00520.
Pełny tekst źródłaKo, Jongkuk, Jiyun Song, Won Tae Choi, Tae-Hwan Kim, Young-Soo Han, Jeewoo Lim, Changhee Lee i Kookheon Char. "Significance of Polymeric Nanowire-Network Structures for Stable and Efficient Organic Solar Cells". Macromolecular Research 26, nr 7 (7.06.2018): 623–29. http://dx.doi.org/10.1007/s13233-018-6088-y.
Pełny tekst źródłaThiedmann, Ralf, Aaron Spettl, Ole Stenzel, Thomas Zeibig, James C. Hindson, Zineb Saghi, Neil C. Greenham, Paul A. Midgley i Volker Schmidt. "NETWORKS OF NANOPARTICLES IN ORGANIC – INORGANIC COMPOSITES: ALGORITHMIC EXTRACTION AND STATISTICAL ANALYSIS". Image Analysis & Stereology 31, nr 1 (15.03.2012): 27. http://dx.doi.org/10.5566/ias.v31.p27-42.
Pełny tekst źródłaWan, Juanyong, Xi Fan, Huihui Huang, Jinzhao Wang, Zhiguo Zhang, Junfeng Fang i Feng Yan. "Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes". Journal of Materials Chemistry A 8, nr 40 (2020): 21007–15. http://dx.doi.org/10.1039/d0ta07934k.
Pełny tekst źródłaZhao, Chaoyue, Lihong Wang, Guoping Zhang, Yajie Wang, Ruiyu Hu, Hui Huang, Mingxia Qiu, Shunpu Li i Guangye Zhang. "Sequential Processing Enables 17% All-Polymer Solar Cells via Non-Halogen Organic Solvent". Molecules 27, nr 17 (5.09.2022): 5739. http://dx.doi.org/10.3390/molecules27175739.
Pełny tekst źródłaKulshreshtha, Chandramouli, Arul Clement, Torbjörn Pascher, Villy Sundström i Piotr Matyba. "Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation". RSC Advances 10, nr 11 (2020): 6618–24. http://dx.doi.org/10.1039/c9ra10009a.
Pełny tekst źródłaMarin, Veronica, Elisabeth Holder i Ulrich S. Schubert. "Polymeric ruthenium bipyridine complexes: New potential materials for polymer solar cells". Journal of Polymer Science Part A: Polymer Chemistry 42, nr 2 (2003): 374–85. http://dx.doi.org/10.1002/pola.11024.
Pełny tekst źródłaDíez-Pascual, Ana M. "Development of Graphene-Based Polymeric Nanocomposites: A Brief Overview". Polymers 13, nr 17 (2.09.2021): 2978. http://dx.doi.org/10.3390/polym13172978.
Pełny tekst źródłaHeo, Jin Hyuck, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee i in. "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors". Nature Photonics 7, nr 6 (5.05.2013): 486–91. http://dx.doi.org/10.1038/nphoton.2013.80.
Pełny tekst źródłaDo, Hung, Manuel Reinhard, Henry Vogeler, Andreas Puetz, Michael F. G. Klein, Wilhelm Schabel, Alexander Colsmann i Uli Lemmer. "Polymeric anodes from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for 3.5% efficient organic solar cells". Thin Solid Films 517, nr 20 (sierpień 2009): 5900–5902. http://dx.doi.org/10.1016/j.tsf.2009.03.212.
Pełny tekst źródłaSharma, Anirudh, Zandra George, Trystan Bennett, David A. Lewis, Gregory F. Metha, Gunther G. Andersson i Mats R. Andersson. "Stability of Polymer Interlayer Modified ITO Electrodes for Organic Solar Cells". Australian Journal of Chemistry 69, nr 7 (2016): 735. http://dx.doi.org/10.1071/ch15806.
Pełny tekst źródłaMarinelli, Martina, Massimiliano Lanzi, Filippo Pierini, Yasamin Ziai, Alberto Zanelli, Debora Quadretti, Francesca Di Maria i Elisabetta Salatelli. "Ionic Push–Pull Polythiophenes: A Further Step towards Eco-Friendly BHJ Organic Solar Cells". Polymers 14, nr 19 (22.09.2022): 3965. http://dx.doi.org/10.3390/polym14193965.
Pełny tekst źródłaNitti, Andrea, Riccardo Po, Gabriele Bianchi i Dario Pasini. "Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells". Molecules 22, nr 1 (26.12.2016): 21. http://dx.doi.org/10.3390/molecules22010021.
Pełny tekst źródłaMishra, Amaresh, Mukhamed L. Keshtov, Annika Looser, Rahul Singhal, Matthias Stolte, Frank Würthner, Peter Bäuerle i Ganesh D. Sharma. "Unprecedented low energy losses in organic solar cells with high external quantum efficiencies by employing non-fullerene electron acceptors". Journal of Materials Chemistry A 5, nr 28 (2017): 14887–97. http://dx.doi.org/10.1039/c7ta04703g.
Pełny tekst źródłaAbdu‐Aguye, Mustapha, Nutifafa Y. Doumon, Ivan Terzic, Jingjin Dong, Giuseppe Portale, Katja Loos, L. Jan Anton Koster i Maria Antonietta Loi. "Can Ferroelectricity Improve Organic Solar Cells?" Macromolecular Rapid Communications 41, nr 11 (5.05.2020): 2000124. http://dx.doi.org/10.1002/marc.202000124.
