Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Organic Hybrid Heterostructure Solar Cells.

Rozprawy doktorskie na temat „Organic Hybrid Heterostructure Solar Cells”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Organic Hybrid Heterostructure Solar Cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ishwara, Thilini W. S. "Optimisation of hybrid organic/ inorganic solar cells". Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510746.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lentz, Levi (Levi Carl). "Rational design of hybrid organic solar cells". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92219.

Pełny tekst źródła
Streszczenie:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 113-117).
In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. Utilizing first principles Density Functional Theory (DFT), we show that layered inorganic phosphates and tradition organic dyes can be combined to form a new class of bulk heterojunction photovoltaic with high electron and hole mobilities with low exciton recombination, potentially enabling very high efficiency with existing organic-based solar-cell molecules. We will discuss the physical origin of these properties and investigate several approaches for engineering the electronic structure of these materials. By using these methods, it will be possible to engineer the transport and optical properties of these materials, with potential applications beyond photovoltaics in areas from organic electronics to photoactuators.
by Levi Lentz.
S.M.
Style APA, Harvard, Vancouver, ISO itp.
3

Hyung, Do Kim. "Development of Highly Efficient Organic-Inorganic Hybrid Solar Cells". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

MacLachlan, Andrew. "Tuning morphology of hybrid organic/metal sulfide solar cells". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/25766.

Pełny tekst źródła
Streszczenie:
This thesis explores the influence that morphology plays in hybrid organic/inorganic solar cells. This is studied for a range of different materials systems. A series of cadmium xanthate complexes were synthesised, for use as in-situ precursors to CdS nanoparticles in hybrid poly(3-hexylthiophene-2,5-diyl (P3HT)/CdS solar cells. The heterojunction morphology of these hybrid P3HT/CdS blends was found to be dependent on the ligand moiety of the precursor used. The formation of CdS domains was studied by time-resolved materials characterisation techniques and directly imaged using electron microscopy. A combination of transient absorption spectroscopy (TAS) and photovoltaic device performance measurements was used to show the intricate balance required between charge photogeneration and having percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. An analogous method was also applied to a P3HT/Sb_2 S_3 system. Following on from the previous work, a non-toxic alternative to CdS and Sb2S3 was explored. Bismuth xanthates were thermally decomposed to form hybrid polymer/Bi_2 S_3 heterojunctions with two distinctly different morphologies. The bismuth xanthates were found to form nanorods in-situ, within the solid-state polymer matrix, as well as mesostructured arrays of Bi_2 S_3 rods that were later infiltrated with a polymer, using a two-step method. TAS was used to study the charge generation yield in both these systems and hybrid photovoltaic devices were also fabricated. Finally, through a collaboration with The Institute of Photonic Sciences (ICFO), TAS was used to study two separate organic semiconductor/Bi_2 S_3 BHJs. The first of which was a P3HT/Bi_2 S_3 nanoparticle blend solar cell. The charge generation yield in this system was investigated and then compared to a novel thiol-functionalised P3HT based block copolymer (P3HT-SH). Secondly, TAS was used to obtain a better understanding of the charge transfer at several interfaces in a vertically structured Bi_2 S_3 nanorod array that was filled with 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (SPIRO).
Style APA, Harvard, Vancouver, ISO itp.
5

Manaf, Nor Azlian Binti Abdul. "Organic/inorganic hybrid solar cells based on electroplated CdTe". Thesis, Sheffield Hallam University, 2015. http://shura.shu.ac.uk/20010/.

Pełny tekst źródła
Streszczenie:
The purpose of this work is to develop organic/inorganic hybrid solar cells based on electroplated CdTe. The materials used in this research are CdS, CdTe and PAni. These materials have been characterised by XRD, Raman spectroscopy, EDX, SEM, AFM, UV-Vis spectroscopy, PEC, C-V and DC measurements, UPS and PL for their structural, compositional, morphological, optical, electrical and defect properties. CdS has electrodeposited from the electrolyte using (NH[4])[2]S[2]O[3] as the sulphur source. The optimum growth voltage (V[g]) and temperature (T[g]) are obtained at 1455 mV and 85°C, respectively. The best annealing condition is found to be at 400°C for 20 minutes in the presence of CdCl[2]+CdF[2]. CdTe thin films were electrodeposited from CdCl[2] precursor and a comprehensive study was carried out for the first time. The work has demonstrated a better understanding of material issues and some clues on the effect of CdCl[2] treatment. The optimum V[g] and annealing condition were obtained at 698 mV with respect to the calomel electrode and 420°C for 20 minutes in the presence of CdCl[2]+CdF[2] or CdCl[2]+CdF[2]+GaCl[3]. The development of PAni thin films has been established using anodic and cathodic deposition. The pernigraniline salt PAni grown from anodic has an amorphous structure, large bandgap and cementing growth effect while leucoemeraldine salt PAni grown from cathodic deposition shows the best crystallinity at V[g]=1654 mV with respect to carbon anode, smaller grain size, higher resistivity and lower bandgap. The CdS, CdTe and PAni thin films have been studied in device structures, assessing their solar cell device performance. The best of CdS/CdTe solar cell was observed with efficiency of 5.8% when using CdS thin film treated with CdCl[2]+CdF[2] at 400°C. The best solar cell from CdTe study shows the efficiency of 6.8% when using CdTe thin films treated with CdCl[2]+CdF[2] at 420°C. Further study demonstrates that a device with g/FTO/n-CdS(~200 nm)/n-CdTe(~1200 nm)/p-CdTe(~300 nm)/Au shows high J[sc] and highest efficiency (7.7%) due to the formation of n-n heterojunction, p-n homojuction and ohmic contact within the structure. The efficiency of the solar cell increased from -2.4% to -4.2% when incorporating -81 nm thick PAni layer grown from anodic deposition. The devices incorporating ZnS, ZnTe and CdSe layers show the prospect of graded bandgap solar cell, but proper optimisation on each material should be carried out before using in multi-layer device structures. The study on the lifetime of solar cells show slow degradation and it maintained more than 83% of its initial efficiency after 9,000 hours.
Style APA, Harvard, Vancouver, ISO itp.
6

DIANETTI, MARTINA. "Transparent Conductive Oxide-free hybrid and organic solar cells". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2014. http://hdl.handle.net/2108/202335.

Pełny tekst źródła
Streszczenie:
In organic Bulk Hetero Junction (BHJ) and hybrid/perovskite solar cells, the most employed material used as transparent electrode for the charges collection is transparent conductive oxide (TCO) such as indium doped tin oxide (ITO) or fluorine doped tin oxide (FTO). Beside the high transparency and conductivity (80% on glass substrates and 15 Ω/□, respectively) of ITO and FTO, there are many critical issues: i) limited indium sources, ii) high cost due to the deposition techniques (sputtering, evaporation, pulsed laser deposition and electroplating etc.), iii) high temperature processing and iv) high mechanical brittleness. For these reasons, it is necessary to investigate new materials. The discovery of graphene, in 2004, that led Novoselov and Geim to win the Nobel Prize has opened up new areas of scientific research. In particular, its surprising physical, optical, mechanical and electrical properties have made the graphene one of the most promising material in the modern electronic applications and in particular in the 3rd generation solar cells technology that can be produced cheaply and very fast from solution with printing processes both on plastic and rigid substrates. This work is mainly focused on the use of graphene as a replacement of the conventional transparent conductive oxides. In particular, most of the problems (wettability, annealing temperature etc.) for fabricate solar cells on graphene electrodes were solved. A simple way to decrease the sheet resistance of graphene electrode, by the addition of a metal grid, is presented as well. With the aim to realize high efficiency solar cells, both BHJ with low band gap polymers as active layer and perovskite-based solar cells have been investigated. Firstly, the effects of two different materials (Ni and MoO3), used as p-dopant on bare graphene, were studied and the thickness was optimized in order to reduce the graphene sheet resistance and increase the solar cells performances. Moreover, was investigated the feasibility to realize graphene-based solar cells starting to optimize the deposition of the organic active layer material (blend of P3HT: PC [60] BM or PTB7: PC [70] BM) in terms of annealing temperature and thickness. iv Furthermore, in order to increase the solar cells efficiency, organic-inorganic perovskite ( CH3NH3PbI3-xClx ) material was studied as active layer. As first step, the growth of perovskite active layer was optimized in terms of annealing temperature, photoluminescence and morphology both for direct and inverted architectures. Then, using a planar direct structure, efforts were made to solve the issues related to the realization of perovskite solar cells on graphene electrode. While, in the direct structure, Titania ordered photonics nanostructures were introduced as electron transporting layer (ETL) to increase the light absorbed by the perovskite active layer and the photo-generated current in the solar cells. With the view to replace the conventional transparent conductive electrode, conductive polymers were also investigated. The most promising organic material is PEDOT: PSS, which is a semitransparent and conductive polymer. However, the pristine PEDOT: PSS film, deposited from aqueous solution, has a lower conductivity than the conventional transparent conductive oxide. For this reason, many strategies have been employed to improve the conductivity of this material to obtain a low cost, low temperature and TCO-free perovskite planar heterojunction solar cells on flexible substrate. In particular, it is demonstrated that the highly conductive polymeric material shows potential as a practical replacement for expensive and brittle ITO/PET. Moreover, in the bending test, the ITO-free perovskite solar cells with PEDOT anodes on flexible substrate manifested superior mechanical robustness compared with ITO-based cells, showing the high flexibility of perovskite layer.
Style APA, Harvard, Vancouver, ISO itp.
7

Azzopardi, Brian. "Integration of hybrid organic-based solar cells for micro-generation". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/integration-of-hybrid-organicbased-solar-cells-for-microgeneration(6013d4a4-4702-4bfc-b3b3-c0ae155a83b9).html.

Pełny tekst źródła
Streszczenie:
Despite the fact that the global photovoltaic (PV) market has grown rapidly during the last two decades, driven by global climate change concerns and public policy supports of renewable energy sources, a PV system is still considered an expensive alternative energy source when compared to other sources of electricity. Emerging organic-based PV solar cells may lead to significant price reductions of a PV system. Though, in the short and medium term, the lifetime, efficiencies and reliability are expected to be lower than current commercially available silicon wafer-based and mature inorganic thin film PV modules.A consortium formed by inter-disciplinary scientists and engineers between the University of Manchester and Imperial College London was set-up to investigate organic-based hybrid solar cells. Potential solar cell materials with higher resultant conversion efficiency in research, targeting lower costs than other PV technologies were developed. The designs investigated feature hybrid organic-based quantum dot (QD) solar cells topology.This research seeks to integrate this new PV technology concept into future PV micro-generators. The challenges faced by emerging PV technologies with regard to PV module lifetime, efficiency and cost / price were summarised. The uniqueness of this work is that, throughout this research, the issues for commercialisation of emerging PV technologies for micro-generation; in particular with regards to low efficiency, short lifetime and high efficiency degradation, and low-cost / price were extensively analysed in every aspect.The technical, economic and also environmental viability perspectives of emerging PV technologies for micro-generation were found. A wide range of models and / or methodologies were developed, extended or applied for the first time to PV technologies for micro-generation, with particular focus where possible on the hybrid organic-based QD solar cells. Lifetime-adjusted calculations and life cycle costing were used to determine cost boundaries and PV electricity costs. Life cycle environmental impacts were determined by the use of life cycle analysis. A mixed integer single / multi-objective optimisation program was developed to determine optimal, compromise and trade-off relationships on PV system characteristics. These PV system characteristics, which are analysed on a systems level included module efficiency, grid interconnection rating, solar fraction, energy storage capacities, annualised life cycle costs, project worth value and environmental CO2 impacts / benefit. Finally, PV technologies for micro-generation were ranked by the use of multi-criteria decision analysis. The results clarify, inform and suggest concepts for emerging PV technologies integration for micro-generation by providing boundaries, trade-offs and suggestions to all stakeholder including commercial, domestic and public bodies.The direction for future research in emerging PV technologies for micro-generation is identified to be the development of customer decision tools for diversified PV technologies, policy adaptation for the inclusion of emerging PV technologies and large-scale manufacturing investigations on emerging PV modules that makes use of an organic-based PV technology.
Style APA, Harvard, Vancouver, ISO itp.
8

Sarvari, Hojjatollah. "FABRICATION AND CHARACTERIZATION OF ORGANIC-INORGANIC HYBRID PEROVSKITE SOLAR CELLS". UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/123.

Pełny tekst źródła
Streszczenie:
Solar energy as the most abundant source of energy is clean, non-pollutant, and completely renewable, which provides energy security, independence, and reliability. Organic-inorganic hybrid perovskite solar cells (PSCs) revolutionized the photovoltaics field not only by showing high efficiency of above 22% in just a few years but also by providing cheap and facile fabrication methods. In this dissertation, fabrication of PSCs in both ambient air conditions and environmentally controlled N2-filled glove-box are studied. Several characterization methods such as SEM, XRD, EDS, Profilometry, four-point probe measurement, EQE, and current-voltage measurements were employed to examine the quality of thin films and the performance of the PSCs. A few issues with the use of equipment for the fabrication of thin films are addressed, and the solutions are provided. It is suggested to fabricate PSCs in ambient air conditions entirely, to reduce the production cost. So, in this part, the preparation of the solutions, the fabrication of thin films, and the storage of materials were performed in ambient air conditions regardless of their humidity sensitivity. Thus, for the first part, the fabrication of PSCs in ambient air conditions with relative humidity above ~36% with and without moisture sensitive material, i.e., Li-TFSI are provided. Perovskite materials including MAPbI3 and mixed cation MAyFA(1-y)PbIxBr(1-x) compositions are investigated. Many solution-process parameters such as the spin-coating speed for deposition of the hole transporting layer (HTL), preparation of the HTL solution, impact of air and light on the HTL conductivity, and the effect of repetitive measurement of PSCs are investigated. The results show that the higher spin speed of PbI2 is critical for high-quality PbI2 film formation. The author also found that exposure of samples to air and light are both crucial for fabrication of solar cells with larger current density and better fill factor. The aging characteristics of the PSCs in air and vacuum environments are also investigated. Each performance parameter of air-stored samples shows a drastic change compared with that of the vacuum-stored samples, and both moisture and oxygen in air are found to influence the PSCs performances. These results are essential towards the fabrication of low-cost, high-efficiency PSCs in ambient air conditions. In the second part, the research is focused on the fabrication of high-efficiency PSCs using the glove-box. Both single-step and two-step spin-coating methods with perovskite precursors such as MAyFA(1-y)PbIxBr(1-x) and Cesium-doped mixed cation perovskite with a final formula of Cs0.07MA0.1581FA0.7719Pb1I2.49Br0.51 were considered. The effect of several materials and process parameters on the performance of PSCs are investigated. A new solution which consists of titanium dioxide (TiO2), hydrochloric acid (HCl), and anhydrous ethanol is introduced and optimized for fabrication of quick, pinhole-free, and efficient hole-blocking layer using the spin-coating method. Highly reproducible PSCs with an average power conversion efficiency (PCE) of 15.4% are fabricated using this solution by spin-coating method compared to the conventional solution utilizing both spin-coating with an average PCE of 10.6% and spray pyrolysis with an average PCE of 13.78%. Moreover, a thin layer of silver is introduced as an interlayer between the HTL and the back contact. Interestingly, it improved the current density and, finally the PCEs of devices by improving the adhesion of the back electrode onto the organic HTL and increasing the light reflection in the PSC. Finally, a highly reproducible fabrication procedure for cesium-doped PSCs using the anti-solvent method with an average PCE of 16.5%, and a maximum PCE of ~17.5% is provided.
Style APA, Harvard, Vancouver, ISO itp.
9

Yao, Jizhong. "Studies of recombination in organic and hybrid solar cells using electroluminescence". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/52668.

Pełny tekst źródła
Streszczenie:
The performance of solution processed solar cells such as organic bulk heterojunction (OPV) devices is limited by strong recombination. However, the mechanisms are still unclear. In this thesis, I develop a toolbox using steady-state spectroscopy measurements to explore the recombination mechanisms in a range of solution-processed solar cells. In the first results chapter, I use the reciprocity relation between light absorption and light emission to explore theoretical and practical performance limits for solar cells based on organic semiconductors and perovskites and compare the results with data for state-of-the-art photovoltaic cells made from GaAs, c-Si, and CIGS. In OPV systems, I show that the energetic losses due to the mismatch of the bandgap have been significantly reduced through optimisation of the donor polymer, but the non-radiative recombination losses remain the same and become the major barrier to higher performance. In the next two chapters, I use light intensity dependence of open-circuit voltage measurement (suns-VOC) and electroluminescence – injection current measurement (EL-J) to disentangle recombination mechanisms in OPV and perovskite cells, respectively. First, I identify the present of Shockley-Read-Hall recombination and surface recombination in OPV devices. I intentionally control the sample geometry to modulate the amount of surface recombination and demonstrate that surface recombination can significantly affect the device performance. In the following chapter, I analyse time dependent suns-VOC and EL-J measurements on perovskite cells with different architectures and pre-conditioning regimes used. I identify the changes in recombination mechanisms with delay time and pre-conditions. The effects of ion migration are used to interpret the results. In the final chapter, I apply luminescence spectroscopy techniques to investigate the degree of fullerene crystallinity in polymer:fullerene blends. Charge-transfer state emission is used to probe the onset of the crystallisation of fullerenes in an amorphous polymer. I relate the CT peak shift directly to the change in microstructure of a blend film.
Style APA, Harvard, Vancouver, ISO itp.
10

CIAMMARUCHI, LAURA. "Studies on stability and degradation of hybrid and organic solar cells". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/203513.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

LEANDRI, VALENTINA. "Organic materials for dye-sensitized solar cells". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Skåre, Daniel Gundersen. "Pulsed Laser Deposition of ZnO Nanostructures for Hybrid Inorganic/Organic Solar Cells". Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9940.

Pełny tekst źródła
Streszczenie:

Au catalyst ZnO nanostructures have been grown on the a- and c-plane sapphire substrate by PLD. Influence of substrate lattice orientation, substrate surface and different substrate annealing temperature have been characterized by AFM, SEM and XRD. This report shows that a-plane sapphire substrate annealed at 1000 degree C and 1200 degree C improves the growth condition of Au catalyst ZnO nanostructures. For c-plane sapphire; annealing at 1200 degree C and 1400 degree C enhances the nanostructure growth. The better growth condition is a result of the terrace-and-step morphology seen on the substrate surface prior to growth. This report also indicates a correlation between the azimuthal in-plane alignment of the grown nanostructures and the sapphire substrate lattice orientation.

Style APA, Harvard, Vancouver, ISO itp.
13

Meister, Michael [Verfasser]. "Charge generation and recombination in hybrid organic,inorganic solar cells / Michael Meister". Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/104392681X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Vega, Fleitas Erica. "Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications". Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113402.

