Gotowa bibliografia na temat „Organic-Inorganic Hybrid Porous Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Organic-Inorganic Hybrid Porous Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Organic-Inorganic Hybrid Porous Materials"
Loy, Douglas A., i Kenneth J. Shea. "Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials". Chemical Reviews 95, nr 5 (lipiec 1995): 1431–42. http://dx.doi.org/10.1021/cr00037a013.
Pełny tekst źródłaShi, Jun, Li Zhang, Yingliang Liu, Shengang Xu i Shaokui Cao. "Biomineralized organic–inorganic hybrids aiming for smart drug delivery". Pure and Applied Chemistry 86, nr 5 (19.05.2014): 671–83. http://dx.doi.org/10.1515/pac-2013-0112.
Pełny tekst źródłaOpanasenko, Maksym, Mariya Shamzhy, Fengjiao Yu, Wuzong Zhou, Russell E. Morris i Jiří Čejka. "Zeolite-derived hybrid materials with adjustable organic pillars". Chemical Science 7, nr 6 (2016): 3589–601. http://dx.doi.org/10.1039/c5sc04602e.
Pełny tekst źródłaWang, Shaolei, Liangxiao Tan, Chengxin Zhang, Irshad Hussain i Bien Tan. "Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies". Journal of Materials Chemistry A 3, nr 12 (2015): 6542–48. http://dx.doi.org/10.1039/c4ta06963c.
Pełny tekst źródłaErigoni, Andrea, i Urbano Diaz. "Porous Silica-Based Organic-Inorganic Hybrid Catalysts: A Review". Catalysts 11, nr 1 (8.01.2021): 79. http://dx.doi.org/10.3390/catal11010079.
Pełny tekst źródłaErigoni, Andrea, i Urbano Diaz. "Porous Silica-Based Organic-Inorganic Hybrid Catalysts: A Review". Catalysts 11, nr 1 (8.01.2021): 79. http://dx.doi.org/10.3390/catal11010079.
Pełny tekst źródłaChongdar, Sayantan, Sudip Bhattacharjee, Piyali Bhanja i Asim Bhaumik. "Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications". Chemical Communications 58, nr 21 (2022): 3429–60. http://dx.doi.org/10.1039/d1cc06340e.
Pełny tekst źródłaZhang, Dan-Dan, Sheng-Zhen Zu i Bao-Hang Han. "Inorganic–organic hybrid porous materials based on graphite oxide sheets". Carbon 47, nr 13 (listopad 2009): 2993–3000. http://dx.doi.org/10.1016/j.carbon.2009.06.052.
Pełny tekst źródłaLoy, Douglas A., Gregory M. Jamison, Brigitta M. Baugher, Edward M. Russick, Roger A. Assink, S. Prabakar i Kenneth J. Shea. "Alkylene-bridged polysilsesquioxane aerogels: highly porous hybrid organic-inorganic materials". Journal of Non-Crystalline Solids 186 (czerwiec 1995): 44–53. http://dx.doi.org/10.1016/0022-3093(95)00032-1.
Pełny tekst źródłaLOY, D. A., i K. J. SHEA. "ChemInform Abstract: Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials". ChemInform 26, nr 46 (17.08.2010): no. http://dx.doi.org/10.1002/chin.199546289.
Pełny tekst źródłaRozprawy doktorskie na temat "Organic-Inorganic Hybrid Porous Materials"
Jones, James Thomas Anthony. "Synthesis and characterisation of porous organic/inorganic hybrid materials". Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533999.
Pełny tekst źródłaVITTONI, CHIARA. "Hybrid Organic-Inorganic Materials for CO2 Capture and Utilization". Doctoral thesis, Università del Piemonte Orientale, 2018. http://hdl.handle.net/11579/97188.
Pełny tekst źródłaHaryadi, Haryadi Chemistry Faculty of Science UNSW. "Porous hybrid organic-inorganic silica materials: preparation, structural and transport properties". Awarded by:University of New South Wales. School of Chemistry, 2005. http://handle.unsw.edu.au/1959.4/28806.
Pełny tekst źródłaErigoni, Andrea. "Organic-Inorganic Hybrid Catalysts for Chemical Processes of Industrial Interest". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165238.
Pełny tekst źródła[CA] El treball de recerca descrit en aquesta tesi doctoral es va desenvolupar en el marc del projecte europeu MULTI2HYCAT (grant agreement N. 720783) i se centra en la sínte-si i la caracterització de catalitzadors híbrids mono i multifuncionals amb àcid, base o redox actius llocs. S'han desenvolupat diverses línies d'investigació en paral·lel per dissenyar múltiples catalitzadors híbrids per a diferents processos catalítics, basant-se en les necessitats dels socis industrials. A causa del caràcter col·laboratiu del projecte, cada soci acadèmic es va centrar princi-palment en un aspecte de tot el procés. Institut de Tecnologia Química (ITQ-CSIC), on es va desenvolupar aquesta tesi, està principalment centrat en el disseny i síntesi de catalitzadors híbrids. Per això, part dels resultats de caracterització reportats al Capítol 3 s'han dut a terme a la Università del Piemonte Orientale (IT), durant una estada d'un mes. Alguns dels resultats catalítics reportats al Capítol 3 i al Capítol 5 han estat reali-tzats per la Universitat de Southampton (Regne Unit). En el Capítol 3, s'ha descrit la síntesi de dos catalitzadors heterogenis híbrids que pre-senten molècules d'àcid aril-sulfònic en la composició. En un d'ells, l'anell aromàtic presentarà àtoms de fluor en posició 2, 3, 5, 6. S'han dut a terme dues estratègies de síntesi multi-etapes, a través de la síntesi dels precursors alkoxi-silans, mitjançant pro-cessos de condensació al costat d'un precursor de sílice (en absència d'agents directors d'estructura, a pH neutre i temperatures baixes) i d'una reacció de tethering. Els mate-rials híbrids han estat caracteritzats mitjançant diferents tècniques. Les propietats texturals, l'estabilitat tèrmica i la composició química dels catalitzadors ha sigut estudiada. A més, molècules sondes han estat adsorbides en els materials híbrids i les interaccions entre ells han estat estudiades mitjançant espectroscòpies FTIR i RMN multi-nuclear. El catalitzador híbrid en que l'anell aromàtic estava fluorat va resultar ser el més actiu catalíticament en la reacció de formació d'acetal entre benzaldehid i etilenglicol. Una versió dels híbrids en que la superfície havia estat pasivada amb grups metilos també va ser obtinguda. Les propietats dels materials híbrids passivats van ser comparades, per poder estudiar l'efecte de la polaritat de la superfície del suport sobre l'activitat catalítica. En el Capítol 4 es descriu la síntesi d'organo-catalitzadors híbrids obtinguts per ancoratge de precursors de silici funcionalitzats amb grups bàsics sobre un suport del tipus MCM-41. Els catalitzadors han estat caracteritzats i empleats en diferents reaccions de formació d'enllaços C-C, com la condensació de Knoevenagel i l'addició de Michael. Finalment, els catalitzadors híbrids han estat emprats en la condensació entre furfural i metil isobutil cetona. El catalitzador més actiu ha estat seleccionat per a ser funcionalitzat posteriorment amb nanoparticules de pal·ladi i emprat en un procés catalític en cascada. Mecanismes de reacció han estat proposat per a cada procés catalític. L'efecte beneficiós a causa de la presència dels grups silanols en la superfície de suport també va ser analitzat. En el Capítol 5, la síntesi de catalitzadors híbrids multi-funcionals va ser descrita. Basant-se en els resultats obtinguts en el Capítol 4, s'ha preparat un catalitzador que presenti grups aminopropil- i nanopartícules de palladi. Les propietats estructurals i texturals han estat estudiades. A més, a través de la microscòpia electrònica de trans-missió, la distribució dimensional de les nanoparticulas ha estat estimada, resultant en una grandària mitjana equivalent a la dimensió dels canals mesoporosos del suport, MCM-41. El material ha estat emprat com a catalitzador multi-funcional.