Pełny tekst źródłaVölker, Sebastian F., Shinobu Uemura, Moritz Limpinsel, Markus Mingebach, Carsten Deibel, Vladimir Dyakonov i Christoph Lambert. "Polymeric Squaraine Dyes as Electron Donors in Bulk Heterojunction Solar Cells". Macromolecular Chemistry and Physics 211, nr 10 (11.05.2010): 1098–108. http://dx.doi.org/10.1002/macp.200900670.
Pełny tekst źródłaLiu, Ming, Jing Yang, Caili Lang, Yong Zhang, Erjun Zhou, Zhitian Liu, Fengyun Guo i Liancheng Zhao. "Fused Perylene Diimide-Based Polymeric Acceptors for Efficient All-Polymer Solar Cells". Macromolecules 50, nr 19 (29.09.2017): 7559–66. http://dx.doi.org/10.1021/acs.macromol.7b01539.
Pełny tekst źródłaLi, Xiaodong, Sheng Fu, Wenxiao Zhang, Shanzhe Ke, Weijie Song i Junfeng Fang. "Chemical anti-corrosion strategy for stable inverted perovskite solar cells". Science Advances 6, nr 51 (grudzień 2020): eabd1580. http://dx.doi.org/10.1126/sciadv.abd1580.
Pełny tekst źródłaKrassas, Miron, Christos Polyzoidis, Pavlos Tzourmpakis, Dimitriοs M. Kosmidis, George Viskadouros, Nikolaos Kornilios, George Charalambidis i in. "Benzothiadiazole Based Cascade Material to Boost the Performance of Inverted Ternary Organic Solar Cells". Energies 13, nr 2 (17.01.2020): 450. http://dx.doi.org/10.3390/en13020450.
Pełny tekst źródłaLi, Yang, Wei Huang, Dejiang Zhao, Lu Wang, Zhiqiang Jiao, Qingyu Huang, Peng Wang, Mengna Sun i Guangcai Yuan. "Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor". Molecules 27, nr 6 (10.03.2022): 1800. http://dx.doi.org/10.3390/molecules27061800.
Pełny tekst źródłaKim, Youngkyoo, Minjung Shin i Hwajeong Kim. "Annealing temperature effect of hole-collecting polymeric nanolayer in polymer solar cells". Macromolecular Research 16, nr 3 (kwiecień 2008): 185–88. http://dx.doi.org/10.1007/bf03218850.
Pełny tekst źródłaLee, Jin Hee, Yu Jung Park, Jung Hwa Seo i Bright Walker. "Hybrid Lead-Halide Polyelectrolytes as Interfacial Electron Extraction Layers in Inverted Organic Solar Cells". Polymers 12, nr 4 (27.03.2020): 743. http://dx.doi.org/10.3390/polym12040743.
Pełny tekst źródłaVongsaysy, Uyxing, Dario M. Bassani, Laurent Servant, Bertrand Pavageau, Guillaume Wantz i Hany Aziz. "Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review". Journal of Photonics for Energy 4, nr 1 (10.06.2014): 040998. http://dx.doi.org/10.1117/1.jpe.4.040998.
Pełny tekst źródłaMarsal, Lluis, Max von Delius, Michael Bothe, María Montero-Rama, Aurélien Viterisi, Werther Cambarau, Caterina Stenta i Emilio Palomares. "Second-Generation Azafullerene Monoadducts as Electron Acceptors in Bulk Heterojunction Solar Cells". Synthesis 50, nr 04 (11.01.2018): 764–71. http://dx.doi.org/10.1055/s-0036-1591871.
Pełny tekst źródłaWang, Xue Mei. "Synthesis and Optical Properties of an Alternating Conjugated Copolymer Composed of 2,5-Divinyl-3,4-Dialkylthiophene and 2,6-Pyridine". Advanced Materials Research 347-353 (październik 2011): 4012–18. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.4012.
Pełny tekst źródłaZhang, Qiang, Wei-Ting Wang, Cheng-Yu Chi, Tobias Wächter, Jhih-Wei Chen, Chou-Yi Tsai, Ying-Chi Huang, Michael Zharnikov, Yian Tai i Der-Jang Liaw. "Toward a universal polymeric material for electrode buffer layers in organic and perovskite solar cells and organic light-emitting diodes". Energy & Environmental Science 11, nr 3 (2018): 682–91. http://dx.doi.org/10.1039/c7ee03275g.
Pełny tekst źródłaZidan, Mahmoud N., Nicola Everitt, Tawfik Ismail i Irene S. Fahim. "Organic Solar Cells Parameters Extraction and Characterization Techniques". Polymers 13, nr 19 (23.09.2021): 3224. http://dx.doi.org/10.3390/polym13193224.
Pełny tekst źródłaKim, Youngkyoo, Minjung Shin, Inhyuk Lee, Hwajeong Kim i Sandrine Heutz. "Multilayer organic solar cells with wet-processed polymeric bulk heterojunction film and dry-processed small molecule films". Applied Physics Letters 92, nr 9 (3.03.2008): 093306. http://dx.doi.org/10.1063/1.2890169.
Pełny tekst źródła