Pełny tekst źródła
Streszczenie:
[ES] Las perovskitas orgánicas-inorgánicas de haluros de metilamonio y plomo y sus mezclas han mostrado propiedades optoelectrónicas óptimas como absorbente ideal para aplicaciones fotovoltaicas. Los dispositivos solares basados en perovskita han evolucionado rápidamente, desde una eficiencia del 3.9% en 2009, al 22.7% en 2017 y con un coste de fabricación más bajo que las células solares de silicio. Una desventaja del uso de absorbentes de perovskita en dispositivos fotovoltaicos es su baja estabilidad. Las células con un alto rendimiento, pierden su eficiencia y se degradan rápidamente. Para poder producir estos materiales industrialmente es necesario realizar estudios en profundidad que mejoren la eficiencia y estabilidad. Una vía de mejora es la ingeniería composicional, estrategia que hemos empleado en la elaboración de esta tesis y que consiste en la investigación y mejora de las propiedades optoelectrónicas y morfológicas, derivadas de la sustitución y/o combinación de cationes y aniones, que constituyen el material de perovskita. Se sintetizaron polvos puros de perovskita de I, Br, Cl, a partir de los cuales se prepararon capas puras y mixtas MAPbX3-xYx, con el objetivo de mejorar sus propiedades optoelectrónicas y estructurales. Los análisis de difracción de rayos X mostraron las propiedades estructurales de los polvos cristalinos y capas puras y mixtas. Los análisis de UV-vis y fotoluminiscencia mostraron que el rango de absorción varía a lo largo del espectro visible en función del contenido del haluro en las capas. Los análisis de fotoluminiscencia y calorimetría diferencial de barrido muestran los cambios de fase de las perovskitas puras a distintas temperaturas, coincidiendo dichos cambios en ambos análisis. El análisis FESEM de las perovskitas puras mostró las diferencias morfológicas entre los polvos y capas. Siguiendo esta línea de investigación, se estudiaron con más detalle las perovskitas mixtas de yodo-bromo, con un contenido de bromo de hasta el 33%, consiguiendo ajustar el bandgap para evitar pérdidas en la absorción y mejorar las propiedades optoelectrónicas, estructurales y morfológicas. A pesar de las buenas propiedades optoelectrónicas de las perovskitas de metilamonio, el catión orgánico disminuye su estabilidad, lo que llevó a investigar otros cationes inorgánicos. Las perovskitas de cesio son una alternativa prometedora, y por esta razón hemos sintetizado capas finas de perovskitas de cesio mixtas, CsPbBr3-xIx, para determinar los efectos que produce la sustitución parcial del yodo en las propiedades físicas y la estabilidad. Se obtuvieron capas con una buena resistencia a la humedad y temperatura, favoreciendo su aplicación en el campo fotovoltaico. Se ha estudiado la sustitución parcial del catión de metilamonio con otros cationes orgánicos, como el guanidinio e imidiazolio. Se demostró que pequeñas cantidades de guanidinio mejoran la estabilidad de las capas y su morfología. Se estableció el límite de solubilidad del guanidinio en el 20%, aproximadamente, y se determinó la estructura cristalina de las mezclas. La intensidad del pico de fotoluminiscencia aumentó para mezclas por debajo del límite de solubilidad. Se obtuvieron resultados similares para la sustitución del metilamonio con pequeñas cantidades de imidazolio. Los análisis de rayos X establecieron el límite de solubilidad en aproximadamente el 10% y una mejora en la cristalinidad. Los resultados de fotoluminiscencia sugieren que pequeñas cantidades de imidazolio reducen significativamente las recombinaciones no radiativas, actuando como un pasivador efectivo. Finalmente, se muestra el proceso de fabricación de dispositivos basados en MAPbI3 y sintetizados en función de las condiciones ambientales y empleando el dietil éter como anti-solvente. Los dispositivos mostraron una eficiencia máxima del 14.73%. Se ha probado que la oxidación del spiro-OMeTAD, bajo condiciones cont
[FR] Les perovskites orgàniques-inorgàniques de halurs de metilamoni i plom i les seues mescles han mostrat propietats optoelectròniques òptimes com a absorbent ideal per a aplicacions fotovoltaiques. Els dispositius solars basats en perovskita han evolucionat ràpidament, passant d'una eficiència del 3.9% en 2009, fins al 22.7% en 2017, i amb un cost de fabricació més baix que les cèl·lules solars de silici. No obstant això, un dels desavantatges de l'ús de absorbents de perovskita és la baixa estabilitat. En general, les cèl·lules que mostren un alt rendiment, perden la seua eficiència i es degraden ràpidament. Per a que aquestos materials puguen ser produits industrialment a gran escala és necessari estudiar-los en profunditat per millorar la eficiència i estabilitat. Una de les vies de millora és l'enginyeria composicional, estratègia que hem emprat en l'elaboració d'aquesta tesi i que consisteix en la investigació i la millora de les propietats optoelectròniques i morfològiques, derivades de la substitució i/o combinació de cations i anions, que constitueixen el material de perovskita. S'han sintetitzat pols purs de perovskita per a I, Br, Cl, a partir d'els quals es van preparar capes pures i mixtes MAPbX3-xYx per a millorar les propietats optoelectròniques i estructurals. Mitjançant anàlisi de difracció de raigs X, s'estudiaren les propietats estructurals del pols cristalins i capes pures i mixtes. Els anàlisis d'UV-vis i fotoluminiscència, mostren que el rang d'absorció varia al llarg de l'espectre visible en funció del contingut de l'halur. Les anàlisis de fotoluminiscència i calorimetria diferencial mostren els canvis de fase de les perovskites pures a diferents temperatures, coincidint aquestos canvis en totes dues anàlisis. L'anàlisi FESEM de les perovskites pures, mostra les diferències morfològiques entre els pols i capes. Seguint aquesta línia d'investigació, s'estudiaren les perovskites mixtes de iode-brom, amb un contingut de brom de fins el 33%, ajustant el bandgap per a evitar pèrdues en l'absorció i millorar les propietats optoelectròniques, estructurals i morfològiques. Malgrat les bones propietats optoelectròniques de les perovskites de metilamoni, el catió orgànic disminueix la estabilitat, la qual cosa ha portat a investigar l'ús d'altres cations inorgànics. Les perovskites de cesi són una alternativa prometedora, i per aquesta raó hem sintetitzat capes fines de perovskites de cesi mixtes, CsPbBr3-xIx, per tal de determinar els efectes de la substitució parcial del iode en les propietats físiques i l'estabilitat. Es van obtenir capes amb una bona resistència a la humitat i a la temperatura, afavorint la seua aplicació en el camp fotovoltaic. S'ha estudiat també la substitució parcial del catió de metilamoni amb altres cations orgànics, com el guanidini i imidiazoli. S'ha demostrat que petites quantitats de guanidini milloren l'estabilitat i la morfologia de les capes. S'ha establert que el límit de solubilitat del guanidini es del 20%, aproximadament, i s'ha determinat l'estructura cristal·lina de les mescles. S'ha observat un augment en la intensitat del pic de fotoluminiscència per a mescles per sota del límit de solubilitat. Es van obtenir resultats similars per a la substitució del metilamoni amb petites quantitats de imidazoli. Les anàlisis de difracció de raigs X van establir el límit de solubilitat en aproximadament el 10% i una millora en la cristalinitat. Els resultats de fotoluminiscència suggereixen que petites quantitats de imidazoli redueixen les recombinacions no radiatives, actuant com un pasivador efectiu. Finalment, es mostra el procés de fabricació de dispositius basats en MAPbI3 i sintetitzats en funció de les condicions ambientals, especialment la humitat relativa i utilitzant el dietil èter com anti-solvent. Els dispositius van mostrar una eficiència màx
[EN] Organic-inorganic methylammonium lead halides perovskites and their mixtures have shown optimal optoelectronic properties as an ideal absorber for photovoltaic applications. In the last decade, solar devices based on perovskite have evolved rapidly, going from an initial efficiency of only 3.9% in 2009, to an efficiency of 22.7% in 2017 and being, at the same time, more cost-effective than silicon solar cells. However, one of the main disadvantages when using perovskite absorbents in photovoltaic devices is their low stability. In general, cells that show high performance lose their efficiency and degrade rapidly. For these materials to be scalable it is necessary to carry out in-depth studies aiming at improved efficiency and stability. One of the main sources to improve stability and efficiency is compositional engineering, a strategy employed in the elaboration of this thesis, consisting of the investigation and improvement of the optoelectronic and morphological properties, derived from the substitution and / or combination of cations and anions, which constitute the perovskite material. Pure powders of perovskite were synthesized, for I, Br, Cl, from which pure and mixed MAPbX3-xYx films were prepared in order to improve their optoelectronic and structural properties. By means of X-ray diffraction analysis, the structural properties of crystalline powders and pure and mixed films were studied. Employing UV-vis and photoluminescence analysis, it was observed that the absorption range varied along the visible spectrum as a function of the halide content in the thin films. Both, photoluminescence and differential scanning calorimetry analysis showed the changes of phase of the pure perovskites at different temperatures. FESEM characterization of the pure perovskites showed the morphological differences between the powders and the films. Following this line of research, mixed perovskites of iodine-bromine with a bromine content of up to 33% were studied in more detail. The bandgap was tuned to avoid significant losses in absorption and improve the optoelectronic, structural and morphological properties. Despite the excellent optoelectronic properties of the methylammonium perovskite, the presence of the organic cation decreases its stability, which prompted research into the use of other inorganic cations. Cesium perovskites, are a very promising alternative, and for this reason we synthesized thin films of mixed cesium perovskites, CsPbBr3-xIx, to determine the effects of the partial substitution of iodine on physical properties and stability. Films with a very good resistance to moisture and temperature were obtained, which will favor the application of this type of perovskites in the photovoltaic field. The partial replacement of the methylammonium cation with other organic cations, such as guanidinium and imidiazolium, was also studied, showing that small amounts of guanidinium significantly improve the stability of the films and their morphology. It was established that the solubility limit of guanidinium is approximately 20%, and the crystalline structure of the mixtures was determined. An increase in the intensity of the photoluminescence peak for mixtures below the solubility limit was observed. Similar results were obtained for the substitution of methylammonium with small amounts of imidazolium. X-ray diffraction analyzes established the solubility limit at approximately 10% and an improvement in crystallinity. Photoluminescence results suggest that small amounts of imidazolium significantly reduce nonradiative recombinations, acting as an effective passivator. Finally, the manufacturing process of devices based on MAPbI3 and synthesized according to environmental conditions, especially relative humidity and using diethyl ether as anti-solvent is shown. The devices presented a maximum efficiency of 14.73%, proving that the oxidation of spiro-OMeTAD, under controlled humidity conditions, can improve efficiency.
Vega Fleitas, E. (2018). Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113402
TESIS
Style APA, Harvard, Vancouver, ISO itp.
15

Privitera, Alberto. "DEVELOPMENT AND CHARACTERIZATION OF NANOSTRUCTURED MATERIALS FOR ORGANIC AND HYBRID SOLAR CELLS". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426793.