[EN] The research work described in this Doctoral Thesis was developed within the frame of the MULTI2HYCAT European Project (grant agreement N. 720783) and it is focused on the synthesis and characterization of mono- and multi-functional hybrid catalysts featuring acid, base or redox active sites. Several research lines have been developed in parallel to design multiple hybrid catalysts for different catalytic processes, building upon the needs of the industrial partners. Due to the collaborative nature of the project, each academic partners mainly focused on one aspect of the whole process. Instituto de Tecnología Química (ITQ-CSIC), where this Thesis was developed, mostly focused on the design and synthesis of the hybrid catalysts. For that, part of the characterization results reported in Chapter 3 have been carried out at Università del Piemonte Orientale (IT), during a one month stay. Some of the catalytic results reported in Chapter 3 and Chapter 5 have been car-ried out by the University of Southampton (UK). In Chapter 3 the synthesis of two different heterogeneous hybrid catalysts carrying aryl-sulfonic moieties, in which the aromatic ring was either fluorinated or not, is re-ported. Two multi-step synthetic approaches were developed, involving the synthesis of the silyl-derivative precursor, template-free one-pot co-condensation (at low tem-perature and neutral pH) and tethering reaction. A multi-technique approach was im-plemented to characterize the hybrid catalysts. Textural properties, thermal stability and chemical makeup of the materials were studied. Moreover, probe molecules were adsorbed onto the hybrids and the interaction were studied with multi-nuclear NMR and FTIR spectroscopies. The catalytic activity of the two hybrids showed superior performances for the fluoro-aryl-sulfonic acid, compared to the non-fluorinated mate-rial, in the acetal formation between benzaldehyde and ethylene glycol. Silanol-capped versions of the hybrids have also been prepared and their properties have been com-pared with those of hydrophilic hybrids, to study the effect of the polarity of the sur-face on the overall catalytic activity of the hybrids. In Chapter 4, the synthesis of hybrid mesoporous organocatalysts, obtained by graft-ing of commercial and custom-made silyl-derivatives onto MCM-41 supports, is re-ported. The hybrid catalysts were characterized and tested for different reactions in-volving C-C bond formation, such as Knoevenagel condensations and Michael addi-tion. Finally, the catalysts were tested in the condensation between furfural and methyl isobutyl ketone and the most performing catalyst was selected for the synthesis of a multi-functional hybrid. Reaction mechanisms have been proposed and the beneficial effect of the surface silanol groups on the catalytic activity was demonstrated. In Chapter 5, the synthesis of hybrid multi-functional catalysts is reported. Building upon the results reported in Chapter 4, a hybrid catalyst featuring aminopropyl moie-ties and palladium nanoparticles was developed. Structural and textural properties of the catalysts were accessed. Moreover, transmission electron microscopy showed a narrow nanoparticles distribution, centered a value equivalent to the size of the meso-porous channels of the support. The catalyst was tested in a tandem process involving the aldol condensation between furfural and methyl isobutyl ketone followed by hy-drogenation of the aldol adduct. The influence of several variables on the activity of the multi-functional catalyst was explored, with the scope of paving the way for more thorough studies to be carried out in flow regime. Lastly, proof-of-concept syntheses of multi-functional hybrid catalysts featuring base sites and supported metal complex are reported.
The research work described in this Doctoral Thesis was developed within the frame of the MULTI2HYCAT European Project (grant agreement N. 720783). I would like to thank la Caixa foundation for my PhD scholarship.
Erigoni, A. (2021). Organic-Inorganic Hybrid Catalysts for Chemical Processes of Industrial Interest [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165238
TESIS
Mohamed, Mona Hanafy. "Organic-Inorganic Hybrid Materials Based on Oxyanion Linkers for Selective Adsorption of Polarizable Gases". Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5811.
Pełny tekst źródłaNakahama, Masashi. "Studies on Hybrid Porous Coordination Polymers with Functional Inorganic Materials". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/200452.
Pełny tekst źródłaDedecker, Kevin. "Multifunctional Hybrid materials for the capture and detection of volatile organic Compounds : Application to the preservation of cultural heritage objects". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV003.
Pełny tekst źródłaDuring their storage or their exhibition, the cultural heritage objects undergo physicochemical alteration processes related to their environment and in particular to the action of primary (e.g. sulfur dioxide, nitric oxides), secondary (ozone) pollutants or Volatile Organic Compounds (VOCs). It has been demonstrated that these gases/vapors are involved in hydrolysis and oxidation reactions. Among the most common VOCs encountered in museums, Acetic acid has a significant and recognized role in the deterioration of cultural heritage objects such as photographic films. In order to face this issue, this Ph.D. thesis focused on the design of new porous multifunctional hybrid materials denoted « Metal-Organic Frameworks » (MOFs) for the selective capture of acetic acid in the presence of moisture (40% relative humidity) and at room temperature. The remarkable adsorption properties (sensitivity, selectivity and capacity) and the great versatility of MOFs (hydrophicity/hydrophobicity balance, size/shape of pores,…) were used to preconcentrate selectively the acetic acid in humid conditions. The most performing materials were then prepared as nanoparticles and then used for the elaboration of high optical quality thin films in order to study the coadsorption (acetic acid/water) properties of MOFs by ellipsometry. The incorporation of plasmonic metal nanoparticles was then carried out in order to design a colorimetric sensor. The final objective is to devise a novel type of adsorbent that integrates a high VOC adsorption capacity and selectivity under humid conditions and an easy on-line monitoring of their saturation capacityin order to anticipate its replacement and therefore ensure the preservation of the stored and exhibited objects in museums
Sanderyd, Viktor. "Novel Hybrid Nanomaterials : Combining Mesoporous Magnesium Carbonate with Metal-Organic Frameworks". Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355366.
Pełny tekst źródłaAbdallah, Jassem. "Polycarbonate-silsesquioxane and polycarbonate-siloxane nanocomposites: synthesis, characterization, and application in the fabrication of porous inorganic films". Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37271.
Pełny tekst źródłaKitschke, Philipp, Marc Walter, Tobias Rüffer, Andreas Seifert, Florian Speck, Thomas Seyller, Stefan Spange i in. "Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries". Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197302.
Pełny tekst źródłaDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Książki na temat "Organic-Inorganic Hybrid Porous Materials"
O, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.
Znajdź pełny tekst źródłaO, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.
Znajdź pełny tekst źródłaC, Klein Lisa, red. Organic/inorganic hybrid materials II. Warrendale, Penn: Materials Research Society, 1999.
Znajdź pełny tekst źródła1934-, Mark James E., Lee C. Y.-C. 1947-, Biancini P. A. 1957- i American Chemical Society. Division of Polymeric Materials: Science and Engineering., red. Hybrid organic-inorganic composites. Washington, D.C: American Chemical Society, 1995.
Znajdź pełny tekst źródłaZhu, Yun-Pei, i Zhong-Yong Yuan. Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45634-7.
Pełny tekst źródłaGrewal, Paramjit. Computational studies of inorganic-organic hybrid materials. Portsmouth: University of Portsmouth, 2004.
Znajdź pełny tekst źródłaRurack, Knut, i Ramón Martínez-Máñez, red. The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470552704.
Pełny tekst źródłaKnut, Rurack, i Martínez-Máñez Ramón, red. The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródła1954-, Nalwa Hari Singh, red. Handbook of organic-inorganic hybrid materials and nanocomposites. Stevenson Ranch, Calif: American Scientific Publishers, 2003.
Znajdź pełny tekst źródłaLin, Ching-Fuh. Organic, inorganic, and hybrid solar cells: Principles and practice. Hoboken, NJ: Wiley, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Organic-Inorganic Hybrid Porous Materials"
Hüsing, Nicola, i Ulrich Schubert. "Porous Inorganic-Organic Hybrid Materials". W Functional Hybrid Materials, 86–121. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch4.
Pełny tekst źródłaHüsing, Nicola, i Sarah Hartmann. "Inorganic–Organic Hybrid Porous Materials". W Hybrid Nanocomposites for Nanotechnology, 131–71. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-30428-1_3.
Pełny tekst źródłaMal, N. K., i K. Hinokuma. "Proton Conducting Membrane from Hybrid Inorganic Organic Porous Materials for Direct Methanol Fuel Cell". W Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives, 201–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23394-4_43.
Pełny tekst źródłaSakaushi, Ken. "Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions". W Functional Organic and Hybrid Nanostructured Materials, 419–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch11.
Pełny tekst źródłaJesionowski, Teofil, Beata Michalska, Marcin Wysokowski i Łukasz Klapiszewski. "The Use of Spray Drying in the Production of Inorganic-Organic Hybrid Materials with Defined Porous Structure". W Lecture Notes on Multidisciplinary Industrial Engineering, 169–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73978-6_12.
Pełny tekst źródłaMitzi, David B. "Hybrid Organic-Inorganic Electronics". W Functional Hybrid Materials, 347–86. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch10.
Pełny tekst źródłaSugahara, Yoshiyuki. "Organic-Inorganic Hybrid Materials". W Materials Chemistry of Ceramics, 213–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9935-0_10.
Pełny tekst źródłaMackenzie, J. D. "Hybrid Organic—Inorganic Materials". W ACS Symposium Series, 226–36. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0585.ch017.
Pełny tekst źródłaKango, Sarita, Susheel Kalia, Pankaj Thakur, Bandna Kumari i Deepak Pathania. "Semiconductor–Polymer Hybrid Materials". W Organic-Inorganic Hybrid Nanomaterials, 283–311. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/12_2014_295.
Pełny tekst źródłaGualandi, Chiara, Annamaria Celli, Andrea Zucchelli i Maria Letizia Focarete. "Nanohybrid Materials by Electrospinning". W Organic-Inorganic Hybrid Nanomaterials, 87–142. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/12_2014_281.
Pełny tekst źródłaStreszczenia konferencji na temat "Organic-Inorganic Hybrid Porous Materials"
Armani, Andrea M., Jinghan He, Andre Kovach i Hyungwoo Choi. "Hybrid Organic/Inorganic Integrated Photonics". W Novel Optical Materials and Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/noma.2019.nom2b.2.
Pełny tekst źródłaMal, Nawal Kishor, i Koichiro Hinokuma. "Inorganic Organic Hybrid Porous Silica for Fuel Cell Technology". W 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI). IEEE, 2011. http://dx.doi.org/10.1109/nstsi.2011.6111805.
Pełny tekst źródłaCook, G., V. Reshetnyak, A. V. Glushchenko, M. A. Saleh i D. R. Evans. "Nanoparticle Doped Organic-Inorganic Hybrid Photorefractives". W Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/pr.2007.suc3.
Pełny tekst źródłaKatayama, Junko, Shigeru Yamaki, Masahiro Mitsuyama i Makoto Hanabata. "Organic-inorganic hybrid materials for nanoimprint lithography". W SPIE 31st International Symposium on Advanced Lithography, redaktor Michael J. Lercel. SPIE, 2006. http://dx.doi.org/10.1117/12.655053.
Pełny tekst źródłaToropov, Nikita A., Aisylu N. Kamalieva i Tigran A. Vartanyan. "Organic-inorganic planar hybrid materials for spasers". W SPIE Optics + Optoelectronics, redaktorzy Mario Bertolotti, Joseph W. Haus i Alexei M. Zheltikov. SPIE, 2015. http://dx.doi.org/10.1117/12.2178660.
Pełny tekst źródłaDinesh, M. Redemeyer, Mukesh Kumar, S. Dalela, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar i G. S. S. Saini. "3D Isostructurality of Inorganic-Organic Hybrid Materials". W INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653692.
Pełny tekst źródłaKamada, K., S. Kurosawa, Y. Yokota, T. Yanagida, M. Nikl i A. Yoshikawa. "Functional possibilities of inorganic-organic hybrid scintillator". W 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.ps-8-21.
Pełny tekst źródłaDou, Letian. "Two-dimensional organic-inorganic hybrid perovskites (Conference Presentation)". W Oxide-based Materials and Devices X, redaktorzy Ferechteh H. Teherani, David C. Look i David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2516752.
Pełny tekst źródłaSugino, Naoto, Makoto Hanabata i Satoshi Takei. "Organic-inorganic hybrid resist materials in advanced lithography". W Nanoengineering: Fabrication, Properties, Optics, and Devices XIV, redaktorzy Eva M. Campo, Elizabeth A. Dobisz i Louay A. Eldada. SPIE, 2017. http://dx.doi.org/10.1117/12.2275105.
Pełny tekst źródłaTien, Pei, Guang-Way Jang, Ya-Hui Lin, I. Chia Tsai, Kuo-Yuan Hsu, Yu-Zhi Wu, J. Y. Lin i A. K. Chu. "Organic-Inorganic Hybrid Materials Based Planar Lightwave Circuit". W 2004 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings. IEEE, 2004. http://dx.doi.org/10.1109/commad.2004.1577531.
Pełny tekst źródłaRaporty organizacyjne na temat "Organic-Inorganic Hybrid Porous Materials"
Haddad, Tim, i Shawn Phillips. Nanostructured Hybrid Organic/Inorganic Materials. Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1998. http://dx.doi.org/10.21236/ada409298.
Pełny tekst źródłaFrancis, Matthew. Virus-Based Scaffolds for Organic/Inorganic Hybrid Materials. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2006. http://dx.doi.org/10.21236/ada455770.
Pełny tekst źródłaHaddad, Timothy S., Russell Stapleton, Hong G. Jeon, Patrick T. Mather i Joseph D. Lichtenhan. Nanostructured Hybrid Organic/Inorganic Materials, Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1996. http://dx.doi.org/10.21236/ada386916.
Pełny tekst źródłaBulovic, Vladimir. Integrated Vacuum Growth System for Hybrid Organic-Inorganic Materials. Fort Belvoir, VA: Defense Technical Information Center, marzec 2004. http://dx.doi.org/10.21236/ada422230.
Pełny tekst źródłaPhillips, Shawn H., Timothy S. Haddad i Rusty L. Blanski. New Multi-Functional Materials Using Versatile Hybrid (Inorganic/Organic) POSS Nanotechnology. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2001. http://dx.doi.org/10.21236/ada410570.
Pełny tekst źródłaJamison, G. M., D. A. Loy, R. S. Saunders i T. M. Alam. LDRD final report on polyphosphaacetylenes, new hybrid conducting organic-inorganic materials. Office of Scientific and Technical Information (OSTI), czerwiec 1996. http://dx.doi.org/10.2172/270675.
Pełny tekst źródłaBulovic, Vladimir. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2011. http://dx.doi.org/10.21236/ada547102.
Pełny tekst źródłaLitaor, Iggy, James Ippolito, Iris Zohar i Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Pełny tekst źródła