Gotowa bibliografia na temat „Organic-inorganic Hybrid Perovskites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Organic-inorganic Hybrid Perovskites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Organic-inorganic Hybrid Perovskites"
Cheng, Ling, i Yingjie Cao. "A two-dimensional organic–inorganic hybrid perovskite-type semiconductor: poly[(2-azaniumylethyl)trimethylphosphanium [tetra-μ-bromido-plumbate(II)]]". Acta Crystallographica Section C Structural Chemistry 75, nr 3 (21.02.2019): 354–58. http://dx.doi.org/10.1107/s2053229619001712.
Pełny tekst źródłaZhou, Yuanyuan, i Wei Chen. "Hybrid organic–inorganic halide perovskites". Journal of Applied Physics 128, nr 20 (28.11.2020): 200401. http://dx.doi.org/10.1063/5.0034825.
Pełny tekst źródłaAkinbami, O., G. N. Ngubeni, F. Otieno, R. Kadzutu-Sithole, E. C. Linganiso, Z. N. Tetana, S. S. Gqoba, K. P. Mubiayi i N. Moloto. "The effect of temperature and time on the properties of 2D Cs2ZnBr4 perovskite nanocrystals and their application in a Schottky barrier device". Journal of Materials Chemistry C 9, nr 18 (2021): 6022–33. http://dx.doi.org/10.1039/d1tc00264c.
Pełny tekst źródłaZhang, Meiying, Fengmin Wu, Dan Chi, Keli Shi i Shihua Huang. "High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer". Materials Advances 1, nr 4 (2020): 617–24. http://dx.doi.org/10.1039/d0ma00028k.
Pełny tekst źródłaKajal, Sandeep, Gi-Hwan Kim, Chang Woo Myung, Yun Seop Shin, Junu Kim, Jaeki Jeong, Atanu Jana, Jin Young Kim i Kwang S. Kim. "A thermally stable, barium-stabilized α-CsPbI3 perovskite for optoelectronic devices". Journal of Materials Chemistry A 7, nr 38 (2019): 21740–46. http://dx.doi.org/10.1039/c9ta07827d.
Pełny tekst źródłaShaw, Bikash Kumar, Ashlea R. Hughes, Maxime Ducamp, Stephen Moss, Anup Debnath, Adam F. Sapnik, Michael F. Thorne i in. "Melting of hybrid organic–inorganic perovskites". Nature Chemistry 13, nr 8 (10.05.2021): 778–85. http://dx.doi.org/10.1038/s41557-021-00681-7.
Pełny tekst źródłaMaafa, Ibrahim M. "All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges". Nanomaterials 12, nr 10 (12.05.2022): 1651. http://dx.doi.org/10.3390/nano12101651.
Pełny tekst źródłaShin, Jiwon, Kyeong-Yoon Baek, Jonghoon Lee, Woocheol Lee, Jaeyoung Kim, Juntae Jang, Jaehyoung Park, Keehoon Kang, Kyungjune Cho i Takhee Lee. "Proton irradiation effects on mechanochemically synthesized and flash-evaporated hybrid organic–inorganic lead halide perovskites". Nanotechnology 33, nr 6 (18.11.2021): 065706. http://dx.doi.org/10.1088/1361-6528/ac34a7.
Pełny tekst źródłaFerri, Davide. "Catalysis by Metals on Perovskite-Type Oxides". Catalysts 10, nr 9 (15.09.2020): 1062. http://dx.doi.org/10.3390/catal10091062.
Pełny tekst źródłaAndrei, Florin, Rodica Zăvoianu i Ioan-Cezar Marcu. "Complex Catalytic Materials Based on the Perovskite-Type Structure for Energy and Environmental Applications". Materials 13, nr 23 (5.12.2020): 5555. http://dx.doi.org/10.3390/ma13235555.
Pełny tekst źródłaRozprawy doktorskie na temat "Organic-inorganic Hybrid Perovskites"
Lee, Michael M. "Organic-inorganic hybrid photovoltaics based on organometal halide perovskites". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.
Pełny tekst źródłaAzarhoosh, Pooya. "The optical and electronic properties of organic-inorganic hybrid perovskites". Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/the-optical-and-electronic-properties-of-organicinorganic-hybrid-perovskites(7ee3095e-05fa-49b9-9404-d481147c67b4).html.
Pełny tekst źródłaKovalsky, Anton. "PHOTOVOLTAIC AND THERMAL PROPERTIES OF HYBRID ORGANIC-INORGANIC METAL HALIDE PEROVSKITES". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1500584556606705.
Pełny tekst źródłaSun, Shijing. "Synthesis, characterization and properties of hybrid organic-inorganic perovskites for photovaltaic applications". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267739.
Pełny tekst źródłaVega, Fleitas Erica. "Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications". Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113402.
Pełny tekst źródła[FR] Les perovskites orgàniques-inorgàniques de halurs de metilamoni i plom i les seues mescles han mostrat propietats optoelectròniques òptimes com a absorbent ideal per a aplicacions fotovoltaiques. Els dispositius solars basats en perovskita han evolucionat ràpidament, passant d'una eficiència del 3.9% en 2009, fins al 22.7% en 2017, i amb un cost de fabricació més baix que les cèl·lules solars de silici. No obstant això, un dels desavantatges de l'ús de absorbents de perovskita és la baixa estabilitat. En general, les cèl·lules que mostren un alt rendiment, perden la seua eficiència i es degraden ràpidament. Per a que aquestos materials puguen ser produits industrialment a gran escala és necessari estudiar-los en profunditat per millorar la eficiència i estabilitat. Una de les vies de millora és l'enginyeria composicional, estratègia que hem emprat en l'elaboració d'aquesta tesi i que consisteix en la investigació i la millora de les propietats optoelectròniques i morfològiques, derivades de la substitució i/o combinació de cations i anions, que constitueixen el material de perovskita. S'han sintetitzat pols purs de perovskita per a I, Br, Cl, a partir d'els quals es van preparar capes pures i mixtes MAPbX3-xYx per a millorar les propietats optoelectròniques i estructurals. Mitjançant anàlisi de difracció de raigs X, s'estudiaren les propietats estructurals del pols cristalins i capes pures i mixtes. Els anàlisis d'UV-vis i fotoluminiscència, mostren que el rang d'absorció varia al llarg de l'espectre visible en funció del contingut de l'halur. Les anàlisis de fotoluminiscència i calorimetria diferencial mostren els canvis de fase de les perovskites pures a diferents temperatures, coincidint aquestos canvis en totes dues anàlisis. L'anàlisi FESEM de les perovskites pures, mostra les diferències morfològiques entre els pols i capes. Seguint aquesta línia d'investigació, s'estudiaren les perovskites mixtes de iode-brom, amb un contingut de brom de fins el 33%, ajustant el bandgap per a evitar pèrdues en l'absorció i millorar les propietats optoelectròniques, estructurals i morfològiques. Malgrat les bones propietats optoelectròniques de les perovskites de metilamoni, el catió orgànic disminueix la estabilitat, la qual cosa ha portat a investigar l'ús d'altres cations inorgànics. Les perovskites de cesi són una alternativa prometedora, i per aquesta raó hem sintetitzat capes fines de perovskites de cesi mixtes, CsPbBr3-xIx, per tal de determinar els efectes de la substitució parcial del iode en les propietats físiques i l'estabilitat. Es van obtenir capes amb una bona resistència a la humitat i a la temperatura, afavorint la seua aplicació en el camp fotovoltaic. S'ha estudiat també la substitució parcial del catió de metilamoni amb altres cations orgànics, com el guanidini i imidiazoli. S'ha demostrat que petites quantitats de guanidini milloren l'estabilitat i la morfologia de les capes. S'ha establert que el límit de solubilitat del guanidini es del 20%, aproximadament, i s'ha determinat l'estructura cristal·lina de les mescles. S'ha observat un augment en la intensitat del pic de fotoluminiscència per a mescles per sota del límit de solubilitat. Es van obtenir resultats similars per a la substitució del metilamoni amb petites quantitats de imidazoli. Les anàlisis de difracció de raigs X van establir el límit de solubilitat en aproximadament el 10% i una millora en la cristalinitat. Els resultats de fotoluminiscència suggereixen que petites quantitats de imidazoli redueixen les recombinacions no radiatives, actuant com un pasivador efectiu. Finalment, es mostra el procés de fabricació de dispositius basats en MAPbI3 i sintetitzats en funció de les condicions ambientals, especialment la humitat relativa i utilitzant el dietil èter com anti-solvent. Els dispositius van mostrar una eficiència màx
[EN] Organic-inorganic methylammonium lead halides perovskites and their mixtures have shown optimal optoelectronic properties as an ideal absorber for photovoltaic applications. In the last decade, solar devices based on perovskite have evolved rapidly, going from an initial efficiency of only 3.9% in 2009, to an efficiency of 22.7% in 2017 and being, at the same time, more cost-effective than silicon solar cells. However, one of the main disadvantages when using perovskite absorbents in photovoltaic devices is their low stability. In general, cells that show high performance lose their efficiency and degrade rapidly. For these materials to be scalable it is necessary to carry out in-depth studies aiming at improved efficiency and stability. One of the main sources to improve stability and efficiency is compositional engineering, a strategy employed in the elaboration of this thesis, consisting of the investigation and improvement of the optoelectronic and morphological properties, derived from the substitution and / or combination of cations and anions, which constitute the perovskite material. Pure powders of perovskite were synthesized, for I, Br, Cl, from which pure and mixed MAPbX3-xYx films were prepared in order to improve their optoelectronic and structural properties. By means of X-ray diffraction analysis, the structural properties of crystalline powders and pure and mixed films were studied. Employing UV-vis and photoluminescence analysis, it was observed that the absorption range varied along the visible spectrum as a function of the halide content in the thin films. Both, photoluminescence and differential scanning calorimetry analysis showed the changes of phase of the pure perovskites at different temperatures. FESEM characterization of the pure perovskites showed the morphological differences between the powders and the films. Following this line of research, mixed perovskites of iodine-bromine with a bromine content of up to 33% were studied in more detail. The bandgap was tuned to avoid significant losses in absorption and improve the optoelectronic, structural and morphological properties. Despite the excellent optoelectronic properties of the methylammonium perovskite, the presence of the organic cation decreases its stability, which prompted research into the use of other inorganic cations. Cesium perovskites, are a very promising alternative, and for this reason we synthesized thin films of mixed cesium perovskites, CsPbBr3-xIx, to determine the effects of the partial substitution of iodine on physical properties and stability. Films with a very good resistance to moisture and temperature were obtained, which will favor the application of this type of perovskites in the photovoltaic field. The partial replacement of the methylammonium cation with other organic cations, such as guanidinium and imidiazolium, was also studied, showing that small amounts of guanidinium significantly improve the stability of the films and their morphology. It was established that the solubility limit of guanidinium is approximately 20%, and the crystalline structure of the mixtures was determined. An increase in the intensity of the photoluminescence peak for mixtures below the solubility limit was observed. Similar results were obtained for the substitution of methylammonium with small amounts of imidazolium. X-ray diffraction analyzes established the solubility limit at approximately 10% and an improvement in crystallinity. Photoluminescence results suggest that small amounts of imidazolium significantly reduce nonradiative recombinations, acting as an effective passivator. Finally, the manufacturing process of devices based on MAPbI3 and synthesized according to environmental conditions, especially relative humidity and using diethyl ether as anti-solvent is shown. The devices presented a maximum efficiency of 14.73%, proving that the oxidation of spiro-OMeTAD, under controlled humidity conditions, can improve efficiency.
Vega Fleitas, E. (2018). Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113402
TESIS
Ghanavi, Saman. "Organic-inorganic hybrid perovskites as light absorbing/hole conducting material in solar cells". Thesis, Uppsala universitet, Fysikalisk kemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205605.
Pełny tekst źródłaAkbarian-Tefaghi, Sara. "Microwave-Assisted Topochemical Manipulation of Layered Oxide Perovskites: From Inorganic Layered Oxides to Inorganic-Organic Hybrid Perovskites and Functionalized Metal-Oxide Nanosheets". ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2287.
Pełny tekst źródłaZu, Fengshuo. "Electronic properties of organic-inorganic halide perovskites and their interfaces". Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20396.
Pełny tekst źródłaOptoelectronic devices based on halide perovskites (HaPs) and possessing remarkably high performance have been reported. To push the development of such devices even further, a comprehensive and reliable understanding of their electronic structure, including the energy level alignment (ELA) at HaPs interfaces, is essential but presently not available. In an attempt to get a deep insight into the electronic properties of HaPs and the related interfaces, the work presented in this thesis investigates i) the fundamental band structure of perovskite single crystals, in order to establish solid foundations for a better understanding the electronic properties of polycrystalline thin films and ii) the effects of surface states on the surface electronic structure and their role in controlling the ELA at HaPs interfaces. The characterization is mostly performed using photoelectron spectroscopy, together with complementary techniques including low-energy electron diffraction, UV-vis absorption spectroscopy, atomic force microscopy and Kelvin probe measurements. Firstly, the band structure of two prototypical perovskite single crystals is unraveled, featuring widely dispersing top valence bands (VB) with the global valence band maximum at R point of the Brillouin zone. The hole effective masses there are determined to be ~0.25 m0 for CH3NH3PbBr3 and ~0.50 m0 for CH3NH3PbI3. Based on these results, the energy distribution curves of polycrystalline thin films are constructed, revealing the fact that using a logarithmic intensity scale to determine the VB onset is preferable due to the low density of states at the VB maximum. Secondly, investigations on the surface electronic structure of pristine perovskite surfaces conclude that the n-type behavior is a result of surface band bending due to the presence of donor-type surface states. Furthermore, due to surface photovoltage effect, photoemission measurements on different perovskite compositions exhibit excitation-intensity dependent energy levels with a shift of up to 0.7 eV. Eventually, control over the ELA by manipulating the density of surface states is demonstrated, from which very different ELA situations (variation over 0.5 eV) at interfaces with organic electron acceptor molecules are rationalized. Our findings further help to explain the rather dissimilar reported energy levels at perovskite surfaces and interfaces, refining our understanding of the operational principles in perovskite related devices.
Lini, Matilde. "Optoelectronic characterization of hybrid organic-inorganic halide perovskites for solar cell and X-ray detector applications". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23213/.
Pełny tekst źródłaWatthage, Suneth C. "Solution-Processed Fabrication of Hybrid Organic-Inorganic Perovskites & Back Interface Engineering of Cadmium Telluride Solar Cells". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1512390043951256.
Pełny tekst źródłaKsiążki na temat "Organic-inorganic Hybrid Perovskites"
Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Limited, John, 2020.
Znajdź pełny tekst źródłaVardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny i Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol4.
Pełny tekst źródłaVardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny i Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol1.
Pełny tekst źródłaVardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny i Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol2.
Pełny tekst źródłaVardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny i Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol3.
Pełny tekst źródłaLi, Wei, Song Gao, Alessandro Stroppa i Zhe-ming Wang. Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Incorporated, John, 2020.
Znajdź pełny tekst źródłaLi, Wei, Song Gao, Alessandro Stroppa i Zhe-ming Wang. Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Incorporated, John, 2020.
Znajdź pełny tekst źródłaLi, Wei, Song Gao, Alessandro Stroppa i Zhe-ming Wang. Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Incorporated, John, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Organic-inorganic Hybrid Perovskites"
Fujimoto, Shohei, Takemasa Fujiseki, Masato Tamakoshi, Akihiro Nakane, Tetsuhiko Miyadera, Takeshi Sugita, Takurou N. Murakami, Masayuki Chikamatsu i Hiroyuki Fujiwara. "Organic-Inorganic Hybrid Perovskites". W Spectroscopic Ellipsometry for Photovoltaics, 471–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95138-6_10.
Pełny tekst źródłaFrost, Jarvist M., i Aron Walsh. "Molecular Motion and Dynamic Crystal Structures of Hybrid Halide Perovskites". W Organic-Inorganic Halide Perovskite Photovoltaics, 1–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_1.
Pełny tekst źródłade Oliveira, Anne Esther Ribeiro Targino Pereira, i Annelise Kopp Alves. "Organic-Inorganic Hybrid Perovskites for Solar Cells Applications". W Nanomaterials for Eco-friendly Applications, 89–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26810-7_6.
Pełny tekst źródłaYou, Peng, i Feng Yan. "Organic-Inorganic Hybrid Perovskites for Solar Energy Conversion". W Ferroelectric Materials for Energy Applications, 95–117. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807505.ch4.
Pełny tekst źródłaGreaves, G. Neville. "Hybrid Glasses: From Metal Organic Frameworks and Co-ordination Polymers to Hybrid Organic Inorganic Perovskites". W Springer Handbook of Glass, 719–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_21.
Pełny tekst źródłaFujiwara, Hiroyuki, Nikolas J. Podraza, Maria Isabel Alonso, Masato Kato, Kiran Ghimire, Tetsuhiko Miyadera i Masayuki Chikamatsu. "Organic-Inorganic Hybrid Perovskite Solar Cells". W Spectroscopic Ellipsometry for Photovoltaics, 463–507. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75377-5_16.
Pełny tekst źródłaYuan, Yongbo, Qi Wang i Jinsong Huang. "Ion Migration in Hybrid Perovskite Solar Cells". W Organic-Inorganic Halide Perovskite Photovoltaics, 137–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_6.
Pełny tekst źródłaFakharuddin, Azhar, i Lukas Schmidt-Mende. "Hybrid Organic/Inorganic and Perovskite Solar Cells". W Green Chemistry and Sustainable Technology, 187–227. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5924-7_5.
Pełny tekst źródłaZhang, Guangye, Chen Xie, Peng You i Shunpu Li. "Organic–Inorganic Hybrid Devices—Perovskite-Based Devices". W Introduction to Organic Electronic Devices, 283–307. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6091-8_11.
Pełny tekst źródłaBisquert, Juan, Germà Garcia-Belmonte i Antonio Guerrero. "Impedance Characteristics of Hybrid Organometal Halide Perovskite Solar Cells". W Organic-Inorganic Halide Perovskite Photovoltaics, 163–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Organic-inorganic Hybrid Perovskites"
Dou, Letian. "Two-dimensional organic-inorganic hybrid perovskites (Conference Presentation)". W Oxide-based Materials and Devices X, redaktorzy Ferechteh H. Teherani, David C. Look i David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2516752.
Pełny tekst źródłaMiyasaka, Tsutomu. "Development of halide perovskite photovoltaic devices towards high voltage performance". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw4_01.
Pełny tekst źródłaDou, Letian. "Two-dimensional organic-inorganic hybrid perovskites for thermally stable photovoltaic and thermoelectric devices". W Organic, Hybrid, and Perovskite Photovoltaics XXI, redaktorzy Kwanghee Lee, Zakya H. Kafafi, Paul A. Lane, Harald W. Ade i Yueh-Lin (Lynn) Loo. SPIE, 2020. http://dx.doi.org/10.1117/12.2570485.
Pełny tekst źródłaCorrea-Baena, Juan-Pablo. "Elemental distribution influence local electronic properties in organic-inorganic perovskites". W 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.180.
Pełny tekst źródłaSchönfeldová, Tereza, Jakub Holovský, Zdeňka Hájková, Lucie Abelová, Neda Neykova, Ha Stuchlíková, Jan Kočka, Stefaan De Wolf, Antonín Fejfar i Martin Ledinský. "Study of Static and Dynamic Disorder in Organic-Inorganic Halide Perovskites". W 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.107.
Pełny tekst źródłaZhang, Linghai. "Predictions of moiré excitons in twisted 2D organic–inorganic halide perovskites". W International Online Conference on Hybrid Materials and Optoelectronic Devices. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hybridoe.2021.006.
Pełny tekst źródłaHerzig, Eva M., Greve Christopher, Meike Kuhn i Oliver Filonik. "Resolving Nanostructure Formation during Processing of Hybrid Organic-Inorganic Perovskites". W nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.219.
Pełny tekst źródłaMilić, Jovana V. "Layered Hybrid Perovskites: From Supramolecular Templating to Multifunctional Materials". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw4_04.
Pełny tekst źródłaRappe, Andrew. "Theory and modeling of correlated ionic and electronic motions in hybrid organic-inorganic perovskites". W Online Conference on Atomic-level Characterisation of Hybrid Perovskites. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hpatom.2022.021.
Pełny tekst źródłaZawadzka, Anna, Agnieszka Marjanowska, Przemysław Płóciennik, Andrzej Korcala, Krzysztof Wisniewski i Bouchta Sahraoui. "Properties and applications of hybrid organic-inorganic halide perovskites thin films". W Organic Photonic Materials and Devices XXII, redaktorzy Christopher E. Tabor, François Kajzar i Toshikuni Kaino. SPIE, 2020. http://dx.doi.org/10.1117/12.2545957.
Pełny tekst źródła