Pełny tekst źródła
Streszczenie:
In the last years, the massive evolution of modern technologies has gradually created an alarming gap between the production and the consumption of energy. Traditional energy resources are no longer sufficient to satisfy the demand of energy without spoiling earth environment. Solar photovoltaics represents a highly promising technology to tackle this global energy issue. The thorough scientific discussion on this fundamental topic gave rise to interesting results and the organic solar cells (OSCs) are one of these achievements. One major reason of the development and the increasing interest in this new technology is its eco-friendliness and the potentially low-cost production of solar modules on flexible (plastic) substrates. Furthermore, new applications are expected by flexible or semitransparent organic solar cells. Nevertheless, two main problems must be overcome before this promising technology replaces the long-established silicon solar cells: the low power conversion efficiency and the scarce stability. In order to tackle these fundamental issues the research efforts must be focused towards both the development of new materials and their detailed photophysical and morphological characterization. Recently the application of nanostructured architectures within the active layers of OSCs has demonstrated to be an efficient alternative to boost solar cell efficiency. Indeed, the nanometric miniaturization of materials opened a huge amount of possibilities to tune and bolster their optical and electrical properties. In this thesis work, the potentialities of the nanostructured architectures are explored. In particular, the attention of this work is addressed towards the development and the photophysical characterization of new hybrid nanostructured photoactive materials. Three different families of nanostructures, colloidal Quantum Dots, Carbon Dots, and hybrid organic/inorganic perovskite nanoparticles, are blended with organic photovoltaic materials. The thorough investigation of the photo-physical and morphological interactions between the nanostructures and the organic materials aims to investigate these nanocomposite as new photoactive materials for next-generation solar cells. The first step of the work focuses on the investigation of a prototypical active layer consisting in binary blends of the fullerene derivative PCBM and CdSe/CdS core-shell Quantum Dots (QDs) capped with different ligands (namely, oleylamine, octadecanethiol, and propanethiol). The double purpose is both to demonstrate that QDs do not influence only the morphology of the active layers, as it is often reported in literature, but also its photophysics and to unravel the pivotal role of QDs ligands on the electron transfer process, which is fundamental for organic solar cells. Through the combined use of steady-state, time resolved and pulsed electron paramagnetic resonance (EPR) techniques the photophysical role of QDs in OSCs is clarified and the possibility to tailor the electron transfer process through the proper choice of QDs ligands is demonstrated. The second part of the work aims at promoting the application of carbon dots (CDs) as electron donor materials for OSCs. CDs seem to be a good alternative to colloidal QDs, thanks to their low toxicity, good biocompatibility and peculiar photo-physical properties, however their poor solubility in organic solvents and mediocre electron-donor properties hampered their photovoltaic application. To tackle these critical issues, the synthesis and photo-physical characterization of N-doped CDs functionalized with two different thiophene-containing groups is carried out in this work. The functionalization intends to enhance the electron donating properties of the CDs and improve their solubility in organic solvents. The increased solubility allows to investigate the photoinduced interactions of functionalized CDs with the PCBM in solution and in solid blends. Through the combined cyclic voltammetry, optical and EPR analysis the enhanced electron donor capabilities of the functionalized CDs are demonstrated and the electron transfer process is characterized in detail. Finally, the last part of the work concentrates on the hybrid organic inorganic perovskite nanostructures. These recent nanostructures are definitely the best candidate to compete with silicon solar cells since their bulk counterpart has already provided record photovoltaic efficiencies in less than five years. However, the application of perovskite nanoparticles (PNPs) in organic solar cells has been scarcely investigated so far. Therefore, in this thesis work the synthesis of PNPs and the investigation of their interaction with both the PCBM and the semiconducting polymer P3HT is carried out. After the confirmation of the obtained synthesis through optical spectroscopy, X-ray diffraction and XPS analysis, the electron transfer from PNPs to PCBM is investigated. In particular, the effect of the ligand length on the electron transfer is examined, probing the process with two different PNPs ligands: octylamine and oleylamine. Successively, the role of the PNPs in blend with P3HT is studied. A triple effect of PNPs on the polymer properties is observed: (1) an increment of the dimension of P3HT crystalline domains, (2) a p-doping of the P3HT, and (3) an enhanced interchain order. The results of this work underpin the relevance of applying nanostructured architectures in organic photovoltaic materials, highlighting their beneficial role not only in morphology, but also in the main photo-physical processes that take place in solar cells. Additionally, the relevant role of the tailored surface engineering of nanostructures in the process of solar energy conversion is evidenced. All these observations aim at providing guidelines for the design and the fabrication of highly efficient solar cells.
Negli ultimi anni, a causa della frenetica evoluzione delle moderne tecnologie, si è andata a creare una divergenza sempre più allarmante tra la produzione e il consumo di energia. Le risorse tradizionali di energia, infatti, non sono più sufficienti a soddisfare la sempre crescente domanda energetica senza il drastico effetto di rovinare l’ambiente che ci circonda. Il fotovoltaico rappresenta una tecnologia promettente per affrontare il problema energetico mondiale. La ricerca scientifica focalizzata su questo argomento fondamentale ha dato luogo a risultati molto interessanti e le celle solari organiche ne sono una dimostrazione. Uno dei principali motivi dello sviluppo e del crescente interesse in questa nuova tecnologia è legato alla sua ecosostenibilità e al basso costo di produzione dei moduli solari che solitamente avviene su substrati (polimerici) flessibili. Inoltre, dal momento che questa tecnologia si basa sulla produzione di celle solari trasparenti e flessibili numerose applicazioni innovative sono già previste. Nonostante ciò, prima che il forovoltaico organico prevalga sulle celle solari al silicio che già da anni si sono affermate nella scena mondiale, due problemi principali devono essere affrontati: la bassa efficienza e la scarsa stabilità dei moduli fotovoltaici organici. Per far fronte a questi problemi la migliore alternativa è focalizzare gli sforzi della ricerca sia sullo sviluppo di nuovi materiali sia sulla loro caratterizzazione fotofisica e morfologica. Recentemente, l’applicazione di nanostrutture all’interno degli strati attivi delle celle solari organiche ha dimostrato di essere un’idea efficace per promuovere l’efficienza delle celle solari. Infatti è risaputo che la miniaturizzazione a livello nanometrico dei materiali apre la strada a numerose possibilità per controllare e incrementare le loro proprietà ottiche ed elettriche. In questo lavoro di tesi, le potenzialità delle nanostrutture vengono prese in considerazione. In particolare, l’attenzione di questa tesi è indirizzata allo sviluppo e alla caratterizzazione fotofisica di nuovi materiali nanostrutturati fotoattivi ibridi. Tre differenti famiglie di nanostrutture, i Quantum Dots colloidali, i Carbon Dots e le nanoparticelle di perovskite ibrida organica/inorganica, sono state incorporate all’interno di materiali fotovoltaici organici. Lo studio dettagliato delle interazioni fotofisiche e morfologiche tra le nanostrutture e i materiali organici ha permesso di considerare questi materiali nanocompositi come materiali promettenti per il fotovoltaico di nuova generazione. La prima parte del lavoro si focalizza sullo studio di uno strato fotoattivo costituito dal derivato fullerenico PCBM e dai Quantum Dots (QDs) core-shell di CdSe/CdS funzionalizzati con tre leganti differenti (l’oleilammina, l’ottadecantiolo e il propantiolo). Il primo obiettivo è stato dimostrare che la presenza dei QDs non solo influenza la morfologia degli strati fotoattivi delle celle solari, come spesso è riportato in letteratura, ma anche la loro fotofisica. Il secondo obiettivo è stato chiarire il ruolo fondamentale dei leganti dei QDs nel processo di trasferimento elettronico, processo essenziale nelle celle solari organiche. Attraverso l’uso combinato di tecniche di risonanza magnetica elettronica di stato stazionario, risolte nel tempo e impulsate, il ruolo fotofisico dei QDs nelle celle solari organiche è stato chiarito in grande dettaglio. Inoltre, è stata dimostrata la possibilità di controllare opportunamente il processo di trasferimento elettronico attraverso la scelta accurata dei leganti dei QDs. La seconda parte del lavoro mira a promuovere l’applicazione dei Carbon Dots (CDs) come materiale elettron-donatore nelle celle solari organiche. I CDs hanno dimostrato di essere una buona alternativa ai QDs colloidali grazie alla loro bassa tossicità e biocompatibilità e alle loro peculiari proprietà fotofisiche. Nonostante ciò, la loro scarsa solubilità in solventi organici e le loro deboli proprietà elettron-donatrici hanno ostacolato sinora la loro applicazione nel campo fotovoltaico. Per far fronte a queste criticità, è stata portata a termine la sintesi e la caratterizzazione fotofisica di CDs contenenti atomi di azoto e funzionalizzati con due diversi gruppi tiofenici. Lo scopo della funzionalizzazione è stato incrementare le proprietà elettron-donatrici dei CDs e migliorare la loro solubilità in solventi organici. L’aumento di solubilità ha permesso di studiare la loro interazione fotofisica con il PCBM sia in soluzione che in film. Tramite l’utilizzo della voltammetria ciclica, della spettroscopia ottica e della spettroscopia EPR, sono state dimostrate le buone proprietà di trasferimento elettronico fotoindotto in questi materiali e il processo di trasferimento elettronico è stato studiato in dettaglio. Infine, l’ultima parte di questo lavoro di tesi si concentra sulle nanoparticelle di perovskite ibrida organica/inorganica. Le perovskiti ibride sono a tutti gli effetti il miglior candidato nella corsa per sostituire le convenzionali celle solari al silicio. Negli ultimi cinque anni le perovskiti ibride massive hanno stabilito record straordinari di efficienza fotovoltaica. Nonostante ciò, l’utilizzo delle nanoparticelle di perovskite nelle celle solari organiche non è stato ancora studiato a fondo. Per ovviare a ciò, nell’ultima parte di questo lavoro è stata portata a termine la sintesi delle nanoparticelle di perovskite ed è stata studiata la loro interazione sia con il PCBM che con il polimero semiconduttore P3HT. Dopo aver confermato l’avvenuta sintesi mediante spettroscopia ottica, diffrazione a raggi X e spettroscopia di fotoemissione a raggi X, è stato analizzato il processo di trasferimento elettronico fotoindotto tra le nanoparticelle di perovskite e il PCBM. In particolare, grazie all’utilizzo di nanoparticelle funzionalizzate con due diversi leganti (ottilammina ed oleilammina), il ruolo fondamentale della lunghezza dei leganti nel processo di trasferimento elettronico è stato evidenziato. Successivamente, l’attenzione è stata rivolta al nanocomposito di nanoparticelle di perovskite e P3HT. In questo caso, è stato osservato che la presenza delle nanoparticelle di perovskite svolge un triplice effetto sulle proprietà del polimero: (1) un incremento nella dimensione dei domini cristallini, (2) un drogaggio di tipo p, e (3) un aumento dell’ordine intercatena nella fase polimerica. I risultati di questo lavoro di tesi evidenziano la rilevanza delle nanostrutture nei materiali fotovoltaici organici sottolineando il loro effetto positivo non solo sulla morfologia, ma anche su tutti i principali processi fotofisici che hanno luogo nelle celle solari. Inoltre, viene dimostrata l’importante funzione dell’ingegnerizzazione superficiale di queste nanostrutture al fine di favorire il processo di conversione dell’energia solare. Tutti questi risultati hanno lo scopo di promuovere la progettazione, lo sviluppo e l’efficienza delle celle solari di nuova generazione.
Style APA, Harvard, Vancouver, ISO itp.
16

Teran, Escobar Gerardo. "Solution-Processed Transition Metal Oxides for Organic Solar Cells". Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/131406.

Pełny tekst źródła
Streszczenie:
Las celdas solares orgánicas se han convertido en una promesa para la producción de energía a bajo costo, y su potencial se refleja en los enormes esfuerzos para mejorar su eficiencia. En los últimos 30 años, esta tecnología ha crecido enormemente, con prototipos de laboratorio mostrando eficiencia mayor que 10 % . El continuo desarrollo de polímeros semiconductores, materiales de amortiguamiento, y el conocimiento profundo sobre el intercambio electrónico en las interfaces, han sido las principales razones de este crecimiento. Sin embargo, la mejora de esta tecnología a estados de producción de bajo coste como tecnologías de impresión R2R es el objetivo, y el desarrollo de materiales de procesamiento de baja temperatura es el reto a superar. En este trabajo, se ha explorado en profundidad la aplicación de los óxidos de metales de transición como capas tampón electrónicos como TiO2 , ZnO como capas de transporte de electrones , y V2O5 , NiO como capas de transporte de huecos. También muestra el desarrollo de una tinta base agua con procesamiento a baja temperatura de V2O5 para aplicaciones R2R, así como la aplicación de película de NiO sinterizado a baja temperatura (350oC) y la caracterización mediante diferentes técnicas espectroscópicas. Además se muestran los estudios de estabilidad a largo plazo, como en interiores y al aire libre, la realización de estudios de degradación de los diferentes dispositivos desarrollados.
Organic Solar Cells (OSCs) have emerged as a promise for low cost energy production, and its potential is reflected in the huge efforts to improve their efficiencies. In the last 30 years, this technology has grown enormously; nowadays the state of the art is showing efficiencies higher than 10%. The continuous development of semiconducting polymers, buffer materials, and the depth knowledge about the electronic exchange at the interfaces, have been the principal reasons of this growing. Nevertheless, upgrading this technology to low cost production states like roll to roll printing technologies is the goal, and the development of low temperature processing materials is the challenge to overcome. In this work, it has explored in depth the application of Transition Metal Oxides (TMOs) as electronic buffer layers like TiO2, ZnO as electron transport layers, and V2O5, NiO as hole transport layers. Also shows the development of a water base low temperature solution-processed V2O5 ink for R2R applications, as well as the application of NiO film sintered at low temperature (350oC) and the characterization by distinct techniques. As well, the long-term stability studies, like indoor and outdoor; carrying out degradation studies for the different architecture devices tested.
Style APA, Harvard, Vancouver, ISO itp.
17

Ghanavi, Saman. "Organic-inorganic hybrid perovskites as light absorbing/hole conducting material in solar cells". Thesis, Uppsala universitet, Fysikalisk kemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205605.

Pełny tekst źródła
Streszczenie:
Solar cells involving two different perovskites were manufactured and analyzed. The perovskites were (CH3NH3)PbI3 and (CH3NH3)SnI3. Both perovskites have a shared methyl ammonium group (MA) and are used as both light absorbing material and hole conducting material (HTM) in this project. The preparation procedures for the complete device were according to previous attempts to make stable organic-inorganic hybrid perovskites and involved different layers and procedures. Both perovskites were manufactured by mixing methyl ammonium iodide with either lead iodide or tin iodide in different concentrations. This was then deposited on a 600nm thick mesoporous TiO2 layer. Deposition of the hole-transporting material (HTM) was done by spin-coating 2,2´,7,7´-tetrakis-(N,N-dip-methoxyphenylamine) 9,9´-spirobifluorene, also called spiro-OMeTAD. Lastly thermal evaporation was used to deposit a silver electrode. Different measurements were done on the light absorbing materials. The lead perovskite solar cell device was subjected to illumination with Air Mass 1.5 sunlight (100mW/cm2) which produced an open circuit voltage Voc of 0.645 V, a short circuit photocurrent Jsc of about 7 mA/cm2, and a fill factor FF of 0.445. This resulted in a power conversion efficiency (PCE) of about 2% and an incident photon to current efficiency (IPCE) of up to 60%. The tin perovskite has not been used in solar cells before and the initial results presented here shows low performance using the same device construction as for the lead perovskite. However, the incident photon to electron conversion affirms that there is a current in the visible region, and IPCE of 12.5 % was observed at 375nm. UV-visible NIR measurement was used to analyze the light absorption of the perovskite structures and a broader light absorption was observed for the lead perovskite compared to the tin perovskite. X-ray diffraction (XRD) analyzing was done on both perovskite materials using different concentrations and both with and without nanoporous TiO2 film. Both perovskites demonstrate very similar peaks with some exceptions. Photo-induced absorption (PIA) measurement was used for the purpose of showing the magnitude of charge separation or hole transfer in the light absorbing material, both when using the perovskites as a light absorber and a hole conductor. This is measured by analyzing the hole injection from the excited light absorber into the HTM. Hole transfer was observed for the lead perovskite (when used as light absorber) and tin perovskite (when used as hole conductor).
Style APA, Harvard, Vancouver, ISO itp.
18

Jeon, Taewoo. "Nanostructured hybrid solar cells based on PECVD grown SiNWs and organic semiconducting polymers". Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/91/78/26/PDF/Thesis_Taewoo_JEON_EP_PICM.pdf.

Pełny tekst źródła
Streszczenie:
Les cellules photovoltaiques proposent une solution au problème énergétique en raison de leur source inépuisable: le soleil. Plusieurs types de cellules, qu'elle soient inorganiques ou organiques, sont étudiées, avec comme objectif d'obtenir de hauts rendements pour de faibles coûts. Dans ce contexte, ce travail de thèse se propose d'étudier des cellules solaires hybrides nanostructurées à base de nanofils de silicium et de matériaux organiques afin de bénéficier des avantages de ces différents matériaux. La morphologie controlée de la croissance des nanofils de silicium par dépôt chimique en phase vapeur assisté par plasma (PECVD) via un procédé Vapeur-Liquide-Solide est présentée. Le mélange de matériaux organiques est ensuite déposé sur les nanofils de silicium par un procédé d'enduction par centrifugation. Dans ce type de cellules hybrides, les nanofils de silicium jouent le rôles de matériaux accepteurs ou aident à l'absorption de la lumière. Pour améliorer les performance de ces cellules, il est nécessaire d'optimiser la qualité du réseau de nanofils par une gravure chimique visant à éliminer les traces de catalyseur résiduelles ainsi que l'oxyde natif du silicium. Cet effet de la gravure a été largement étudié et discuté. De plus les propriétés d'accepteur d'électrons des nanofils de silicium à base de catalyseurs de Bismuth ont été étudiées. Les résultats montrent clairement le potentiel de ce type de cellules, notamment 1) l'augmentation de la conversion de lumière par l'amélioration de l'efficacité du rendement quantique pour les grandes longueurs d'onde, 2) l'utilisation d'une grande variété de nanofils avec des morphologies et propriétés électriques finement controlées
Solar cells are an exciting alternative energy technology due to the infinite energy source, the Sun. Many types of solar cells based on inorganic or organic materials are currently developed with the objective of higher efficiency and lower cost. In this context, this thesis suggests to study nano-structured hybrid solar cells based on silicon nanowires (SiNWs) and organic active materials to benefit advantages of both materials. SiNWs are grown by PECVD on transparent conducting oxide via Vapor-Liquid-Solid (VLS) mechanism with careful control of their nano-morphology. The organic materials made of polymers or blend polymers are then deposited by spin-coating on top of SiNWs. In these hybrid solar cells the SiNWs are used as light-trapping medium and/or electron acceptor material. For better solar cell performance, the optimization of SiNWs array is carried out by removing residual catalyst and etching parasitic hydrogenated amorphous silicon. Their effects on hybrid solar cells have been fully analyzed and discussed. Furthermore, the electron-acceptor properties of the nano-structured SiNWs have been estimated with Bismuth-doped n-type SiNWs. The results clearly reveal the potential of this type of hybrid solar cells, namely, 1) power conversion efficiency improvement by enhancing external quantum efficiency in longer wavelength regime and 2) variety uses of SiNWs by tuning their electrical property and morphology
Style APA, Harvard, Vancouver, ISO itp.
19

Bowers, Norman Mark. "Metal oxide nanocrystalline thin films as buffer layers in organic/ hybrid solar cells". University of Western Cape, 2019. http://hdl.handle.net/11394/7698.

Pełny tekst źródła
Streszczenie:
>Magister Scientiae - MSc
Without reverting to encapsulation, organic bulk - heterojunction solar cells can be protected from the oxidation of the highly reactive low work function cathode metal electrode, by the deposition of metal oxide buffer layers onto an indium-tin oxide (ITO) substrate. The zinc-oxide (ZnO) or titanium dioxide (TiO2) layer can serve as an electron collecting contact. In such a case the ordering of layer deposition is inverted from the traditional layer sequencing, using an additional effect of the metal oxide layer acting as a hole blocking contact
Style APA, Harvard, Vancouver, ISO itp.
20

Wood, Sebastian. "Directly probing thin film morphology-optoelectronic property relationships in organic and hybrid solar cells". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/44459.

Pełny tekst źródła
Streszczenie:
Solution processable organic semiconductors offer a promising route towards low-cost solar photovoltaics. The performance of these devices is critically dependent on the morphology of the thin film active layer and is very sensitive to both the chemical structure and deposition conditions of the materials. In this thesis a range of complementary techniques are used to characterise the morphology, particularly resonant Raman spectroscopy and atomic force microscopy, in addition to analysis of the device performance. By comparing these results we are able to fulfil the aim of this project, which was to elucidate the fundamental relationships between the thin film morphology and photovoltaic performance for a range of organic and hybrid solar cells. For polymer/polymer blends we consider the impacts of nanowire formation, molecular weight, and thermal annealing on the thin film molecular order. By controlling the interactions between the two polymers we are able to increase the charge carrier mobilities by several orders of magnitude, resulting in reduced bimolecular recombination and enhanced device efficiency. For the hybrid polymer/inorganic devices that we consider, we identify an interfacial region of disordered polymer, which can be partly controlled but not fully overcome. We suggest that this represents an intrinsic limitation, which should be addressed by considering alternative routes to interface formation. Donor-acceptor copolymers are an important class of materials showing promising optoelectronic properties for polymer/fullerene solar cells. We consider how various chemical modifications including fluorination, side chain branching, and heavy atom substitution affect the molecular properties and thin film morphology. In particular, we consider the nature of the electronic absorption transitions of diketopyrrolopyrrole-based copolymers and find that the low energy transition is localised on the diketopyrrolopyrrole unit and is very stable to photodegradation, whereas the high energy transition couples more strongly to the donor unit, which is more vulnerable to photooxidation.
Style APA, Harvard, Vancouver, ISO itp.
21

Hey, Andrew Stuart. "Series interconnects and charge extraction interfaces for hybrid solar cells". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f19e44a8-e394-4859-9649-734116bc22b8.

Pełny tekst źródła
Streszczenie:
This thesis investigates novel hole extraction interfaces and series interconnects for applications in organic photovoltaics, specifically in single junction solid-state dye-sensitized solar cells (DSSCs) and tandem DSSC/polymer bulk heterojunction solar cells. Improvements in hole extraction and device performance by using materials compatible with scalable deposition methods are presented, including tungsten- and molybdenum-disulphide (WS2 and MoS2), and p-type doped spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene) nanoparticle dispersions. WS2 and MoS2 hole extraction layers increase averaged short circuit currents by 20% and 16% respectively, and power conversion efficiencies by 19% and 14% respectively when compared with control devices. Similarly, doped spiro-OMeTAD nano-particle layers improved short circuit current densities by 32% and efficiencies by 9%. Tandem device interconnects using these novel hole extraction formats have been fabricated, but although devices did exhibit rectification, overall performance was poor. Possible reasons for their limited success have been analysed. Dye-sensitized solar mini-modules are also reported. In order to assure the scalability of DSSC technology, these larger area devices were constructed using doctor blade coating to deposit the hole transporter material. As well as achieving a respectable maximum power conversion efficiency of 2.6%, it has also been shown that the extent to which hole transporter infiltrates the mesoporous photoanode of these devices may be tuned by altering substrate temperature during deposition. It was found that an optimal coating temperature of 70 degrees C produced the best efficiency, with a corresponding pore-filling fraction of 41%.
Style APA, Harvard, Vancouver, ISO itp.
22

Li, Ning [Verfasser], i Christoph [Akademischer Betreuer] Brabec. "Hybrid Heterojunction Recombination Layers for Printed Organic Tandem Solar Cells / Ning Li. Gutachter: Christoph Brabec". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1075478340/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

HUANG, ZIXU HUANG. "FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525107429276123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Noori, Keian. "Energy-level alignment at organic and hybrid organic-inorganic photovoltaic interfaces". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d1b2a4e9-a5d6-4843-b172-6d83dea8a6cb.

Pełny tekst źródła
Streszczenie:
Organic and hybrid organic-inorganic photovoltaic (PV) devices have the potential to provide low-cost, large scale renewable energy. Despite the tremendous progress that has been made in this field, device efficiencies remain low. This low efficiency can be partly attributed to the low open-circuit voltages (Voc) generated by organic and hybrid organic-inorganic PV devices. The Voc is critically determined by the energy-level alignment at the interface between the materials forming the device. In this thesis we use first-principles methods to explore the energy-level alignment at the interfaces between the conjugated polymer poly(3-hexylthiophene) (P3HT) and three electron acceptors, zinc oxide (ZnO), gallium arsenide (GaAs) and graphene. We find that Voc reported in the literature for ZnO/P3HT devices is significantly lower than the theoretical maximum and that the interfacial electrostatic dipole plays an important role in the physics underlying the charge transfer at the heterojunction. We note significant charge transfer from the polymer to the semiconductor at GaAs/P3HT interfaces, and use this result to help interpret experimental data. Our findings support the conclusion that charge transferred from P3HT to GaAs nanowires can passivate the surface defect states of the latter and, as a result, account for the observed decrease in photoluminescence lifetimes. Finally, we explore the energy-level alignment at the graphene/P3HT interface and find that Voc reported for experimental devices is in line with the theoretical maximum. The effect of functionalised graphene is also examined, leading to the suggestion that functionalisation might have important consequences for device optimisation.
Style APA, Harvard, Vancouver, ISO itp.
25

Hou, Yi [Verfasser], i Christoph [Gutachter] Brabec. "Rational Interfaces Design of Efficient Organic–inorganic Hybrid Perovskite Solar Cells / Yi Hou ; Gutachter: Christoph Brabec". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1136133194/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Weingarten, Martin [Verfasser], Andrei [Akademischer Betreuer] Vescan i Uwe [Akademischer Betreuer] Rau. "Investigation and optimization of hybrid organic/inorganic heterojunction solar cells / Martin Weingarten ; Andrei Vescan, Uwe Rau". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1169754929/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Weingarten, Martin Verfasser], Andrei [Akademischer Betreuer] [Vescan i Uwe [Akademischer Betreuer] Rau. "Investigation and optimization of hybrid organic/inorganic heterojunction solar cells / Martin Weingarten ; Andrei Vescan, Uwe Rau". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1169754929/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gräf, Katja [Verfasser], i Mukundan [Akademischer Betreuer] Thelakkat. "Light Harvesting using Metal-Organic and Organic Sensitizers in Hybrid Solar Cells: Synthesis, Characterisation and Application / Katja Gräf. Betreuer: Mukundan Thelakkat". Bayreuth : Universität Bayreuth, 2012. http://d-nb.info/1059908328/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Bochukov, Ivelin [Verfasser], i Arne [Akademischer Betreuer] Thomas. "Hybrid interface engineering in ZnPc/C60 bi-layer heterojunction organic solar cells / Ivelin Bochukov. Betreuer: Arne Thomas". Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2013. http://d-nb.info/1033027847/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Watthage, Suneth C. "Solution-Processed Fabrication of Hybrid Organic-Inorganic Perovskites & Back Interface Engineering of Cadmium Telluride Solar Cells". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1512390043951256.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Sahin, Tiras Kevser. "Magnetic field effect and other spectroscopies of organic semiconductor and hybrid organic-inorganic perovskite devices". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6495.

Pełny tekst źródła
Streszczenie:
This thesis consists of three main studies: magnetic field effects in thermally activated delayed fluorescent (TADF) organic light emitting diodes (OLEDs), magnetic field effects in bipolar and unipolar polythiophene (P3HT) devices and a study of hybrid organic/inorganic perovskite devices. Spin-dependent transport and recombination processes of spin-pair species have been detected by magnetic field effect (MFE) technique in carbon-based semi- conductor devices. Magneto-electroluminescence (MEL) and magneto-conductivity have been measured as a function of the applied magnetic field, B, in light emitting diodes. TADF materials have been used instead of simple fluorescent materials in OLEDs. We have observed very large magnetic response with TADF materials. The second study is magnetic field effects of regio-regular P3HT based OLED devices. P3HT is a well known semiconducting polymer, and its electrical properties such as magneto-conductance can be affected by an applied magnetic field. P3HT was chosen because it exhibits a sign change in magnetoresistance (MR) as the bias is increased. Unipolar and bipolar devices have been fabricated with different electrode materials to understand which model can be best to explain organic magnetoresistance effect, possibly depending on the operating regime of the device. Transport and luminescence spectroscopies were studied to isolate the different mechanisms and identify their fingerprints. The third study is on hybrid organic-inorganic perovskite devices. With the potential of achieving very high efficiencies and the very low production costs, perovskite solar cells have become commercially attractive. Scanning electron microscopy (SEM) images and absorption spectrum of the films were compared in single-step solution, two-step solution and solution-assisted vapor deposition techniques. Grain size, morphology and thickness parameters of perovskite films were studied within these techniques. Perovskite solar cells were fabricated and their efficiencies were measured.
Style APA, Harvard, Vancouver, ISO itp.
32

Alkarsifi, Riva. "Synthesis and characterization of composite nanomaterials as interfacial layers in organic solar cells". Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0433.

Pełny tekst źródła
Streszczenie:
Les cellules solaires organiques sont dans le domaine photovoltaïque l'une des approches les plus prometteuses et cette thèse traite de la synthèse chimique de nouveaux nanocristaux à base de métaux et de l'incorporation de ces matériaux, par voie liquide, comme couches de transport dans les cellules solaires. L’une des stratégies pour améliorer les performances des dispositifs consiste en l'incorporation de couches interfaciales appropriées.Celles-ci jouent plusieurs rôles et sont le plus souvent préparées par des méthodes de dépôt sous vide comme l'évaporation thermique. Cependant, ces méthodes nécessitent des équipements complexes, ce qui limite leur utilisation pour la fabrication de dispositifs de grande surface à faible coût. Par conséquent, l’approche d’une utilisation de matériaux interfaciaux par voie liquide a attiré beaucoup d'attention.Au cours de ces travaux, nous avons focalisé les études des couches de transport de trous sur la synthèse de NiOx et de NiOx dopés au Li, Cu et Sn et avons pu modifier le solvant de la dispersion depuis l'eau vers l’isopropanol. Un dopage par un composé moléculaire a ensuite été utilisé pour améliorer le travail de sortie, permettant d’obtenir une efficacité de 7,4% avec les cellules solaires de structure normale. En structure inverse, une efficacité de 7,9% a été atteinte.En ce qui concerne les études des couches de transport d’électron, trois matériaux hybrides ont ainsi été synthétisés et cristallisés par évaporation lente puis solubilisés dans des solutions à base d'alcool, avant d'être utilisés dans des cellules solaires en structure normale et inverse, permettant ainsi d’obtenir respectivement 8,19% et 6,7% d'efficacité
This thesis deals with the chemical synthesis of new metal-based nanocrystals and the incorporation of these solution processed materials as hole transport layers (HTLs) and electron transport layers (ETL) in Organic Solar Cells (OSCs). Several strategies were applied to increase the efficiency of the OSCs such as the incorporation of suitable interfacial layers. Interfacial layers were mainly prepared through vacuum deposition methods such as thermal evaporation, however, they require complex equipment, which limits their use in low-cost, large area device fabrications. Therefore, the solution processed interfacial materials have attracted significant attention to overcome the problems of vacuum depositions. During this work, we focused the HTL studies on the synthesis of NiOx nanocrystals. We synthesized pristine NiOx as well as Li, Cu and Sn doped NiOx nanoparticles at different doping levels. By following a specific strategy, we were able to transform the dispersion from water into isopropanol that can be easily deposited onto the active layer. Molecular doping was used to improve the work function using F4-TCNQ molecule. After optimizations, 7.4% and 7.9% efficiencies were obtained with the regular and the inverted device structures, respectively. As for the ETL studies, we focused this work on the development of a new class of organic-inorganic hybrid materials. Three types of antimony-based hybrid materials were synthesized and crystallized using a slow evaporation method and then solubilized as nanocrystals in alcohols, before being used in both regular and inverted devices giving 8.19% and 6% efficiencies, respectively, for the best working hybrid material
Style APA, Harvard, Vancouver, ISO itp.
33

Jäckle, Sara Lisa Verfasser], i Gerd [Gutachter] [Leuchs. "Towards hybrid heterojunction silicon solar cells with organic charge carrier selective contacts / Sara Lisa Jäckle ; Gutachter: Gerd Leuchs". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1132337453/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Liu, Tianyu. "Perovskite Solar Cells fabrication and Azobenzene Perovskite synthesis: a study in understanding organic-inorganic hybrid lead halide perovskite". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1576840261464488.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Jäckle, Sara Lisa [Verfasser], i Gerd [Gutachter] Leuchs. "Towards hybrid heterojunction silicon solar cells with organic charge carrier selective contacts / Sara Lisa Jäckle ; Gutachter: Gerd Leuchs". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1132337453/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Möllmann, Alexander [Verfasser]. "Nanostructured Metal Oxide Thin Films as Electron Transport Material for Inorganic-Organic Hybrid Perovskite Solar Cells / Alexander Möllmann". München : Verlag Dr. Hut, 2020. http://d-nb.info/1219478067/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Liu, Mingzhen. "Planar heterojunction perovskite solar cells via vapour deposition and solution processing". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:89a275a8-5ec8-442c-a114-246a44dbd570.

Pełny tekst źródła
Streszczenie:
Hybrid organic-inorganic solar photovoltaic (PV) cells capable of directly converting sunlight to electricity have attracted much attention in recent years. Despite evident technological advancements in the PV industry, the widespread commercialisation of solar cells is still being mired by their low conversion efficiencies and high cost per Watt. Perovskites are an emerging class of semiconductors providing a low-cost alternative to silicon-based photovoltaic cells, which currently dominate the market. This thesis develops a series of studies on “all-solid state perovskite solar cells” fabricated via vapour deposition which is an industrially-accessible technique, to achieve planar heterojunction architectures and efficient PV devices. Chapter 2 presents a general outlook on the operating principles of solar cells, delving deeper into the specific operational mechanism of perovskite solar cells. It also explores the usual methods employed in the fabrication of perovskite thin films. Chapter 3 describes the experimental procedures followed during the fabrication of the individual components constituting the device from the synthesis of the precursors to the construction of the functioning perovskite PV devices. Chapter 4 demonstrates pioneering work involving the dual-source vapour deposition (DSVD) of planar heterojunction perovskite solar cells which generated remarkable power conversion efficiency values surpassing 15%. These significant results pave the way for the mass-production of perovskite PVs. To further expand the range of feasible vapour deposition techniques, a two-layer sequential vapour deposition (SVD) technique is explored in Chapter 5. This chapter focusses on identifying the factors affecting the fundamental properties of the vapour-deposited films. Findings provide an improved understanding of the effects of precursor compositions and annealing conditions on the films. Chapter 5 concludes with a comparison between SVD and DSVD fabricated films, highlighting the benefits of each vapour deposition technique. Furthermore, hysteretic effects are analysed in Chapter 6 for the perovskite PV devices fabricated based on different structural configurations. An interesting discovery involving the temporary functioning of compact layer-free perovskite PV devices suggests the presence of a built-in-field responsible for the hysteresis of the cells. The observations made in this chapter yield a new understanding of the functionality of individual cell layers. Combining the advantages of the optimum vapour deposition technique established in Chapter 4 and Chapter 5, with the enhanced understanding of perovskite PV cell operational mechanism acquired from Chapter 6, an ongoing study on an “all-perovskite” tandem solar cell is introduced in Chapter 7. This demonstration of the “all-perovskite” tandem devices confirms the versatility of perovskites for a broader range of PV applications.
Style APA, Harvard, Vancouver, ISO itp.
38

Yu, Yue. "Thin Film Solar Cells with Earth Abundant Elements: from Copper Zinc Tin Sulfide to Organic-Inorganic Hybrid Halide Perovskite". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513289830601094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Pirzado, Azhar Ali Ayaz. "Integration of few kayer graphene nanomaterials in organic solar cells as (transparent) conductor electrodes". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD016/document.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, des films à base de graphène ont été étudiés comme alternatives viables dans la fabrication d'électrodes transparentes (TCE). Elle met l'accent sur des couches fines de graphène (FLG), sur l'oxyde de graphène réduit (RGO) et leurs hybrides avec des nanotubes de carbone (NTCs) pour être utilisé comme TCE dans les cellule solaires organiques (OSC). Les FLGs et RGO ont été préparés par des méthodes d'exfoliation mécanique ou en phase liquide assistée par micro-ondes. Ces nanomatériaux dilués dans un solvant liquide ont été déposé en couche mince par aérographe. Des caractérisations de transport de charge ont été obtenues grâce à la méthode des 4 pointes. Ces échantillons ont été caractérisés: leur transparence(UV-Visible), leur morphologie et leur topographique (MEB, MET, AFM) ainsi que le travail de sortie (UPS). Pour obtenir des informations sur la qualité structurelle des échantillons, nous avons utilisés les méthodes de spectroscopie XPS, Raman et la photoluminescence
Graphene mate rials have been researched as viable alternatives of transparent conductors electrodes (TCEs) in this thesis. Current study focuses on few layer graphene (FLG), reduced graphene oxide (rGO) and their hybrids with carbon nanotubes (CNTs) for TCE applications inorganic solar cells (OSCs). FLGs and rGOs have been prepared by mechanical and microwave-assisted exfoliation methods. This films of these materials have been produced by hot-spray method. Results of charge transport characterizations by four-point probes, transparency (UV-Vis), measurements, along with morphological (SEM, TEM) and topgraphic (AFM) studies of films have been presented. UPS studies were performed to determine for a work-function. XPS,Raman and Photoluminescence studies have been employed to obtain the information about the structural quality of the samples
Style APA, Harvard, Vancouver, ISO itp.
40

Ramashia, Thinavhuyo Albert. "Effect of the additional electron acceptor in hybrid ZnO: P3HT:PCBM spin-coated films for photovoltaic application". University of the Western Cape, 2015. http://hdl.handle.net/11394/4779.

Pełny tekst źródła
Streszczenie:
>Magister Scientiae - MSc
In a quest for low operational and maintenance cost solar cell devices, organic photovoltaics remain a potential source of energy worthy to be explored. In order to generate cost- effective electricity from solar energy, either the efficiency of the solar cells must be improved or alternatively the manufacturing cost must be lowered. The power conversion efficiency (PCE) of organic photovoltaics is influenced by the choice of electron acceptor material, the structure of the polymer, the morphology of the film, the interfaces between the layers and the ratio between the electron acceptor material and the polymer. Nevertheless, efficiency is still limited compared to conventional silicon based PV cells due to low mobility of charge carriers with a short exciton diffusion length in the active layer. Currently, hybrid solar cells have been considered as one of the most promising concepts to address the limited efficiency of organic solar cells. Therefore in this thesis ZnO nanoparticles were synthesized using hydrothermal assisted method. These nanoparticles were incorporated in the poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and used as additional acceptors of electrons released from the polymer donor material, with the anticipation to increase the electron mobility, and ultimately the PCE. The thermo-gravimetric analyses revealed improved thermal stability of P3HT upon incorporating ZnO in the polymer matrix. X-ray diffraction analyses revealed that the diffraction peaks shift to higher angles when incorporating the ZnO in the P3HT:PCBM surface and this is consistent with the Raman observation. The photovoltaic properties demonstrated that the addition of ZnO nanoparticles in P3HT:PCBM bulk-heterojunction increases PCE from a baseline of ∼1.0 % in the P3HT:PCBM system to 1.7% in the P3HT:PCBM:ZnO ternary system. The enhanced PCE was due to improved absorption as compared to its counterparts. Upon increasing the addition of ZnO nanoparticles in the P3HT:PCBM matrix, the PCE decreases, due to a large phase separation between the polymer, PCBM and ZnO induced by ZnO agglomerations which resulted in increased surface roughness of the active layer. These findings signify that incorporation of ZnO nanostructures in the P3HT:PCBM polymer matrix facilitates the electron transport in the photoactive layer which results to improved efficiency.
Style APA, Harvard, Vancouver, ISO itp.
41

Rathod, Siddharth Narendrakumar. "Structure Stability and Optical Response of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study". Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496189488934021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kniprath, Rolf. "Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15853.

Pełny tekst źródła
Streszczenie:
Organische Solarzellen bieten die Aussicht auf eine ökologische und zugleich ökonomische Energiequelle. Nachteile des Konzepts liegen in der z.T. geringen Stabilität der für Absorption und Ladungstransport verwendeten Moleküle und einer unvollständigen Ausnutzung des Sonnenspektrums. Zur Verbesserung beider Merkmale werden in dieser Arbeit einzelne organische Bestandteile durch anorganische Materialien mit hoher Stabilität und breiten Absorptionsbanden ersetzt. Insbesondere werden als Absorber kolloidale Quantenpunkte (QP) verwendet, denen aufgrund nicht-linearer und durch Größeneffekte steuerbarer optischer Eigenschaften in der Photovoltaik der dritten Generation großes Interesse gilt. Dazu werden dünne anorganisch-organische Filme mit einem Verfahren hergestellt, das auf Wechselwirkungen zwischen Partikeln in Lösung und geladenen Oberflächen beruht (electrostatic layer-by-layer self-assembly). TiO2-Nanokristalle als Elektronenleiter, kolloidale CdTe- und CdSe-QP als Absorber und konjugierte Polymere als Lochleiter werden in die Filme integriert und diese als aktive Schichten in photovoltaischen Zellen verwendet. Die Struktur der Filme wird zunächst mittels AFM, SEM, XPS sowie durch eine Beladung mit organischen Farbstoffen untersucht. Sie weisen Porosität auf einer Skala von Nanometern sowie eine kontrollierbare Dicke und Mikrostruktur auf. Darauf aufbauend werden durch weitere lösungsbasierte Prozessschritte photovoltaische Zellen gefertigt und Zusammenhänge zwischen Struktur und Zellenleistung elektronisch und spektroskopisch untersucht. Einflussfaktoren der Zelleffizienz wie die Ladungsträgererzeugung und interne Widerstände können so bestimmt und die Effizienz von CdSe-QP als Sensibilisatoren nachgewiesen werden. Die Arbeit demonstriert die Eignung der gewählten Methoden und Zelldesigns zur Herstellung von photovoltaischen Zellen und eröffnet neue Ansätze für die Entwicklung und Fertigung insbesondere auf QP basierender Zellen.
Organic solar cells offer the prospect of a both ecological and economical energy source. Drawbacks of the concept are low stabilities of the molecules used for absorption and charge transport and an incomplete utilization of the solar spectrum. In order to improve both these characteristics, individual organic components are replaced by inorganic materials with a high stability and broad absorption bands in this work. In particular, colloidal quantum dots (QDs) are used as absorbers, the non-linear and size controllable optical properties of which are attracting great interest in third generation photovoltaics. For this application, inorganic/organic thin films are produced with a method based on interactions between particles in solution and charged surfaces (electrostatic layer-by-layer self-assembly). TiO2-nanocrystals as electron conductors, colloidal CdTe- and CdSe-QDs as absorbers and conjugated polymers as hole conductors are integrated into the films, which are used as active layers in photovoltaic cells. The structure of the films is investigated by AFM, SEM, XPS and by loading the films with organic dye molecules. The films show porosity on a nanometer scale as well as a controllable thickness and microstructure. Complemented by further solution based processing steps, photovoltaic cells are manufactured and correlations between the structure and performance of the cells are investigated both electronically and spectroscopically. Individual factors that determine the cell efficiency, such as carrier generation and internal resistances, are determined and the efficiency of CdSe-QDs as sensitizers is demonstrated. This work proves the suitability of the chosen methods and cell designs for manufacturing photovoltaic cells and opens up new approaches for the development and manufacture of in particular QD-based solar cells.
Style APA, Harvard, Vancouver, ISO itp.
43

Pachoumi, Olympia. "Metal oxide/organic interface investigations for photovoltaic devices". Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246263.

Pełny tekst źródła
Streszczenie:
This thesis outlines investigations of metal oxide/organic interfaces in photo-voltaic devices. It focuses on device instabilities originating from the metal oxide layer surface sensitivity and it presents suggested mechanisms behind these in- stabilities. A simple sol-gel solution deposition technique for the fabrication of stable and highly performing transparent conducting mixed metal oxides (ZnMO) is presented. It is demonstrated that the use of amorphous, mixed metal oxides allows improving the performance and stability of interfacial charge extraction layers for organic solar cells. Two novel ternary metal oxides, zinc-strontrium- oxide (ZnSrO) and zinc-barium-oxide (ZnBaO), were fabricated and their use as electron extraction layers in inverted organic photovoltaics is investigated. We show that using these ternary oxides can lead to superior devices by: prevent- ing a dipole forming between the oxide and the active organic layer in a model ZnMO/P3HT:PCBM OPV as well as lead to improved surface coverage by a self assembled monolayer and promote a significantly improved charge separation efficiency in a ZnMO/P3HT hybrid device. Additionally a spectroscopic technique allowing a versatility of characterisa- tion for long-term stability investigations of organic solar cells is reported. A device instability under broadband light exposure in vacuum conditions for an inverted ZnSrO/PTB7:PC71BM OPV is observed. Direct spectroscopic evidence and electrical characterisation indicate the formation of the PC71BM radical an- ion associated with a loss in device performance. A charge transfer mechanism between a heavily doped oxide layer and the organic layers is suggested and dis- cussed.
Style APA, Harvard, Vancouver, ISO itp.
44

Roland, Steffen [Verfasser], i Dieter [Akademischer Betreuer] Neher. "Charge carrier recombination and open circuit voltage in organic solar cells : from bilayer-model systems to hybrid multi-junctions / Steffen Roland ; Betreuer: Dieter Neher". Potsdam : Universität Potsdam, 2017. http://d-nb.info/1218402458/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

FU, QIANG FU. "POLYMER-TEMPLATED NUCLEATION AND CRYSTAL GROWTH OF PEROVSKITE FILM AND CONDUCTIVE IONOMER DOPED PEROVSKITE FILLM FOR HIGH PERFORMANCE OF ORGANIC-INORGANIC HYBRID PEROVSKITE SOLAR CELLS". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1495207539153854.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ralaiarisoa, Maryline. "Electronic properties of hybrid organic-inorganic perovskite films: effects of composition and environment". Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20194.

Pełny tekst źródła
Streszczenie:
Der Schwerpunkt der vorliegenden Arbeit liegt in der Charakterisierung der elektronischen Eigenschaften von hybriden organisch-anorganischen Perowskit (HOIP)-Schichten während der Schichtbildung und in verschiedenen Umgebungen mittels Photoelektronenspektroskopie (PES). Insbesondere wird der Methylammonium-Blei-Iodid-Chlorid-Perowskit (MAPbI3-xClx) untersucht. Als erstes werden Änderungen in den elektronischen Eigenschaften, der Zusammensetzung, sowie der Kristallstruktur mittels PES, Flugzeit-Sekundärionenmassenspektrometrie, sowie Röntgendiffraktometrie mit streifendem Einfall analysiert. Die Resultate weisen auf die entscheidende Rolle von Chlor im texturierten Wachstum der Perowskitschicht hin. Die auskristallisierte Perowskitschicht weist eine stärkere n-Typ Eigenschaft auf, welche auf die Änderung der Zusammensetzung während der Schichtbildung zurückgeführt werden kann. Außerdem beweisen die Ergebnisse eindeutig die Ablagerung von Chlor an der Grenzfläche zwischen der Perowskitschicht und dem Substrat. Zweitens werden die separaten Einflüsse von Wasser, Sauerstoff, und Umgebungsluft auf die elektronischen Eigenschaften von MAPbI3-xClx-Schichtoberflächen untersucht. Bereits geringste Wassermengen ähnlich wie im Hochvakuum oder in inerter Umgebung können eine reversible Reduzierung der Austrittsarbeit hervorrufen. Höherer Wasserdampf-Partialdruck führt zu einer Verschiebung des Valenzbandmaximums (VBM) weit vom Fermi-Niveau, sowie zu einer Reduzierung der Austrittsarbeit. Im Gegensatz dazu führt eine Sauerstoffexposition zu einer Verschiebung des VBM in Richtung des Fermi-Niveaus und zu einer Steigerung der Austrittsarbeit. Analog kommt es zu einer Verschiebung von bis zu 0.6 eV bei einer Exposition gegenüber Umgebungsluft, was den vorwiegenden Einfluss von Sauerstoff demonstriert. Die vorliegenden Untersuchungen betonen den kritischen Einfluss der Schichtbildung, der Zusammensetzung, sowie der Umgebungsbedingungen auf die elektronischen Eigenschaften von HOIP.
The present thesis aims at characterizing the electronic properties of solution-processed hybrid organic-inorganic perovskites (HOIPs) in general, and the HOIP methyl ammonium (MA) lead iodide-chloride (MAPbI3-xClx) films, in particular, at different stages, namely from its formation to its degradation, by means of photoelectron spectroscopy (PES). Firstly, the formation of MAPbI3-xClx films upon thermal annealing is monitored by a combination of PES, time-of-flight secondary ion mass spectrometry, and grazing incidence X-ray diffraction for disclosing changes in electronic properties, film composition, and crystal structure, respectively. Overall, the results point to the essential mediating role of chlorine in the formation of a highly textured perovskite film. The film formation is accompanied by a change of composition which leads to the film becoming more n-type. The accumulation of chlorine at the interface between perovskite and the underlying substrate is also unambiguously revealed. Secondly, the separate effects of water and oxygen on the electronic properties of MAPbI3-xClx film surfaces are investigated by PES. Already low water exposure – as encountered in high vacuum or inert conditions – appears to reversibly impact the work function of the film surfaces. Water vapor in the mbar range induces a shift of the valence band maximum (VBM) away from the Fermi level accompanied by a decrease of the work function. In contrast, oxygen leads to a VBM shift towards the Fermi level and a concomitant increase of the work function. The effect of oxygen is found to predominate in ambient air with an associated shift of the energy levels by up to 0.6 eV. Overall, the findings contribute to an improved understanding of the structure-property relationships of HOIPs and emphasize the impact of least variation in the environmental conditions on the reproducibility of the electronic properties of perovskite materials.
Style APA, Harvard, Vancouver, ISO itp.
47

Godfroy, Maxime. "Modulation des propriétés optoélectroniques de colorants organiques pour des applications en cellules photovoltaïques hybrides". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV031.

Pełny tekst źródła
Streszczenie:
En une heure, la Terre reçoit en énergie solaire l’équivalent d’une année de consommation énergétique mondiale. Pour cette raison, les cellules photovoltaïques qui convertissent des photons en électricité, ont un rôle déterminant à jouer dans la transition énergétique imposée par les changements climatiques. Les cellules solaires sensibilisées par des colorants sont une des technologies émergentes qui ont déjà été utilisées à l’échelle industrielle à travers quelques exemples d’intégration aux bâtiments. Elles représentent une alternative esthétique et peu cher comparée aux cellules à silicium. Ces cellules hybrides dites de « Grätzel » utilisent un semi-conducteur inorganique nanostructuré sur lequel est greffé un colorant qui à l’état photo-excité va injecter des électrons dans l’oxyde. Ce sensibilisateur va être régénéré par un couple redox présent dans un électrolyte ou un transporteur de trous moléculaire qui eux-mêmes vont être régénérés à la contre-électrode. Dans ce contexte, ce travail présente les études réalisées sur certains constituants de la cellule (du semi-conducteur jusqu’au système régénérateur du colorant). La majeure partie de cette thèse concerne la synthèse et la caractérisation avancée de nouveaux semi-conducteurs organiques, des colorants ou des transporteurs de trous moléculaires, et l’étude des relations structure/propriétés. En particulier, le remplacement, la substitution ou la rigidification de groupements présents dans ces structures ont été réalisés et leur influence sur les propriétés des nouvelles molécules a été étudiée. Les colorants synthétisés présentent des maxima de la bande d’absorption à plus faible énergie allant de 440 nm à 610 nm. Les niveaux d’énergie de ces nouveaux matériaux organiques ont été déterminés par voltammétrie cyclique et également calculés et localisés par la chimie quantique. Certains composés ont été étudiés par diffraction des rayons X, par analyse thermogravimétrique ou par calorimétrie différentielle à balayage. Après une complète caractérisation, ces matériaux ont été intégrés dans des dispositifs photovoltaïques à colorants en utilisant un électrolyte liquide pour atteindre des efficacités élevées jusqu’à 9,78 % en utilisant un seul colorant et jusqu’à 10,90 % dans le cas de la co-sensibilisation du TiO2 par deux sensibilisateurs. Certains colorants ont également conduit à des efficacités se situant à l’état de l’art à 7,81 % en remplaçant l’électrolyte liquide par un liquide ionique. De plus, certains colorants dans ces mêmes dispositifs ont présenté une excellente stabilité avec une perte comprise entre 7 et 38 % après 7000 heures d’illumination continue à 1000 W.m-2 à 65 °C. Enfin, des premiers tests ont également été réalisés en dispositifs à l’état solide qui ont conduit à une efficacité 4,5 % avec un transporteur de trous de référence ouvrant de nouvelles perspectives d’application après optimisations. En parallèle, les nouveaux transporteurs de trous synthétisés dans ce travail se sont révélés efficaces en cellules à base de pérovskites
During one hour, the Earth receives solar energy which is equivalent to one year of the world energy consumption. For this reason, photovoltaic cells that convert photons to electricity, have a key role to play in the energetic transition imposed by climate change. Dye-sensitized solar cells are one of the emergent technologies that have already been used at the industrial scale in a few examples of building integrating. They represent an esthetic and low-cost alternative compared to silicon solar cells. These hybrid cells also named « Grätzel cells » use a nanostructured inorganic semi-conductor where a dye is grafted onto the surface and acts as a sensitizer. This dye injects electrons after photo-excitation in the oxide. The dye is regenerated by a redox couple present in a liquid electrolyte or a hole transport material that are themselves regenerated by the counter electrode. In this context, this work presents studies about some of the cell constituents (from the semi-conductor to the dye regenerating system). The major part of this thesis concerns the synthesis and the advanced characterization of organic semi-conductors, dyes or hole transport materials, and the study of the structure/properties relations. In particular, the replacement, the substitution, or the rigidification of some functional groups in these structures were achieved and their influence on the properties of the new molecules were studied. The synthesized dyes present maxima of the absorption band at the lowest energy between 440 nm and 610 nm. Energy levels of the new organic materials were determined by cyclic voltammetry and also calculated and localized using the quantum chemistry. Some of the compounds were studied by X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry. After a complete characterization, these materials were integrated in dye-sensitized photovoltaic devices using a liquid electrolyte to achieve high efficiencies up to 9,78 % using a single dye and up to 10,90 % in the case of the co-sensitization of TiO2 with two dyes. Certain dyes have demonstrated state-of-the-art efficiencies at 7,81 % by replacing the liquid electrolyte by an ionic liquid electrolyte. Moreover, the use of some of the dyes in these last devices was carried out and found to have an excellent stability with a loss of initial efficiency included between 7 % and 38 % after 7000 hours of continuous illumination at 1000 W.m-2 at 65 °C. Finally, first tests were also realized in solid state devices that showed an efficiency of 4,5 % with a reference hole transport material opening new application perspectives after optimizations. In parallel, the new synthesized hole transport materials in this work were effective in perovskite-based cells
Style APA, Harvard, Vancouver, ISO itp.
48

Teran-Escobar, Gerardo, David M. Tanenbaum, Eszter Voroshazi, Martin Hermenau, Kion Norrman, Matthew T. Lloyd, Yulia Galagan i in. "On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaboration". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-139279.

Pełny tekst źródła
Streszczenie:
This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N2) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO3), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Style APA, Harvard, Vancouver, ISO itp.
49

Teran-Escobar, Gerardo, David M. Tanenbaum, Eszter Voroshazi, Martin Hermenau, Kion Norrman, Matthew T. Lloyd, Yulia Galagan i in. "On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaboration". Royal Society of Chemistry, 2012. https://tud.qucosa.de/id/qucosa%3A27818.

Pełny tekst źródła
Streszczenie:
This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N2) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO3), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Style APA, Harvard, Vancouver, ISO itp.
50

Santos, Marcelo Alves dos. "Estudo atomístico da formação de interfaces orgânico-inorgânico: Tiofenos sobre óxido de titânio". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-02062008-132541/.

Pełny tekst źródła
Streszczenie:
No estudo de sistemas híbridos orgânico-inorgânico, o uso de materiais como polímeros conjugados e óxidos de metal de transição tem despertado grande interes- se. Em particular, destacam-se sistemas compostos de tiofenos e óxido de titânio, que encontram uma importante aplicação em células solares. Para um melhor entendimento da interação entre os dois sistemas, torna-se necessário conhecer a organização do polímero sobre o substrato inorgânico. Desse modo, investigamos neste trabalho a formação da interface entre oligômeros de tiofeno e a superfície (101) de TiO2-anatase utilizando um enfoque de multiformalismo, que inclui simulações de dinâmica molecular clássica, e uma combinação de cálculos de primeiros princípios segundo Hartree-Fock e Teoria do Funcional da Densidade (DFT) para a determinação de propriedades estruturais e eletrônicas. A deposição de oligômeros de tiofeno sobre TiO2, constituindo sistemas de milhares de átomos, foi simulada por meio de dinâmica molecular clássica. Como requisito do cálculo clássico para estes sistemas, realizamos a reparametrização do campo de forças Universal tanto para os oligômeros, cujas estruturas não são bem descritas pelos campos de força padrões, como para o cristal e a superfície de TiO2. Foi observada a formação de filmes desordenados e densos de quatertiofeno, com a presença de uma maioria de moléculas de orientação quase perpendicular em relação ao plano superficial. Na camada de interface também se encontram moléculas dispostas paralelamente ao substrato, aumentando o contato entre os sistemas orgânico e inorgânico. A deposição de oligômeros isolados de quatertiofeno e de hexatiofeno mostra ainda que as moléculas se dispõem paralelas na superfície, alinhadas segundo direções de periodicidade dos átomos da superfície. Estudamos desta forma as propriedades eletrônicas de um sistema composto de politiofeno sobre TiO2, com o polímero paralelo na superfície e disposto na direção preferencial, através de um formalismo ab initio DFT. Apesar do tratamento DFT apresentar problemas conhecidos quanto na definição do gap, o que é mais relevante ainda no nosso caso de sistemas híbridos, os resultados revelam um deslocamento do topo da banda de valência do material orgânico em relação ao inorgânico. Isto possibilita o aprisionamento de um buraco no polímero, condição necessária para o uso deste tipo de sistema em células fotovoltaicas. Verifica-se ainda o acoplamento entre átomos de enxofre do politiofeno e de oxigênio do TiO2 através da presença de um estado associado a uma densidade eletrônica que se estende do polímero na superfície. Nossos resultados indicam assim um bom acoplamento eletrônico da superfície (101) de TiO2-anatase com politiofenos.
In the study of organic-inorganic hybrid systems, the use of materials such as conjugated polymers and transition metal oxides has attracted great interest. In particular, it is worth mentioning systems composed by thiophenes and titanium oxide, which have an important application in solar cells. For a better understand- ing of the interaction between these systems, it is necessary to know the polymer organization over the inorganic substrate. Therefore, we investigated in this work the formation of the interface between thiophene oligomers and the (101) surface of TiO2-anatase by means of a multi-formalism approach, which includes classical molecular dynamics simulations, and a combination of ¯rst principles calculations based on Hartree-Fock and Density Functional Theory (DFT) for structural and electronic properties. The simulation of deposition of thiophene oligomers on TiO2, which demands systems with thousands of atoms, was performed by classical molecular dynamics. As a prerequisite for the classical calculation for these systems, we performed a re-parameterization of the Universal force ¯eld for the oligomers, whose structures are not well described by standard force ¯elds, and for the TiO2 bulk and surface. We observed the formation of disordered and dense quaterthiophene ¯lms, with presence of a majority of molecules oriented almost perpendicularly to the surface plane. In the ¯rst interfacial layer we ¯nd also molecules oriented parallel to the sub- strate, which increases the contact between the organic and the inorganic systems. The deposition of isolated quaterthiophene and sexithiophene oligomers resulted in molecules disposed parallel to the surface and aligned along directions of periodicity of the surface atoms. We therefore studied the electronic properties of a system composed of poly- thiophene on TiO2, with the polymer parallel to the surface and oriented along a preferential direction, by means of DFT formalism. Although DFT treatments present known problems in the de¯nition of the energy gap, even of more relevance in our case of hybrid systems, the results for the occupied states revealed a sizeable displacement of the top of the valence band of one system with respect to the other. The misalignment will prevent the passage of a hole from the polymer to the oxide, providing in this way the necessary condition for the use of this type of system in solar cells. It was also seen electronic coupling between sulfur atoms from polythio- phene, and oxygen atoms from TiO2 through the presence of a state associated with an electronic density extended from the polymer to the surface. Our results thus indicate there is good electronic coupling between the (101) surface of TiO2-anatase and polythiophenes.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii