Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Organic Hole transporting materials.

Artykuły w czasopismach na temat „Organic Hole transporting materials”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Organic Hole transporting materials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Świst, Agnieszka, Jadwiga Sołoducho, Przemysław Data i Mieczysław Łapkowski. "Thianthrene-based oligomers as hole transporting materials". Arkivoc 2012, nr 3 (24.01.2012): 193–209. http://dx.doi.org/10.3998/ark.5550190.0013.315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Namespetra, Andrew M., Arthur D. Hendsbee, Gregory C. Welch i Ian G. Hill. "Development of simple hole-transporting materials for perovskite solar cells". Canadian Journal of Chemistry 94, nr 4 (kwiecień 2016): 352–59. http://dx.doi.org/10.1139/cjc-2015-0427.

Pełny tekst źródła
Streszczenie:
Three low-cost propeller-shaped small molecules based on a triphenylamine core and the high-performance donor molecule 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (DTS(FBTTh2)2) were investigated as hole-transporting materials in perovskite solar cells. Each hole-transporting material was designed with highly modular side arms, allowing for different bandgaps and thin-film properties while maintaining a consistent binding energy of the highest occupied molecular orbitals to facilitate hole extraction from the perovskite active layer. Perovskite solar cell devices were fabricated with each of the three triphenylamine-based hole-transporting materials and DTS(FBTTh2)2 and were compared to devices with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) hole-transporting layers. Each of our triphenylamine hole-transporting materials and DTS(FBTTh2)2 displayed surface morphologies that were considerably rougher than that of spiro-OMeTAD; a factor that may contribute to lower device performance. It was found that using inert, insulating polymers as additives with DTS(FBTTh2)2 reduced the surface roughness, resulting in devices with higher photocurrents.
Style APA, Harvard, Vancouver, ISO itp.
3

Zhao, Xiaojuan, i Mingkui Wang. "Organic hole-transporting materials for efficient perovskite solar cells". Materials Today Energy 7 (marzec 2018): 208–20. http://dx.doi.org/10.1016/j.mtener.2017.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cho, Young Joon, Min Ji Jeong, Ji Hye Park, Weiguang Hu, Jongchul Lim i Hyo Sik Chang. "Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells". Energies 14, nr 4 (22.02.2021): 1156. http://dx.doi.org/10.3390/en14041156.

Pełny tekst źródła
Streszczenie:
Charge transporting materials (CTMs) in perovskite solar cells (PSCs) have played an important role in improving the stability by replacing the liquid electrolyte with solid state electron or hole conductors and enhancing the photovoltaic efficiency by the efficient electron collection. Many organic and inorganic materials for charge transporting in PSCs have been studied and applied to increase the charge extraction, transport and collection, such as Spiro-OMeTAD for hole transporting material (HTM), TiO2 for electron transporting material (ETM) and MoOX for HTM etc. However, recently inorganic CTMs are used to replace the disadvantages of organic materials in PSCs such as, the long-term operational instability, low charge mobility. Especially, atomic layer deposition (ALD) has many advantages in obtaining the conformal, dense and virtually pinhole-free layers. Here, we review ALD inorganic CTMs and their function in PSCs in view of the stability and contribution to enhancing the efficiency of photovoltaics.
Style APA, Harvard, Vancouver, ISO itp.
5

Jia, Haoran, Huanyu Ma, Xiangyang Liu, Donghui Xu, Ting Yuan, Chao Zou i Zhan'ao Tan. "Engineering organic–inorganic perovskite planar heterojunction for efficient carbon dots based light-emitting diodes". Applied Physics Reviews 9, nr 2 (czerwiec 2022): 021406. http://dx.doi.org/10.1063/5.0085692.

Pełny tekst źródła
Streszczenie:
When it comes to building high-efficiency thin-film optoelectronic devices, we are constantly striving to improve the efficiency of charge transport and injection. Device performance is hampered by the low mobility and injection ability of organic charge transporting materials that are routinely used. In this paper, we show that instead of using organics as a hole transporting layer, metal halide perovskite can be used to fabricate high-efficiency carbon dots-based light-emitting diodes for the first time. The organic light-emitting layer and the underlying perovskite layer combine to form an organic–inorganic perovskite planar heterojunction, and the sufficient contact at the junction takes advantage of the high charge mobility of perovskite, facilitating the hole transportation and injection. Moreover, the interaction between perovskite and the organic emitting layer can be engineered via manipulating the halogenic component, thickness, surface morphology, etc., contributing to the device optimization and the understanding of the carrier kinetics in this unique organic–inorganic hybrid optoelectronic device. Our work comprehensively evaluates the full potentials of metal halide perovskite as a hole transporting layer by uncovering the positive effect on hole transportation and injection. As a consequence, our findings open up new avenues for the development of efficient carbon dot-based light-emitting diodes.
Style APA, Harvard, Vancouver, ISO itp.
6

Shahnawaz, Shahnawaz, Sujith Sudheendran Swayamprabha, Mangey Ram Nagar, Rohit Ashok Kumar Yadav, Sanna Gull, Deepak Kumar Dubey i Jwo-Huei Jou. "Hole-transporting materials for organic light-emitting diodes: an overview". Journal of Materials Chemistry C 7, nr 24 (2019): 7144–58. http://dx.doi.org/10.1039/c9tc01712g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mehdi, S., R. Amraoui i A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials". Digest Journal of Nanomaterials and Biostructures 17, nr 3 (1.08.2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.

Pełny tekst źródła
Streszczenie:
In this paper, a comparative study between four OLEDs devices is carried out. The bi- layers device (A) (consists of) Hole Injection Layer (HIL)/Electron Transport Layer (ETL), the multilayer device (B) (consists of) HIL Layer/Hole Transport Layer (HTL)/ETL Layer. The influence of the hole transporting material on the performance of the three layers OLEDs was investigated. Three different HTL materials were used: α- NPD, TAPC and p-TTA with the same electron transporting material as Alq3; (these holes transport material consists the devices (B), (C) and (D) respectively). The carrier injection, Langevin recombination rate, singlet exciton density and the power of luminescent are demonstrated. The simulation results shows that the insertion of a thin HTL layer between HIL and ETL layers increases the characteristics of the device (B)as: 6.19.1025 cm-3s-1 of the Langevin recombination rate, 1.16.1015cm-3 of the singlet exciton density and 0.04232 W/μm2 of the luminescence power. Moreover, the insertion of TAPC as HTL material gives rise to 1.36.1026 cm-3s-1 of the Langevin recombination rate, 2.1015cm-3 of the singlet exciton density and 0.075 w/μm2 of the luminescence power.
Style APA, Harvard, Vancouver, ISO itp.
8

Pham, Hong Duc, Terry Chien‐Jen Yang, Sagar M. Jain, Gregory J. Wilson i Prashant Sonar. "Hole Transporting Materials: Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells (Adv. Energy Mater. 13/2020)". Advanced Energy Materials 10, nr 13 (kwiecień 2020): 2070057. http://dx.doi.org/10.1002/aenm.202070057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yuqiu, Qu, Zhang Liuyang, An Limin i Wei Hong. "Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials". Materials Science-Poland 33, nr 4 (1.12.2015): 709–13. http://dx.doi.org/10.1515/msp-2015-0120.

Pełny tekst źródła
Streszczenie:
AbstractThe effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.
Style APA, Harvard, Vancouver, ISO itp.
10

Chooppawa, Tianchai, Supawadee Namuangruk, Hiroshi M. Yamamoto, Vinich Promarak i Paitoon Rashatasakhon. "Synthesis, characterization, and hole-transporting properties of benzotriazatruxene derivatives". Journal of Materials Chemistry C 7, nr 47 (2019): 15035–41. http://dx.doi.org/10.1039/c9tc04155a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sun, Dianming, Zhongjie Ren, Martin R. Bryce i Shouke Yan. "Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs)". Journal of Materials Chemistry C 3, nr 37 (2015): 9496–508. http://dx.doi.org/10.1039/c5tc01638j.

Pełny tekst źródła
Streszczenie:
Arylsilanes and siloxanes have been extensively studied as components of OLEDs. In this review, we summarize the recent advances in the utilization of arylsilanes and siloxanes as fluorophore emitters, hosts for phosphor emitters, hole and exciton blocking materials, and as electron and hole transporting materials.
Style APA, Harvard, Vancouver, ISO itp.
12

LIU, Xue-Peng, Fan-Tai KONG, Wang-Chao CHEN, Ting YU, Fu-Ling GUO, Jian CHEN i Song-Yuan DAI. "Application of Organic Hole-Transporting Materials in Perovskite Solar Cells". Acta Physico-Chimica Sinica 32, nr 6 (2016): 1347–70. http://dx.doi.org/10.3866/pku.whxb201603143.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Shao, Ke-Feng, Ying-Feng Li, Lian-Ming Yang, Xin-Jun Xu, Gui Yu i Yun-Qi Liu. "HighTgFluorene-based Hole-transporting Materials for Organic Light-emitting Diodes". Chemistry Letters 34, nr 12 (grudzień 2005): 1604–5. http://dx.doi.org/10.1246/cl.2005.1604.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Lv, Hai Jun, Yi Feng Yu, Lei Liu, Ai Bing Chen, Zhi Chao Hu i Kai Huang. "Synthesis and Properties of Novel Hole-Transporting Materials Containing Triphenylamine and Bipyridine Units". Advanced Materials Research 690-693 (maj 2013): 619–22. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.619.

Pełny tekst źródła
Streszczenie:
Novel hole-transporting materials (M1, M2) containing triphenylamine and dipyridine units have been synthesized and characterized. Two compounds have excellent solubility in common solvents. The optical, electrochemical and thermal properties of the materials were studied in detail. The results show that two compounds have green emission in dichloromethane, high thermal stability and proper HOMO levels. The properties of compounds M1 and M2 indicate that two compounds are candidates for the application in Organic light-emitting devices as hole-transporting materials.
Style APA, Harvard, Vancouver, ISO itp.
15

Getautis, V., J. V. Grazulevicius, M. Daskeviciene, T. Malinauskas, D. Jankunaite, V. Gaidelis, V. Jankauskas, J. Sidaravicius i Z. Tokarski. "Novel hydrazone based polymers as hole transporting materials". Polymer 46, nr 19 (wrzesień 2005): 7918–22. http://dx.doi.org/10.1016/j.polymer.2005.06.085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Neogi, Ishita, Samik Jhulki, Madhu Rawat, R. S. Anand, Tahsin J. Chow i Jarugu Narasimha Moorthy. "Organic amorphous hole-transporting materials based on Tröger's Base: alternatives to NPB". RSC Advances 5, nr 34 (2015): 26806–10. http://dx.doi.org/10.1039/c5ra03391h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Li, Ming-Hsien, Che-Wei Hsu, Po-Shen Shen, Hsin-Min Cheng, Yun Chi, Peter Chen i Tzung-Fang Guo. "Novel spiro-based hole transporting materials for efficient perovskite solar cells". Chemical Communications 51, nr 85 (2015): 15518–21. http://dx.doi.org/10.1039/c5cc04405g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Yao, Huiyun, Tai Wu, Bingxue Wu, Heng Zhang, Zhihui Wang, Zhe Sun, Song Xue, Yong Hua i Mao Liang. "The triple π-bridge strategy for tailoring indeno[2,1-b]carbazole-based HTMs enables perovskite solar cells with efficiency exceeding 21%". Journal of Materials Chemistry A 9, nr 13 (2021): 8598–606. http://dx.doi.org/10.1039/d1ta00315a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Connell, Arthur, Zhiping Wang, Yen-Hung Lin, Peter C. Greenwood, Alan A. Wiles, Eurig W. Jones, Leo Furnell i in. "Low cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells". Journal of Materials Chemistry C 7, nr 18 (2019): 5235–43. http://dx.doi.org/10.1039/c8tc04231d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Zhu, Li Lin, Bing Zhang, Kai Xuan Zhou, Jian Xi Yao i Song Yuan Dai. "Molecular Dynamics of the Assembly Modes of the Oligothiophene Polymers with Different Chain Lengths". Key Engineering Materials 727 (styczeń 2017): 476–81. http://dx.doi.org/10.4028/www.scientific.net/kem.727.476.

Pełny tekst źródła
Streszczenie:
The spatial packing modes of organic hole transporting materials exert a significant effect on the charge mobility. However it is difficult to reasonably design the materials with high-charge transfer performances due to the limits of the data regarding crystal structures. In this work, molecular dynamics simulation was used to find the new spatial packing ways of organic photoelectric materials containing oligothiophene based on randomly distributed initial structures. This work lays a theoretical foundation for designing favorable organic carrier transporting materials.
Style APA, Harvard, Vancouver, ISO itp.
21

Anrango-Camacho, Cinthya, Karla Pavón-Ipiales, Bernardo A. Frontana-Uribe i Alex Palma-Cando. "Recent Advances in Hole-Transporting Layers for Organic Solar Cells". Nanomaterials 12, nr 3 (28.01.2022): 443. http://dx.doi.org/10.3390/nano12030443.

Pełny tekst źródła
Streszczenie:
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC’s advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.
Style APA, Harvard, Vancouver, ISO itp.
22

Daskeviciene, Maryte, Sanghyun Paek, Artiom Magomedov, Kyoung Taek Cho, Michael Saliba, Ausra Kizeleviciute, Tadas Malinauskas i in. "Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells". Journal of Materials Chemistry C 7, nr 9 (2019): 2717–24. http://dx.doi.org/10.1039/c8tc06297h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Usluer, Özlem. "New spirobifluorene-based hole-transporting semiconductors for electroluminescent devices". J. Mater. Chem. C 2, nr 38 (2014): 8098–104. http://dx.doi.org/10.1039/c4tc01458h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Deng, Jidong, Weixia Hu, Wei Shen, Ming Li i Rongxing He. "Exploring the electrochemical properties of hole transporting materials from first-principles calculations: an efficient strategy to improve the performance of perovskite solar cells". Physical Chemistry Chemical Physics 21, nr 3 (2019): 1235–41. http://dx.doi.org/10.1039/c8cp06693k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kim, Young Kook, i Seok-Hwan Hwang. "Highly efficient organic light-emitting diodes using novel hole-transporting materials". Synthetic Metals 156, nr 16-17 (sierpień 2006): 1028–35. http://dx.doi.org/10.1016/j.synthmet.2006.06.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ren, Xiaofan, Bert D. Alleyne, Peter I. Djurovich, Chihaya Adachi, Irina Tsyba, Robert Bau i Mark E. Thompson. "Organometallic Complexes as Hole-Transporting Materials in Organic Light-Emitting Diodes". Inorganic Chemistry 43, nr 5 (marzec 2004): 1697–707. http://dx.doi.org/10.1021/ic035183f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Tanaka, Hiromitsu, Shizou Tokito, Yasunori Taga i Akane Okada. "Novel hole-transporting materials based on triphenylamine for organic electroluminescent devices". Chemical Communications, nr 18 (1996): 2175. http://dx.doi.org/10.1039/cc9960002175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sheibani, Esmaeil, Li Yang i Jinbao Zhang. "Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells". Solar RRL 4, nr 12 (29.09.2020): 2000461. http://dx.doi.org/10.1002/solr.202000461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Getautis, V., O. Paliulis, R. Degutyte i I. Paulauskaite. "Synthesis of New Branched Hydrazones as Potential Hole-transporting Materials". Chemistry of Heterocyclic Compounds 40, nr 1 (styczeń 2004): 90–93. http://dx.doi.org/10.1023/b:cohc.0000023774.99588.5b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Jhulki, Samik, i Jarugu Narasimha Moorthy. "Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification". Journal of Materials Chemistry C 6, nr 31 (2018): 8280–325. http://dx.doi.org/10.1039/c8tc01300d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Tagare, Jairam, Rohit Ashok Kumar Yadav, Sujith Sudheendran Swayamprabha, Deepak Kumar Dubey, Jwo-Huei Jou i Sivakumar Vaidyanathan. "Efficient solution-processed deep-blue CIEy ∈ (0.05) and pure-white CIEx,y ∈ (0.34, 0.32) organic light-emitting diodes: experimental and theoretical investigation". Journal of Materials Chemistry C 9, nr 14 (2021): 4935–47. http://dx.doi.org/10.1039/d1tc00228g.

Pełny tekst źródła
Streszczenie:
Two bipolar non-conjugated deep-blue emitters, PICFOCz and BICFOCz, were synthesized by incorporating the charge transporting carbazole (donor/hole transporting) and imidazole (acceptor/electron transporting) moieties via a flexible alkyl spacer.
Style APA, Harvard, Vancouver, ISO itp.
32

Matsuo, Yutaka, i Hao-Sheng Lin. "(Invited) Toward Nanocarbon Materials-Based Organic and Perovskite Solar Cells". ECS Meeting Abstracts MA2022-01, nr 10 (7.07.2022): 796. http://dx.doi.org/10.1149/ma2022-0110796mtgabs.

Pełny tekst źródła
Streszczenie:
In this presentation, we introduce our recent research progress on organic and perovskite solar cells using functionalized nanocarbon materials. We applied wet-processed scalable single-walled carbon nanotubes (SWCNT) films to transparent and back electrodes in organic solar cells for large area solar cells. Gas-phase growth SWCNT was dispersed with sodium dodecylbenzenesulfonate surfactant in an organic solvent and solution-coated on a treated glass substrate to make a SWCNT film as a transparent electrode. We achieved the first high efficiency e-DIPS/wet-processed SWCNT film electrode in organic solar cells with a best-efficiency of 5.93% through the optimized HNO3 doping methodology. We also report enhanced hole-transporting ability of widely utilized poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) achieved by applying cationic nitrogen-doped graphene (CNG) as a p-type modifier for efficient organic solar cells. The power conversion efficiency of the CNG-coated PEDOT:PSS-applied OSC reaches 2.76% using poly(3-hexylthiophene), which is an increase of 40% compared to that of the pristine PEDOT:PSS-applied OSC (1.96%). This technology improved the efficiency of organic solar cells using a low-bandgap polymer from 6.54% to 7.79%. The significantly enhanced performance is contributed by the increased hole-transporting ability, and the improved interfacial morphology of PEDOT:PSS.
Style APA, Harvard, Vancouver, ISO itp.
33

Huang, Dingyan, Huimin Xiang, Ran Ran, Wei Wang, Wei Zhou i Zongping Shao. "Recent Advances in Nanostructured Inorganic Hole−Transporting Materials for Perovskite Solar Cells". Nanomaterials 12, nr 15 (28.07.2022): 2592. http://dx.doi.org/10.3390/nano12152592.

Pełny tekst źródła
Streszczenie:
Organic−inorganic halide perovskite solar cells (PSCs) have received particular attention in the last decade because of the high−power conversion efficiencies (PCEs), facile fabrication route and low cost. However, one of the most crucial obstacles to hindering the commercialization of PSCs is the instability issue, which is mainly caused by the inferior quality of the perovskite films and the poor tolerance of organic hole−transporting layer (HTL) against heat and moisture. Inorganic HTL materials are regarded as promising alternatives to replace organic counterparts for stable PSCs due to the high chemical stability, wide band gap, high light transmittance and low cost. In particular, nanostructure construction is reported to be an effective strategy to boost the hole transfer capability of inorganic HTLs and then enhance the PCEs of PSCs. Herein, the recent advances in the design and fabrication of nanostructured inorganic materials as HTLs for PSCs are reviewed by highlighting the superiority of nanostructured inorganic HTLs over organic counterparts in terms of moisture and heat tolerance, hole transfer capability and light transmittance. Furthermore, several strategies to boost the performance of inorganic HTLs are proposed, including fabrication route design, functional/selectively doping, morphology control, nanocomposite construction, etc. Finally, the challenges and future research directions about nanostructured inorganic HTL−based PSCs are provided and discussed. This review presents helpful guidelines for the design and fabrication of high−efficiency and durable inorganic HTL−based PSCs.
Style APA, Harvard, Vancouver, ISO itp.
34

Kumar, Sudhir, Chih-Chia An, Snehasis Sahoo, Raimonda Griniene, Dmytro Volyniuk, Juozas V. Grazulevicius, Saulius Grigalevicius i Jwo-Huei Jou. "Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes". Journal of Materials Chemistry C 5, nr 38 (2017): 9854–64. http://dx.doi.org/10.1039/c7tc03049e.

Pełny tekst źródła
Streszczenie:
Solution-processable molecular hole transporting materials (HTMs) are crucial to realize inexpensive fabrication of energy-efficient and large area organic light emitting diodes (OLEDs) for next-generation displays and lighting.
Style APA, Harvard, Vancouver, ISO itp.
35

Liu, Xicheng, Junfei Liang, Jing You, Lei Ying, Yin Xiao, Shirong Wang i Xianggao Li. "Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices". Dyes and Pigments 131 (sierpień 2016): 41–48. http://dx.doi.org/10.1016/j.dyepig.2016.03.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kwak, Chan Kyu, Gabriel E. Pérez, Benjamin G. Freestone, Sulaiman A. Al-Isaee, Ahmed Iraqi, David G. Lidzey i Alan D. F. Dunbar. "Improved efficiency in organic solar cells via conjugated polyelectrolyte additive in the hole transporting layer". Journal of Materials Chemistry C 4, nr 45 (2016): 10722–30. http://dx.doi.org/10.1039/c6tc03771b.

Pełny tekst źródła
Streszczenie:
The water soluble conjugated polyelectrolyte was synthesised by Suzuki cross coupling and increased the power conversion efficiency by improving hole charge transfer from active layer into the hole transporting layer.
Style APA, Harvard, Vancouver, ISO itp.
37

Ti, Dan, Kun Gao, Zhi-Pan Zhang i Liang-Ti Qu. "Conjugated Polymers as Hole Transporting Materials for Solar Cells". Chinese Journal of Polymer Science 38, nr 5 (23.12.2019): 449–58. http://dx.doi.org/10.1007/s10118-020-2369-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Guo, Yaxiong, Hongwei Lei, Liangbin Xiong, Borui Li i Guojia Fang. "An integrated organic–inorganic hole transport layer for efficient and stable perovskite solar cells". Journal of Materials Chemistry A 6, nr 5 (2018): 2157–65. http://dx.doi.org/10.1039/c7ta09946k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kumar, Sudhir, Chih-Chia An, Snehasis Sahoo, Raimonda Griniene, Dmytro Volyniuk, Juozas V. Grazulevicius, Saulius Grigalevicius i Jwo-Huei Jou. "Correction: Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes". Journal of Materials Chemistry C 5, nr 44 (2017): 11649. http://dx.doi.org/10.1039/c7tc90170d.

Pełny tekst źródła
Streszczenie:
Correction for ‘Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes’ by Sudhir Kumar et al., J. Mater. Chem. C, 2017, 5, 9854–9864.
Style APA, Harvard, Vancouver, ISO itp.
40

Stratakis, Emmanuel, Kyriaki Savva, Dimitrios Konios, Constantinos Petridis i Emmanuel Kymakis. "Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers". Nanoscale 6, nr 12 (2014): 6925–31. http://dx.doi.org/10.1039/c4nr01539h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Shaikh, Azam M., Bharat K. Sharma, Sajeev Chacko i Rajesh M. Kamble. "Novel electroluminescent donor–acceptors based on dibenzo[a,c]phenazine as hole-transporting materials for organic electronics". New Journal of Chemistry 41, nr 2 (2017): 628–38. http://dx.doi.org/10.1039/c6nj03553a.

Pełny tekst źródła
Streszczenie:
Novel yellow-green fluorescent 3,6,11-trisubstitued-dibenzo[a,c]phenazine derivatives were synthesized via a Buchwald–Hartwig palladium-catalyzed C–N amination reaction for the hole-transporting materials.
Style APA, Harvard, Vancouver, ISO itp.
42

Kalinowski, J., i K. Szybowska. "Photoconduction in the archetype organic hole transporting material TPD". Organic Electronics 9, nr 6 (grudzień 2008): 1032–39. http://dx.doi.org/10.1016/j.orgel.2008.08.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Yildirim, Onur, Matteo Bonomo, Nadia Barbero, Cesare Atzori, Bartolomeo Civalleri, Francesca Bonino, Guido Viscardi i Claudia Barolo. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies". Energies 13, nr 21 (26.10.2020): 5602. http://dx.doi.org/10.3390/en13215602.

Pełny tekst źródła
Streszczenie:
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two innovative classes of porous coordination polymers. MOFs are three-dimensional materials made up of secondary building blocks comprised of metal ions/clusters and organic ligands whereas COFs are 2D or 3D highly porous organic solids made up by light elements (i.e., H, B, C, N, O). Both MOFs and COFs, being highly conjugated scaffolds, are very promising as photoactive materials for applications in photocatalysis and artificial photosynthesis because of their tunable electronic properties, high surface area, remarkable light and thermal stability, easy and relative low-cost synthesis, and structural versatility. These properties make them perfectly suitable for photovoltaic application: throughout this review, we summarize recent advances in the employment of both MOFs and COFs in emerging photovoltaics, namely dye-sensitized solar cells (DSSCs) organic photovoltaic (OPV) and perovskite solar cells (PSCs). MOFs are successfully implemented in DSSCs as photoanodic material or solid-state sensitizers and in PSCs mainly as hole or electron transporting materials. An innovative paradigm, in which the porous conductive polymer acts as standing-alone sensitized photoanode, is exploited too. Conversely, COFs are mostly implemented as photoactive material or as hole transporting material in PSCs.
Style APA, Harvard, Vancouver, ISO itp.
44

Liu, Jian, Heng Zhang, Bingxue Wu, Lixue Sun, Yu Chen, Xueping Zong, Zhe Sun, Song Xue i Mao Liang. "Simple Yet Efficient: Arylamine‐Terminated Carbazole Donors for Organic Hole Transporting Materials". Solar RRL 5, nr 12 (14.10.2021): 2100694. http://dx.doi.org/10.1002/solr.202100694.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Qiu, Yong, i Juan Qiao. "Photostability and morphological stability of hole transporting materials used in organic electroluminescence". Thin Solid Films 372, nr 1-2 (wrzesień 2000): 265–70. http://dx.doi.org/10.1016/s0040-6090(00)01007-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Gao, Z. Q., C. S. Lee, I. Bello i S. T. Lee. "White light electroluminescence from a hole-transporting layer of mixed organic materials". Synthetic Metals 111-112 (czerwiec 2000): 39–42. http://dx.doi.org/10.1016/s0379-6779(99)00434-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Hwang, Seok-Hwan, Young Kook Kim, Yoonhyun Kwak, Chang-Ho Lee, Jonghyuk Lee i Sungchul Kim. "Improved performance of organic light-emitting diodes using advanced hole-transporting materials". Synthetic Metals 159, nr 23-24 (grudzień 2009): 2578–83. http://dx.doi.org/10.1016/j.synthmet.2009.09.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Park, Jong-Yek, Jeong Mi Kim, Haejin Lee, Kwang-Youn Ko, Kyoung Soo Yook, Jun Yeob Lee i Yong Gu Baek. "Thermally stable triphenylene-based hole-transporting materials for organic light-emitting devices". Thin Solid Films 519, nr 18 (lipiec 2011): 5917–23. http://dx.doi.org/10.1016/j.tsf.2011.03.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Stampor, Waldemar, i Wojciech Mróz. "Electroabsorption in triphenylamine-based hole-transporting materials for organic light-emitting diodes". Chemical Physics 331, nr 2-3 (styczeń 2007): 261–69. http://dx.doi.org/10.1016/j.chemphys.2006.10.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Cho, Ho Young, Lee Soon Park, Yoon Soo Han, Younghwan Kwon i Jae-Yong Ham. "Organic Light-Emitting Devices Consisting ofN-Triarylamine-Based Hole Injecting/Transporting Materials". Molecular Crystals and Liquid Crystals 498, nr 1 (25.02.2009): 314–22. http://dx.doi.org/10.1080/15421400802619735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii