Gotowa bibliografia na temat „Organic Hole transporting materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Organic Hole transporting materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Organic Hole transporting materials"
Świst, Agnieszka, Jadwiga Sołoducho, Przemysław Data i Mieczysław Łapkowski. "Thianthrene-based oligomers as hole transporting materials". Arkivoc 2012, nr 3 (24.01.2012): 193–209. http://dx.doi.org/10.3998/ark.5550190.0013.315.
Pełny tekst źródłaNamespetra, Andrew M., Arthur D. Hendsbee, Gregory C. Welch i Ian G. Hill. "Development of simple hole-transporting materials for perovskite solar cells". Canadian Journal of Chemistry 94, nr 4 (kwiecień 2016): 352–59. http://dx.doi.org/10.1139/cjc-2015-0427.
Pełny tekst źródłaZhao, Xiaojuan, i Mingkui Wang. "Organic hole-transporting materials for efficient perovskite solar cells". Materials Today Energy 7 (marzec 2018): 208–20. http://dx.doi.org/10.1016/j.mtener.2017.09.011.
Pełny tekst źródłaCho, Young Joon, Min Ji Jeong, Ji Hye Park, Weiguang Hu, Jongchul Lim i Hyo Sik Chang. "Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells". Energies 14, nr 4 (22.02.2021): 1156. http://dx.doi.org/10.3390/en14041156.
Pełny tekst źródłaJia, Haoran, Huanyu Ma, Xiangyang Liu, Donghui Xu, Ting Yuan, Chao Zou i Zhan'ao Tan. "Engineering organic–inorganic perovskite planar heterojunction for efficient carbon dots based light-emitting diodes". Applied Physics Reviews 9, nr 2 (czerwiec 2022): 021406. http://dx.doi.org/10.1063/5.0085692.
Pełny tekst źródłaShahnawaz, Shahnawaz, Sujith Sudheendran Swayamprabha, Mangey Ram Nagar, Rohit Ashok Kumar Yadav, Sanna Gull, Deepak Kumar Dubey i Jwo-Huei Jou. "Hole-transporting materials for organic light-emitting diodes: an overview". Journal of Materials Chemistry C 7, nr 24 (2019): 7144–58. http://dx.doi.org/10.1039/c9tc01712g.
Pełny tekst źródłaMehdi, S., R. Amraoui i A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials". Digest Journal of Nanomaterials and Biostructures 17, nr 3 (1.08.2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.
Pełny tekst źródłaPham, Hong Duc, Terry Chien‐Jen Yang, Sagar M. Jain, Gregory J. Wilson i Prashant Sonar. "Hole Transporting Materials: Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells (Adv. Energy Mater. 13/2020)". Advanced Energy Materials 10, nr 13 (kwiecień 2020): 2070057. http://dx.doi.org/10.1002/aenm.202070057.
Pełny tekst źródłaYuqiu, Qu, Zhang Liuyang, An Limin i Wei Hong. "Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials". Materials Science-Poland 33, nr 4 (1.12.2015): 709–13. http://dx.doi.org/10.1515/msp-2015-0120.
Pełny tekst źródłaChooppawa, Tianchai, Supawadee Namuangruk, Hiroshi M. Yamamoto, Vinich Promarak i Paitoon Rashatasakhon. "Synthesis, characterization, and hole-transporting properties of benzotriazatruxene derivatives". Journal of Materials Chemistry C 7, nr 47 (2019): 15035–41. http://dx.doi.org/10.1039/c9tc04155a.
Pełny tekst źródłaRozprawy doktorskie na temat "Organic Hole transporting materials"
Maruzzo, Valentina. "Synthèse de Hole Transporting Materials (HTM) stables pour le photovoltaïque hybride émergent". Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3082.
Pełny tekst źródłaPerovskite based Solar Cells (PSCs) witnessed a fast progress in their performances. Nowadays, a record power conversion efficiency (PCE) of over 26% can be reached for simple PSCs, and over 29.5% for tandem configurations. Perovskite (PSK) possesses strong light-absorption properties and high charge-carrier mobility. Upon light absorption, excited electrons and holes are generated, and drained to the corresponding electrodes thanks to the two layers surrounding the PSK: the hole transporting layer and the electron transporting layer. However, the instability of PSCs towards external environmental factors, such as humidity, hampers their industrial production. For this reason, the development of Hole Transporting Materials (HTMs) able to efficiently transport the charges without the need for dopants - highly hygroscopic molecules that accelerate the PSK degradation - is crucial to allow their upscaling.The objective of the PhD research is the synthesis of new stable HTMs, able to efficiently transport the charges in the absence of dopants. Carbazole (C) and phenothiazine (P) were chosen as main scaffolds, according to their low cost and tuneable electronic properties. A first-generation of HTMs with hexyl N-functionalisation was synthesised, comprising small molecules (University of Turin), oligomers and polymers (University of Pau). The alkylation of C and P aimed to increase the hydrophobicity of the HTMs, protecting the PSK layer against humidity and improving the processability of the materials. Two small molecules with opposite structure (PCP and CPC) and several polymeric HTMs were designed and synthesised through a Suzuki-Miyaura coupling reaction (using classical heating or microwave activation). In addition, end-capped polymers have been produced to achieve higher stability once implemented in solar cells. Indeed, the end-capping allows cross-linking reactions (induced by light or heat) once deposited as a layer in solar cells. The process led to a reticulated network, responsible for an increase in the performance and robustness of the PSCs. The structure and the optoelectronic and electrochemical properties of the synthesised materials were studied to assess the suitability of their use in solar cells.PSCs were assembled at CHOSE, University of Rome "Tor Vergata", using a p-i-n architecture for the solar cells. The small molecules displayed promising efficiencies, with PCE exceeding 10% (14% for PCP in the optimised conditions). However, low hole mobility values were measured by Organic Field-Effect Transistors; furthermore, GIWAXS and WAXS analyses revealed the amorphous behaviour of the molecules. In comparison, polymers presented lower PCE, mostly linked to a scarce wettability of their layer, which hinders the formation of a homogeneous PSK layer on top of it.To further improve the properties of the HTMs, we investigate two types of scaffold modifications. Indeed, shorter side chains were selected to increase the crystallinity of the molecules and allow higher charge transport abilities through better stacking. On the other hand, ethylene glycol side chains were inserted to provide the molecules with passivation ability towards PSK defects to increase the PCE. Both derivatisations resulted in small molecules with good solubility, whereas polymers required the insertion of tetra-ethylene glycol side chains to ensure proper solubility. The most promising materials will be tested shortly in PSCs to allow a complete comparison among all the derivatives
Pham, Hong Duc. "Improvement of perovskite solar cells performance and stability via molecular engineering using newly developed organic hole transporting materials". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/197683/1/Hong%20Duc_Pham_Thesis.pdf.
Pełny tekst źródłaDelices, Annette. "Organized Organic Dye / Hole Transporting Materials for TiO2- and ZnO- based Solid-State Dye-Sensitized Solar Cells (s-DSSCs)". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC066/document.
Pełny tekst źródłaDue to instability problems of dye sensitized solar cells (DSSCs) in longtime uses, the iodine based liquidelectrolyte has been replaced by several types of solid hole transporting materials (HTM) to perform solidstate DSSCs (s-DSSCs). Among them, the substitution by conducting polymers (CP) has attractedconsiderable attention because of their good stability, high hole-conductivity and simple deposition withinthe mesoporous TiO2 semiconductor. In this thesis work, several s-DSSCs based on CPs used as HTM havebeen developed in order to improve their photovoltaic performances taking into account the following twoobjectives: (i) the optimization of the interfacial charge transfer processes within the solar cell, and (ii) theoptimization of the charge transport within the n-type oxide semiconductor. To reach these goals, eachcomponent that constitutes the device was varied in order to investigate its effect on the device’sperformances. As first attempt, an analytical study is carried out by varying the sensitizer in order todetermine the fragments of the dyes structures, that have an important effect on the in-situ photoelectrochemical polymerization process (PEP) both in organic and in aqueous media and hence on theperformances of the s-DSSCs. Based on these results, a new concept of removing completely the interfacebetween the dye and the HTM is developed. This is achieved by the synthesis of new dyes covalently linkedto an electroactive monomer which is co-polymerized by in-situ PEP. The resulting co-polymer, used asHTM, is covalently linked to the dye. In addition, the nature of the chemical bond linking the triphenylamineresidue TPA to the monomer is also investigated as a key factor in the s-DSSCs performances. Besides, andto optimize the charge transport processes within this type of s-DSSC, the elaboration of novel ZnO baseds-DSSCs has been achieved and investigated
Delices, Annette. "Organized Organic Dye / Hole Transporting Materials for TiO2- and ZnO- based Solid-State Dye-Sensitized Solar Cells (s-DSSCs)". Electronic Thesis or Diss., Sorbonne Paris Cité, 2017. https://theses.md.univ-paris-diderot.fr/DELICES_Annette_2_va_20170929.pdf.
Pełny tekst źródłaDue to instability problems of dye sensitized solar cells (DSSCs) in longtime uses, the iodine based liquidelectrolyte has been replaced by several types of solid hole transporting materials (HTM) to perform solidstate DSSCs (s-DSSCs). Among them, the substitution by conducting polymers (CP) has attractedconsiderable attention because of their good stability, high hole-conductivity and simple deposition withinthe mesoporous TiO2 semiconductor. In this thesis work, several s-DSSCs based on CPs used as HTM havebeen developed in order to improve their photovoltaic performances taking into account the following twoobjectives: (i) the optimization of the interfacial charge transfer processes within the solar cell, and (ii) theoptimization of the charge transport within the n-type oxide semiconductor. To reach these goals, eachcomponent that constitutes the device was varied in order to investigate its effect on the device’sperformances. As first attempt, an analytical study is carried out by varying the sensitizer in order todetermine the fragments of the dyes structures, that have an important effect on the in-situ photoelectrochemical polymerization process (PEP) both in organic and in aqueous media and hence on theperformances of the s-DSSCs. Based on these results, a new concept of removing completely the interfacebetween the dye and the HTM is developed. This is achieved by the synthesis of new dyes covalently linkedto an electroactive monomer which is co-polymerized by in-situ PEP. The resulting co-polymer, used asHTM, is covalently linked to the dye. In addition, the nature of the chemical bond linking the triphenylamineresidue TPA to the monomer is also investigated as a key factor in the s-DSSCs performances. Besides, andto optimize the charge transport processes within this type of s-DSSC, the elaboration of novel ZnO baseds-DSSCs has been achieved and investigated
Rodríguez, Seco Cristina. "Low-Molecular Weight Semiconductors for Organic and Perovskite Solar Cells". Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667660.
Pełny tekst źródłaActualmente, las fuentes de energía renovables están atrayendo mucha atención debido al impacto negativo que los combustibles fósiles están causando al planeta. Las tecnologías basadas en las celdas fotovoltaicas son una alternativa sostenible para cubrir la demanda energética mundial. El principal objetivo de este trabajo fue el diseño y la síntesis de nuevas moléculas que reemplacen los polímeros comúnmente utilizados como moléculas captadoras de luz en celdas solares orgánicas y el spiro-OMeTAD usado como transportador de huecos (HTM por sus siglas en inglés “hole transporting material”) en dispositivos solares de perovskita. Por una parte, los polímeros son conocidos por ser buenos transportadores de huecos, su alta solubilidad y su favorable habilidad en la formación de capas, pero tienen muy poca reproducibilidad entre distintos lotes. Por otra parte, el spiro-OMeTAD es la molécula que mejor reproducibilidad y eficiencia presenta en celdas solares de perovskita. Sin embargo, su síntesis compleja y de alto coste impide la posibilidad de escalado a nivel industrial. Con el fin de solucionar estos problemas, esta tesis se ha enfocado en el diseño, síntesis y caracterización de un conjunto de moléculas pequeñas de bajo peso molecular para su aplicación en dichos dispositivos
Nowadays, renewable energy sources are attracting a lot of attention due to the undesired environmental impact the fossil fuels are causing to the Earth. Solar cells technologies are a sustainable alternative to the increasing world energy demand. The main aim of this work was to design and synthetize novel molecules that could replace the polymers widely used as absorbers in organic solar cells and spiro-OMeTAD used as a hole transporting material (HTM) in perovskite solar cells. On the one hand, polymers are known for their good hole transporting properties, high solubility and good film forming abilities but they have a poor batch-to-batch reproducibility. Furthermore, spiro-OMeTAD is the best molecule to achieve reproducible and highly efficient perovskite solar cells. However, its complex and expensive synthesis and purification hinder its usage in industrial scale photovoltaics. In order to overcome these problems, the rational design, synthesis and characterization of a variety of small molecules for both applications have been on a focus of this thesis.
Paterson, Michael A. J. "A spectroelectrochemical investigation of arylamine based hole transporting materials". Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3704/.
Pełny tekst źródłaLiu, Jiewei. "Investigating low cost hole transporting materials for perovskite solar cells". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:51073048-faed-439d-9ce5-cbe4c55fe4b2.
Pełny tekst źródłaAlexiou, I. "Hole transport materials for organic thin films". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595437.
Pełny tekst źródłaPark, Taiho. "Organic hole transport materials for dye-sensitised photocells". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619558.
Pełny tekst źródłaBarceló, Gisbert Irene. "Study of different electron and hole transporting materials for quantum dot-sensitized solar cells". Doctoral thesis, Universidad de Alicante, 2015. http://hdl.handle.net/10045/50105.
Pełny tekst źródłaKsiążki na temat "Organic Hole transporting materials"
Otterbach, Steffen Andreas. Organic Semiconductors Based on [2. 2]Paracyclophanes and Porphyrins As Hole Transport Materials in Perovskite Solar Cells. Logos Verlag Berlin, 2023.
Znajdź pełny tekst źródłaCzęści książek na temat "Organic Hole transporting materials"
Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi i Pham Thi Thu Trang. "Organic Hole-Transporting Materials". W Perovskite Solar Cells, 159–82. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-10.
Pełny tekst źródłaIto, Seigo. "Inorganic Hole-Transporting Materials for Perovskite Solar Cell". W Organic-Inorganic Halide Perovskite Photovoltaics, 343–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_14.
Pełny tekst źródłaFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi i Pham Thi Thu Trang. "Inorganic Hole-Transporting Materials". W Perovskite Solar Cells, 183–200. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-11.
Pełny tekst źródłaFukagawa, Hirohiko. "Low-Molecular-Weight Materials: Hole Injection Materials". W Handbook of Organic Light-Emitting Diodes, 1–10. Tokyo: Springer Japan, 2019. http://dx.doi.org/10.1007/978-4-431-55761-6_52-1.
Pełny tekst źródłaSasabe, Hisahiro, i Junji Kido. "Low Molecular Weight Materials: Hole-Transport Materials". W Handbook of Organic Light-Emitting Diodes, 1–6. Tokyo: Springer Japan, 2019. http://dx.doi.org/10.1007/978-4-431-55761-6_8-1.
Pełny tekst źródłaWu, Chao, Peter I. Djurovich i Mark E. Thompson. "Study of Energy Transfer and Triplet Exciton Diffusion in Hole-Transporting Host Materials". W Electrophosphorescent Materials and Devices, 707–31. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003088721-40.
Pełny tekst źródłaKharlamov, B. M. "“Hole Burning Spectroscopy of Organic Glasses”". W Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications, 151–66. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4056-0_12.
Pełny tekst źródłaSingh, Nidhi, Ramesh Chand Thakur, Ashish Kumar i Praveen Kumar Sharma. "Solution-Processed Advanced Materials as Hole Transporting Layer for Application in Optoelectronic Devices". W Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices, 52–73. Boca Raton: CRC Press, 2025. https://doi.org/10.1201/9781032960500-3.
Pełny tekst źródłaAdachi, Chihaya, Marc A. Baldo, Stephen R. Forrest i Mark E. Thompson. "High-Efficiency Organic Electrophosphorescent Devices with tris(2-Phenylpyridine)Iridium Doped into Electron-Transporting Materials". W Electrophosphorescent Materials and Devices, 81–90. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003088721-7.
Pełny tekst źródłaCao, Liang, Xing-Yu Gao, Andrew T. S. Wee i Dong-Chen Qi. "Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Core-Hole Clock Spectroscopy". W Synchrotron Radiation in Materials Science, 137–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527697106.ch5.
Pełny tekst źródłaStreszczenia konferencji na temat "Organic Hole transporting materials"
Sastre-Santos, Ángela. "Arylamine Zinc and Copper Phthalocyanines as Outstanding Hole Transporting Materials in Perovskite Solar Cells". W International Conference on Hybrid and Organic Photovoltaics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2024. http://dx.doi.org/10.29363/nanoge.hopv.2024.040.
Pełny tekst źródłaLin, W. K., S. H. Su, Y. F. Lin, J. R. Wang, J. L. Huang i M. Yokoyama. "Highly Efficient Organic Solar Cell Employing a Solution Processed Hole Transporting Layer". W 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.bl-2-3.
Pełny tekst źródłaJiewei Liu, Sandeep Pathak, Tomas Leijtens, Thomas Stergiopoulos, Konrad Wojciechowski, Stefan Schumann, Nina Kausch-Busies i Henry J. Snaith. "Novel low cost hole transporting materials for efficient organic-inorganic perovskite solar cells". W 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355728.
Pełny tekst źródłaLuizys, Povilas, Jianxing Xia, Maryte Daskeviciene, Vygintas Jankauskas, Kasparas Rakstys, Vytautas Getautis i Mohammad Khaja Nazeeruddin. "Flexible Hole-Transporting Materials With N-Carbazolyl-Based Chromophores Linked Via Aliphatic Chain For Perovskite Solar Cells". W International Conference on Hybrid and Organic Photovoltaics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2024. http://dx.doi.org/10.29363/nanoge.hopv.2024.142.
Pełny tekst źródłaPark, Sangshin, Hyukmin Kwon, Seokwoo Kang, Sunwoo Park i Jongwook Park. "Stable all‐inorganic perovskite quantum dots using a ZnX2‐trioctylphosphine‐oxide and a new hole transporting polymer in PeLEDs". W Organic and Hybrid Light Emitting Materials and Devices XXV, redaktorzy Tae-Woo Lee, Franky So i Chihaya Adachi. SPIE, 2021. http://dx.doi.org/10.1117/12.2593786.
Pełny tekst źródłaBacher, Andreas, Christian H. Erdelen, Dietrich Haarer, Wolfgang Paulus i Hans-Werner Schmidt. "Triphenylenes: a new class of hole transporting material in organic light-emitting diodes". W Optical Science, Engineering and Instrumentation '97, redaktor Zakya H. Kafafi. SPIE, 1997. http://dx.doi.org/10.1117/12.279330.
Pełny tekst źródłaOkumoto, Kenji, Hidekaru Doi, Hiroshi Kageyama i Yasuhiko Shirota. "New hole-transporting amorphous molecular materials with high glass-transition temperatures for organic light-emitting diodes". W Photonic Devices + Applications, redaktorzy Zakya H. Kafafi i Franky So. SPIE, 2007. http://dx.doi.org/10.1117/12.733806.
Pełny tekst źródłaBUI, Thanh-Tuân, Thi Huong Le, Fabrice Goubard, Thybault de Monfreid, Seul-Gi Kim i Nam-Gyu Park. "Triphenylamine/Thieno[3,4-c]pyrrole-4,6-dione based D–π-A–π-D Hole Transporting Materials for Perovskite Solar Cells". W 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.002.
Pełny tekst źródłaWolf, Florian, Maximilian Sirtl, Sebastian Klenk, Maximilian Wurzenberger, Melina Armer, Patrick Dörflinger, Patrick Ganswindt, Roman Guntermann, Vladimir Dyakonov i Thomas Bein. "Behind the Scenes: Insights into the Structural Properties of Amide-Based Hole-Transporting Materials for Lead-Free Perovskite Solar Cells". W International Conference on Hybrid and Organic Photovoltaics 2023. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.hopv.2023.121.
Pełny tekst źródłaInoue, K., A. Suzuki, T. Oku i T. Akiyama. "Fabrication and Evaluation of Organic Photoelectric Conversion Devices using Electrodeposited Polyaniline Films as a Hole Transporting Layer". W 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.p-10-18.
Pełny tekst źródłaRaporty organizacyjne na temat "Organic Hole transporting materials"
Psaltis, Demetri. Large Scale Spectral Hole Burning Memory in Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2002. http://dx.doi.org/10.21236/ada408171.
Pełny tekst źródłaBrossia, Song i Sridhar. L52131 Gap Analysis of Location Techniques for CP Shielding. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 2004. http://dx.doi.org/10.55274/r0010438.
Pełny tekst źródła