Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Organic Hybrid Heterostructure Solar Cells.

Artykuły w czasopismach na temat „Organic Hybrid Heterostructure Solar Cells”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Organic Hybrid Heterostructure Solar Cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Chonsut, Teantong, Sirapat Pratontep, Anusit Keawprajak, Pisist Kumnorkaew i Navaphun Kayunkid. "Improvement of Efficiency of Polymer-Zinc Oxide Hybrid Solar Cells Prepared by Rapid Convective Deposition". Applied Mechanics and Materials 848 (lipiec 2016): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.848.7.

Pełny tekst źródła
Streszczenie:
The aim of this research is to study improvement of power conversion efficiency (PCE) of organic-inorganic hybrid bulk heterostructure solar cell prepared by rapid convective deposition as a function of concentration of zinc oxide additive. The structure of hybrid solar cell used in this research is ITO/ZnO/P3HT:PC70BM:ZnO(nanoparticles)/MoO3/Au. By adding 5 mg/ml of ZnO nanoparticles in the active layer (P3HT:PC70BM), the PCE was increased from 0.46 to 1.09%. In order to reveal the origin of improving efficiency, surface morphology and optical properties of active layers were investigated by atomic force microscopy (AFM) and UV-Visible spectroscopy, respectively. The results clearly indicate that the enhancement of solar cell efficiency results from (i) the proper phase sepharation of electron donor and acceptor in the active layer and (ii) the better absorption of the active layer. This research work introduces an alternative way to improve solar cell efficiency by adding ZnO into active layer.
Style APA, Harvard, Vancouver, ISO itp.
2

Jeong, Hoon-Seok, Dongeon Kim, Seungin Jee, Min-Jae Si, Changjo Kim, Jung-Yong Lee, Yujin Jung i Se-Woong Baek. "Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells". International Journal of Energy Research 2023 (6.02.2023): 1–14. http://dx.doi.org/10.1155/2023/4911750.

Pełny tekst źródła
Streszczenie:
The fabrication of heterostructures via solution process is one of the essential technologies for realizing efficient advanced-generation optoelectronics. Hybrid structures comprising colloidal quantum dots (CQD) and organic semiconducting molecules are garnering considerable research interest because of their complementing optical and electrical properties. However, blending both the materials and forming a stable electronic ink are a challenge owing to the solubility mismatch. Herein, a CQD:organic ternary-blended hybrid solar ink is devised, and efficient hybrid solar cells are demonstrated via single-step spin coating under ambient conditions. Specifically, the passivation of the benzoic acid ligand on the CQD surface enables the dissolution in low-polar solvent such as chlorobenzene, which yields a stable CQD:organic hybrid ink. The hybrid ink facilitates the formation of favorable thin-film morphologies and, consequently, improves the charge extraction efficiency of the solar cells. The resulting hybrid solar cells exhibit a power conversion efficiency of 15.24% that is the highest performance among all existing air-processed CQD:organic hybrid solar cells.
Style APA, Harvard, Vancouver, ISO itp.
3

Weingarten, M., T. Zweipfennig, A. Vescan i H. Kalisch. "Low-Temperature Processed Hybrid Organic/Silicon Solar Cells with Power Conversion Efficiency up to 6.5%". MRS Proceedings 1771 (2015): 201–6. http://dx.doi.org/10.1557/opl.2015.650.

Pełny tekst źródła
Streszczenie:
ABSTRACTHybrid organic/silicon heterostructures have become of great interest for photovoltaic application due to their promising features (e.g. easy fabrication in a low-temperature process) for cost-effective photovoltaics. This work is focused on solar cells with a hybrid heterojunction between the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-doped monocrystalline silicon. As semi-transparent top contact, a thin (15 nm) Au layer was employed. Devices with different P3HT thicknesses were processed by spin-casting and compared with a reference Au/n-Si Schottky diode solar cell.The current density-voltage (J-V) measurements of the hybrid devices show a significant increase in open-circuit voltage (VOC) from 0.29 V up to 0.50 V for the best performing hybrid devices compared to the Schottky diode reference, while the short-circuit current density (JSC) does not change significantly. The increased VOC indicates that P3HT effectively reduces the reverse electron current into the gold contact. The wavelength-dependent JSC measurements show a decreased JSC in the wavelength range of P3HT absorption. This is related to the reduced JSC generation in silicon not being compensated by JSC generation in P3HT. It is concluded that the charge generation in P3HT is less efficient than in silicon.After a thermal annealing of the hybrid P3HT/silicon solar cells, we achieved power conversion efficiencies (PCE) (AM1.5 illumination) up to 6.5% with VOC of 0.52 V, JSC of 18.6 mA/cm² and a fill factor (FF) of 67%. This is more than twice the efficiency of the reference Schottky diode.
Style APA, Harvard, Vancouver, ISO itp.
4

KAFFAH, SILMI, LINA JAYA DIGUNA, SURIANI ABU BAKAR, MUHAMMAD DANANG BIROWOSUTO i ARRAMEL. "ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES". Surface Review and Letters 28, nr 08 (5.07.2021): 2140010. http://dx.doi.org/10.1142/s0218625x21400102.

Pełny tekst źródła
Streszczenie:
Renewed interest has brought significant attention to tune coherently the electronic and optical properties of hybrid organic–inorganic perovskites (HOIPs) in recent years. Tailoring the intimate structure–property relationship is a primary target toward the advancement of light-harvesting technologies. These constructive progresses are expected to promote staggering endeavors within the solar cells community that needs to be revisited. Several considerations and strategies are introduced mainly to illustrate the importance of structural stability, interfacial alignment, and photo-generated carriers extraction across the perovskite heterostructures. Here, we review recent strides of such vast compelling diversity in order to shed some light on the interplay of the interfacial chemistry, photophysics, and light-emitting properties of HOIPs via molecular engineering or doping approach. In addition, we outline several fundamental knowledge processes across the role of charge transfer, charge carrier extraction, passivation agent, bandgap, and emission tunability at two-dimensional (2D) level of HOIPs/molecule heterointerfaces. An extensive range of the relevant work is illustrated to embrace new research directions for employing organic molecules as targeted active layer in perovskite-based devices. Ultimately, we address important insights related to the physical phenomena at the active molecules/perovskites interfaces that deserve careful considerations. This review specifically outlines a comprehensive overview of surface-based interactions that fundamentally challenges the delicate balance between organic materials and perovskites, which promotes bright future of desired practical applications.
Style APA, Harvard, Vancouver, ISO itp.
5

Xu, Xiaoyun, Xiong Wang, Yange Zhang i Pinjiang Li. "Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells". Solid State Sciences 61 (listopad 2016): 195–200. http://dx.doi.org/10.1016/j.solidstatesciences.2016.10.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mustafa, Haveen A., Dler A. Jameel, Hussien I. Salim i Sabah M. Ahmed. "The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices". Science Journal of University of Zakho 8, nr 4 (30.12.2020): 149–53. http://dx.doi.org/10.25271/sjuoz.2020.8.4.773.

Pełny tekst źródła
Streszczenie:
This paper reports the fabrication and electrical characterization of hybrid organic-inorganic solar cell based on the deposition of polyaniline (PANI) on n-type GaAs substrate with three different crystal orientations namely Au/PANI/(100) n-GaAs/(Ni-Au), Au/PANI/(110) n-GaAs/(Ni-Au), and Au/PANI/(311)B n-GaAs/(Ni-Au) using spin coating technique. The effect of crystallographic orientation of n-GaAs on solar cell efficiency of the hybrid solar cell devices has been studied utilizing current density-voltage (J-V) measurements under illumination conditions. Additionally, the influence of planes of n-GaAs on the diode parameters of the same devices has been investigated by employing current-voltage (I-V) characteristics in the dark conditions at room temperature. The experimental observations showed that the best performance was obtained for solar cells fabricated with the structure of Au/PANI/(311)B n-GaAs/(Ni-Au). The open-circuit voltage (Voc), short circuit current density (Jsc), and solar cell efficiency () of the same device were shown the values of 342 mV, 0.294 mAcm-2, 0.0196%, respectively under illuminated condition. All the solar cell characteristics were carried out under standard AM 1.5 at room temperature. Also, diode parameters of PANI/(311)B n-GaAs heterostructures were calculated from the dark I-V measurements revealed the lower reverse saturation current (Io) of 3.0×10-9A, higher barrier height () of 0.79 eV and lower ideality factor (n) of 3.16.
Style APA, Harvard, Vancouver, ISO itp.
7

Shvarts M. Z., Andreeva A. V., Andronikov D. A., Emtsev K. V., Larionov V. R., Nakhimovich M. V., Pokrovskiy P. V., Sadchikov N. A., Yakovlev S. A. i Malevskiy D. A. "Hybrid concentrator-planar photovoltaic module with heterostructure solar cells". Technical Physics Letters 49, nr 2 (2023): 46. http://dx.doi.org/10.21883/tpl.2023.02.55371.19438.

Pełny tekst źródła
Streszczenie:
The paper presents a promising solution for photovoltaic modules that provides overcoming the main conceptual limitation for the concentrator concept in photovoltaics --- the impossibility to convert diffused (scattered) solar radiation coming to the panel of sunlight concentrators. The design of a hybrid concentrator-planar photovoltaic module based on heterostructure solar cells: A3B5 triple-junction and Si-HJT is presented. The results of initial outdoor studies of the module output characteristics are discussed and estimates of its energy efficiency are given. Keywords: hybrid concentrator-planar photovoltaic module, multijunction solar cell, Si-HJT planar photoconverter, diffusely scattered radiation.
Style APA, Harvard, Vancouver, ISO itp.
8

Nkele, A. C., S. U. Offiah, C. P. Chime i F. I. Ezema. "Review on advanced nanomaterials for hydrogen production". IOP Conference Series: Earth and Environmental Science 1178, nr 1 (1.05.2023): 012001. http://dx.doi.org/10.1088/1755-1315/1178/1/012001.

Pełny tekst źródła
Streszczenie:
Abstract Global fuel consumption and harmful gaseous emissions diverted energy sources to alternative means. Solar water splitting amidst other solar conversion methods is the most clean and efficient means of hydrogen production. 21st century technologies have delved into adopting nanomaterials of high efficiency to treat environmental pollution and produce hydrogen through electrochemical, photocatalytic, or electrophotocatalytic processes due to their outstanding properties. We reviewed diverse means of producing hydrogen through the use of advanced nanomaterials like carbon nanomaterials, solid inorganic-organic hybrids, metallic oxides/sulfides, quantum dots, composite heterostructures, microbial electrolysis cells etc. Overview on hydrogen production, ways of generating hydrogen, advanced nanomaterials for hydrogen production, and recent progress in hydrogen-producing nanomaterials have been discussed.
Style APA, Harvard, Vancouver, ISO itp.
9

Mapel, J. K., M. Singh, M. A. Baldo i K. Celebi. "Plasmonic excitation of organic double heterostructure solar cells". Applied Physics Letters 90, nr 12 (19.03.2007): 121102. http://dx.doi.org/10.1063/1.2714193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Milliron, Delia J., Ilan Gur i A. Paul Alivisatos. "Hybrid Organic–Nanocrystal Solar Cells". MRS Bulletin 30, nr 1 (styczeń 2005): 41–44. http://dx.doi.org/10.1557/mrs2005.8.

Pełny tekst źródła
Streszczenie:
AbstractRecent results have demonstrated that hybrid photovoltaic cells based on a blend of inorganic nanocrystals and polymers possess significant potential for low-cost, scalable solar power conversion. Colloidal semiconductor nanocrystals, like polymers, are solution processable and chemically synthesized, but possess the advantageous properties of inorganic semiconductors such as a broad spectral absorption range and high carrier mobilities. Significant advances in hybrid solar cells have followed the development of elongated nanocrystal rods and branched nanocrystals, which enable more effective charge transport. The incorporation of these larger nanostructures into polymers has required optimization of blend morphology using solvent mixtures. Future advances will rely on new nanocrystals, such as cadmium telluride tetrapods, that have the potential to enhance light absorption and further improve charge transport. Gains can also be made by incorporating application-specific organic components, including electroactive surfactants which control the physical and electronic interactions between nanocrystals and polymer.
Style APA, Harvard, Vancouver, ISO itp.
11

Wang, Ryan T., i Gu Xu. "Organic Inorganic Hybrid Perovskite Solar Cells". Crystals 11, nr 10 (27.09.2021): 1171. http://dx.doi.org/10.3390/cryst11101171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

McGehee, Michael D. "Nanostructured Organic–Inorganic Hybrid Solar Cells". MRS Bulletin 34, nr 2 (luty 2009): 95–100. http://dx.doi.org/10.1557/mrs2009.27.

Pełny tekst źródła
Streszczenie:
AbstractWhen light is absorbed in organic semiconductors, bound electron–hole pairs known as excitons are generated. The electrons and holes separate from each other at an interface between two semiconductors by electron transfer. It is advantageous to form well-ordered nanostructures so that all of the excitons can reach the interface between the two semiconductors and all of the charge carriers have a pathway to the appropriate electrode. This article discusses charge and exciton transport in organic semiconductors, as well as the opportunities for making highly efficient solar cells and for using carbon nanotubes to replace metal oxide electrodes.
Style APA, Harvard, Vancouver, ISO itp.
13

Weickert, Jonas, Ricky B. Dunbar, Holger C. Hesse, Wolfgang Wiedemann i Lukas Schmidt-Mende. "Nanostructured Organic and Hybrid Solar Cells". Advanced Materials 23, nr 16 (15.02.2011): 1810–28. http://dx.doi.org/10.1002/adma.201003991.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Ruiyuan, i Baoquan Sun. "Silicon-based Organic/inorganic Hybrid Solar Cells". Acta Chimica Sinica 73, nr 3 (2015): 225. http://dx.doi.org/10.6023/a14100693.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Alparslan, Zühal, Arif Kösemen, Osman Örnek, Yusuf Yerli i S. Eren San. "-Based Organic Hybrid Solar Cells with Doping". International Journal of Photoenergy 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/734618.

Pełny tekst źródła
Streszczenie:
A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of TiO2(titanium dioxide) and Mn-doped TiO2thin films. In the scope of this work, TiO2(titanium dioxide) and Mn:TiO2hybrid organic thin films are proposed as charge transporter layer in polymer solar cells. Poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT: PCBM) is used as active layer. When the Mn-doped TiO2solar cells were compared with pure TiO2cells, Mn-doped samples revealed a noteworthy efficiency enhancement with respect to undoped-TiO2-based cells. The highest conversion efficiency was obtained to be 2.44% at the ratio of 3.5% (wt/wt) Mn doping.
Style APA, Harvard, Vancouver, ISO itp.
16

ADHIKARI, SUDIP, HIDEO UCHIDA i MASAYOSHI UMENO. "HYBRID ORGANIC SOLAR CELLS BLENDED WITH CNTs". Surface Review and Letters 22, nr 06 (20.10.2015): 1550072. http://dx.doi.org/10.1142/s0218625x15500729.

Pełny tekst źródła
Streszczenie:
In this paper, composite carbon nanotubes (C-CNTs); single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are synthesized using an ultrasonic nebulizer in a large quartz tube for photovoltaic device fabrication in poly-3-octyl-thiophene (P3OT)/ n - Si heterojunction solar cells. We found that the device fabricated with C-CNTs shows much better photovoltaic performance than that of a device without C-CNTs. The device with C-CNTs shows open-circuit voltage (Voc) of 0.454 V, a short circuit current density (Jsc) of 12.792 mA/cm2, fill factor (FF) of 0.361 and power conversion efficiency of 2.098 %. Here, we proposed that SWCNTs and MWCNTs provide efficient percolation paths for both electron and hole transportation to opposite electrodes and leading to the suppression of charge carrier recombination, thereby increasing the photovoltaic device performance.
Style APA, Harvard, Vancouver, ISO itp.
17

Liu, Qiming, Tatsuya Ohki, Dequan Liu, Hiromitsu Sugawara, Ryo Ishikawa, Keiji Ueno i Hajime Shirai. "Efficient organic/polycrystalline silicon hybrid solar cells". Nano Energy 11 (styczeń 2015): 260–66. http://dx.doi.org/10.1016/j.nanoen.2014.10.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Halim, Henry, i Yunlong Guo. "Flexible organic-inorganic hybrid perovskite solar cells". Science China Materials 59, nr 6 (czerwiec 2016): 495–506. http://dx.doi.org/10.1007/s40843-016-5048-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

YAMAMOTO, Chihiro, Katsunori MAEDA, Tetsuya KANEKO, Masao ISOMURA, Joel YAMAKAWA i Yoshihito KUNUGI. "Development of organic-inorganic hybrid perovskite solar cells". Journal of Advanced Science 28 (2016): n/a. http://dx.doi.org/10.2978/jsas.13001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Fan, Xia, Mingliang Zhang, Xiaodong Wang, Fuhua Yang i Xiangmin Meng. "Recent progress in organic–inorganic hybrid solar cells". Journal of Materials Chemistry A 1, nr 31 (2013): 8694. http://dx.doi.org/10.1039/c3ta11200d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Jumabekov, A. N., E. Della Gaspera, Z. Q. Xu, A. S. R. Chesman, J. van Embden, S. A. Bonke, Q. Bao, D. Vak i U. Bach. "Back-contacted hybrid organic–inorganic perovskite solar cells". Journal of Materials Chemistry C 4, nr 15 (2016): 3125–30. http://dx.doi.org/10.1039/c6tc00681g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Memesa, Mine, Stefan Weber, Sebastian Lenz, Jan Perlich, Rüdiger Berger, Peter Müller-Buschbaum i Jochen S. Gutmann. "Integrated blocking layers for hybrid organic solar cells". Energy & Environmental Science 2, nr 7 (2009): 783. http://dx.doi.org/10.1039/b902754h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Ong, Pang-Leen, i Igor Levitsky. "Organic / IV, III-V Semiconductor Hybrid Solar Cells". Energies 3, nr 3 (5.03.2010): 313–34. http://dx.doi.org/10.3390/en3030313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Arici, Elif, i Smagul Karazhanov. "Carbon nanotubes for organic/inorganic hybrid solar cells". Materials Science in Semiconductor Processing 41 (styczeń 2016): 137–49. http://dx.doi.org/10.1016/j.mssp.2015.07.086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Chen, Wei, Maxim P. Nikiforov i Seth B. Darling. "Morphology characterization in organic and hybrid solar cells". Energy & Environmental Science 5, nr 8 (2012): 8045. http://dx.doi.org/10.1039/c2ee22056c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Elumalai, Naveen Kumar, i Ashraf Uddin. "Hysteresis in organic-inorganic hybrid perovskite solar cells". Solar Energy Materials and Solar Cells 157 (grudzień 2016): 476–509. http://dx.doi.org/10.1016/j.solmat.2016.06.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wright, Matthew, i Ashraf Uddin. "Organic—inorganic hybrid solar cells: A comparative review". Solar Energy Materials and Solar Cells 107 (grudzień 2012): 87–111. http://dx.doi.org/10.1016/j.solmat.2012.07.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Liu, Qiming, Ishwor Khatri, Ryo Ishikawa, Keiji Ueno i Hajime Shirai. "Efficient crystalline Si/organic hybrid heterojunction solar cells". physica status solidi (c) 9, nr 10-11 (14.09.2012): 2101–6. http://dx.doi.org/10.1002/pssc.201200131.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Colsmann, Alexander, i Holger Röhm. "Stability of Organic and Hybrid Perovskite Solar Cells". Energy Technology 8, nr 12 (grudzień 2020): 2000912. http://dx.doi.org/10.1002/ente.202000912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Seo, Ji Hoon, Dong-Ho Kim, Se-Hun Kwon, Myungkwan Song, Min-Seung Choi, Seung Yoon Ryu, Hyung Woo Lee i in. "High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells". Advanced Materials 24, nr 33 (16.07.2012): 4523–27. http://dx.doi.org/10.1002/adma.201201419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Yang, Zhibin, Adharsh Rajagopal i Alex K. Y. Jen. "Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells". Advanced Materials 29, nr 47 (14.11.2017): 1704418. http://dx.doi.org/10.1002/adma.201704418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Valadi, Kobra, i Ali Maleki. "Metal-Doped Copper Indium Disulfide Heterostructure: Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell". Proceedings 41, nr 1 (14.11.2019): 74. http://dx.doi.org/10.3390/ecsoc-23-06624.

Pełny tekst źródła
Streszczenie:
In this plan, we use Praseodymium metal-doped copper indium disulfide (Pr-doped CIS) heterostructure as hole-transporting materials (HTMs) in the FTO/TiO2/Perovskite absorber/HTM/ Au device. And photovoltaic performance of these Pr-doped CIS heterostructure was investigated in the fabrication of the organic-inorganic perovskite solar cells (organic-inorganic PSCs).
Style APA, Harvard, Vancouver, ISO itp.
33

Seo, Ji Hoon, Dong-Ho Kim, Se-Hun Kwon, Myungkwan Song, Min-Seung Choi, Seung Yoon Ryu, Hyung Woo Lee i in. "Solar Cells: High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells (Adv. Mater. 33/2012)". Advanced Materials 24, nr 33 (20.08.2012): 4587. http://dx.doi.org/10.1002/adma.201290200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zhang, Liang Min. "Inorganic-Organic Hybrid Nanocomposites for Photovoltaic Applications". Advanced Materials Research 571 (wrzesień 2012): 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.571.120.

Pełny tekst źródła
Streszczenie:
Hybrid photovoltaic concepts based on a nanoscale combination of organic and inorganic semiconductors are promising way to enhance the cost efficiency of solar cells through a better use of the solar spectrum, a higher ratio of interface-to-volume, and the flexible processability of polymers. In this work, two types of thin film solar cells have been developed. In both types of solar cells, poly-N-vinylcarbazole (PVK) is used as electron donor, cadmium sulfide (CdS) and titanium dioxide (TiO2) nanocrystals are used as electron acceptors, respectively. Since TiO2 has a wide band gap and can only absorb UV light, in the second type of solar cell, ruthenium dye is used as photo-sensitizer. The preliminary results of photoconductive and photovoltaic characteristics of these two inorganic-organic composites are presented.
Style APA, Harvard, Vancouver, ISO itp.
35

Noh, Jun Hong, i Sang Il Seok. "Steps toward efficient inorganic–organic hybrid perovskite solar cells". MRS Bulletin 40, nr 8 (sierpień 2015): 648–53. http://dx.doi.org/10.1557/mrs.2015.168.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ichwani, Reisya, Richard Koech, Oluwaseun K. Oyewole, Adri Huda, Deborah O. Oyewole, Jaya Cromwell, Julia L. Martin, Ronald L. Grimm i Winston O. Soboyejo. "Interfacial fracture of hybrid organic–inorganic perovskite solar cells". Extreme Mechanics Letters 50 (styczeń 2022): 101515. http://dx.doi.org/10.1016/j.eml.2021.101515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

He, Lining, Changyun Jiang, Hao Wang, Donny Lai i Rusli. "High efficiency planar Si/organic heterojunction hybrid solar cells". Applied Physics Letters 100, nr 7 (13.02.2012): 073503. http://dx.doi.org/10.1063/1.3684872.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zhu, Mingzhe, Chongwen Li, Bingyu Li, Jiakang Zhang, Yuqian Sun, Weisi Guo, Zhongmin Zhou, Shuping Pang i Yanfa Yan. "Interaction engineering in organic–inorganic hybrid perovskite solar cells". Materials Horizons 7, nr 9 (2020): 2208–36. http://dx.doi.org/10.1039/d0mh00745e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Jeon, Taewoo, Hyeong Min Jin, Seung Hyun Lee, Ju Min Lee, Hyung Il Park, Mi Kyung Kim, Keon Jae Lee, Byungha Shin i Sang Ouk Kim. "Laser Crystallization of Organic–Inorganic Hybrid Perovskite Solar Cells". ACS Nano 10, nr 8 (19.07.2016): 7907–14. http://dx.doi.org/10.1021/acsnano.6b03815.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Plass, Robert, Serge Pelet, Jessica Krueger, Michael Grätzel i Udo Bach. "Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells". Journal of Physical Chemistry B 106, nr 31 (sierpień 2002): 7578–80. http://dx.doi.org/10.1021/jp020453l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Li, Yong. "Organic-inorganic hybrid solar cells made from hyperbranched phthalocyanines". Journal of Photonics for Energy 1, nr 1 (1.01.2011): 011115. http://dx.doi.org/10.1117/1.3565463.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Chen, Bo, Jian Shi, Xiaojia Zheng, Yuan Zhou, Kai Zhu i Shashank Priya. "Ferroelectric solar cells based on inorganic–organic hybrid perovskites". Journal of Materials Chemistry A 3, nr 15 (2015): 7699–705. http://dx.doi.org/10.1039/c5ta01325a.

Pełny tekst źródła
Streszczenie:
Ferroelectric solar cells were fabricated by using the inorganic–organic hybrid perovskite materials, and power conversion efficieny as high as 6.7% had been obtained based on the MAPbI3−xClxthin film. This work provides an alternative avenue for high-performance ferroelectric solar cells beyond inorganic ferroelectric oxides.
Style APA, Harvard, Vancouver, ISO itp.
43

Huang, Jia, Zhigang Yin i Qingdong Zheng. "Applications of ZnO in organic and hybrid solar cells". Energy & Environmental Science 4, nr 10 (2011): 3861. http://dx.doi.org/10.1039/c1ee01873f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Furukawa, Yukio, Seiya Ikawa, Hanako Kiyohara, Yuki Sendai i Ayi Bahtiar. "Inorganic-Organic Hybrid Perovskite Solar Cells Fabricated with Additives". Key Engineering Materials 860 (sierpień 2020): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.860.3.

Pełny tekst źródła
Streszczenie:
We have studied the effect of lead (II) cyanate Pb (OCN)2 additive on photovoltaic properties of inverted planar solar cells based on inorganic-organic hybrid perovskite CH3NH3PbI3. The active layers of the solar cells were fabricated with a reaction between CH3NH3I and a mixture of PbI2 and Pb (OCN)2. The highest power conversion efficiency was 15%. Hysteresis behaviors in JV curves were reduced. The lifetime of the solar cells was dramatically increased. SEM images indicated that crystallite sizes were enlarged. The OCN groups were not incorporated into crystals from infrared measurements. These results suggest that Pb (OCN)2 affect mainly the crystallization process of CH3NH3PbI3.
Style APA, Harvard, Vancouver, ISO itp.
45

TANG Tong, 唐彤, 左红文 ZUO Hong-wen, 王亚凌 WANG Ya-ling, 秦文静 QIN Wen-jing, 曹焕奇 CAO Huan-qi, 杨利营 YANG Li-ying, 姚聪 YAO Cong, 葛子义 GE Zi-yi i 印寿根 YIN Shou-gen. "Efficient Perovskite-organic Bulk Heterojunction Hybrid Integrated Solar Cells". Chinese Journal of Luminescence 36, nr 9 (2015): 1047–52. http://dx.doi.org/10.3788/fgxb20153609.1047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Sant, Sudhindra B. "Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice". Materials and Manufacturing Processes 29, nr 1 (styczeń 2014): 83–84. http://dx.doi.org/10.1080/10426914.2013.864416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Nogueira, Ana Flavia, i Garry Rumbles. "Special Section Guest Editorial: Hybrid Organic-Inorganic Solar Cells". Journal of Photonics for Energy 5, nr 1 (6.04.2015): 057401. http://dx.doi.org/10.1117/1.jpe.5.057401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zhang, Yuan, Ashleigh Kirs, Filip Ambroz, Chieh‐Ting Lin, Abdulaziz S. R. Bati, Ivan P. Parkin, Joseph G. Shapter, Munkhbayar Batmunkh i Thomas J. Macdonald. "Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells". Small Methods 5, nr 1 (18.09.2020): 2000744. http://dx.doi.org/10.1002/smtd.202000744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Yang, Ning, Cheng Zhu, Yihua Chen, Huachao Zai, Chenyue Wang, Xi Wang, Hao Wang i in. "An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation". Energy & Environmental Science 13, nr 11 (2020): 4344–52. http://dx.doi.org/10.1039/d0ee01736a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zheng, Xuan, Huijun Zhang, Quanling Yang, Chuanxi Xiong, Wei Li, Yu Yan, Robert S. Gurney i Tao Wang. "Solution-processed Graphene-MoS2 heterostructure for efficient hole extraction in organic solar cells". Carbon 142 (luty 2019): 156–63. http://dx.doi.org/10.1016/j.carbon.2018.10.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii