Artykuły w czasopismach na temat „Organic electron donors (OEDs)”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Organic electron donors (OEDs).

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Organic electron donors (OEDs)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Cha, Judy J. "Intercalation and Functionalization in 2D Materials". ECS Meeting Abstracts MA2023-01, nr 13 (28.08.2023): 1306. http://dx.doi.org/10.1149/ma2023-01131306mtgabs.

Pełny tekst źródła
Streszczenie:
The large surface areas and interlayer gaps of 2D materials enable surface functionalization and intercalation as effective post-synthesis design knobs to tune the properties of 2D materials using ions, atoms, and organic molecules. For complete engineering control, detailed understanding of the interactions between the 2D materials and the molecules adsorbed on 2D materials surface or between the 2D materials and the intercalants is necessary. I will first discuss surface functionalization to tune the electrical properties of 2D materials. We developed an experimental approach to quantitatively measure the doping powers of organic electron donors (OEDs) to monolayer MoS2. Using novel and previously studied OEDs, we demonstrate experimentally that the measured doping power is a sensitive function of molecule’s reduction potential, size, surface coverage, and orientation to 2D materials [1, 2]. I will then discuss electrochemical intercalation into 2D materials to induce novel phases that were previously undetected and to study heterointerface effects on the intercalation induced phase transition [3, 4]. We discover new structural phases in Td-WTe2 and T’-MoTe2 with lithium intercalation and these new phases are semiconducting even though the initial WTe2 and MoTe2 are semimetallic and lithium ions donate electrons to the host materials. In the lithium intercalation-induced phase transition from the 2H to 1T’ phase of MoS2, we show that the nucleation of the 1T’ phase proceeds via heterogeneous nucleation where the nature of heterointerface dictates the thermodynamics of the phase transition. For these studies, multi-modal, in-situ probes were necessary to track the changes in the structure-property relation of the layered materials as a function of intercalation. [1] Advanced Electronic Materials 7, 2000873 (2021). [2] Nano Letters 22, p.4501 (2022). [3] ACS Applied Materials & Interfaces 13, p.10603-10611 (2021). [4] Advanced Materials 34, 2200861 (2022).
Style APA, Harvard, Vancouver, ISO itp.
2

Murphy, John A. "ChemInform Abstract: Organic Electron Donors". ChemInform 43, nr 37 (16.08.2012): no. http://dx.doi.org/10.1002/chin.201237244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Broggi, Julie, Marion Rollet, Jean-Louis Clément, Gabriel Canard, Thierry Terme, Didier Gigmes i Patrice Vanelle. "Polymerization Initiated by Organic Electron Donors". Angewandte Chemie International Edition 55, nr 20 (8.04.2016): 5994–99. http://dx.doi.org/10.1002/anie.201600327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Broggi, Julie, Marion Rollet, Jean-Louis Clément, Gabriel Canard, Thierry Terme, Didier Gigmes i Patrice Vanelle. "Polymerization Initiated by Organic Electron Donors". Angewandte Chemie 128, nr 20 (8.04.2016): 6098–103. http://dx.doi.org/10.1002/ange.201600327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Broggi, Julie, Thierry Terme i Patrice Vanelle. "Organic Electron Donors as Powerful Single-Electron Reducing Agents in Organic Synthesis". Angewandte Chemie International Edition 53, nr 2 (24.11.2013): 384–413. http://dx.doi.org/10.1002/anie.201209060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Zhou, Shengze, Hardeep Farwaha i John A. Murphy. "The Development of Organic Super Electron Donors". CHIMIA International Journal for Chemistry 66, nr 6 (27.06.2012): 418–24. http://dx.doi.org/10.2533/chimia.2012.418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rohrbach, Simon, Rushabh S. Shah, Tell Tuttle i John A. Murphy. "Neutral Organic Super Electron Donors Made Catalytic". Angewandte Chemie International Edition 58, nr 33 (12.08.2019): 11454–58. http://dx.doi.org/10.1002/anie.201905814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lowe, Grace A. "Enabling artificial photosynthesis systems with molecular recycling: A review of photo- and electrochemical methods for regenerating organic sacrificial electron donors". Beilstein Journal of Organic Chemistry 19 (8.08.2023): 1198–215. http://dx.doi.org/10.3762/bjoc.19.88.

Pełny tekst źródła
Streszczenie:
This review surveys advances in the literature that impact organic sacrificial electron donor recycling in artificial photosynthesis. Systems for photocatalytic carbon dioxide reduction are optimized using sacrificial electron donors. One strategy for coupling carbon dioxide reduction and water oxidation to achieve artificial photosynthesis is to use a redox mediator, or recyclable electron donor. This review highlights photo- and electrochemical methods for recycling amines and NADH analogues that can be used as electron donors in artificial photosynthesis. Important properties of sacrificial donors and recycling strategies are also discussed. Compounds from other fields, such as redox flow batteries and decoupled water splitting research, are introduced as alternative recyclable sacrificial electron donors and their oxidation potentials are compared to the redox potentials of some model photosensitizers. The aim of this review is to act as a reference for researchers developing photocatalytic systems with sacrificial electron donors, and for researchers interested in designing new redox mediator and recyclable electron donor species.
Style APA, Harvard, Vancouver, ISO itp.
9

Murphy, John A. "Discovery and Development of Organic Super-Electron-Donors". Journal of Organic Chemistry 79, nr 9 (25.03.2014): 3731–46. http://dx.doi.org/10.1021/jo500071u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rohrbach, Simon, Rushabh S. Shah, Tell Tuttle i John A. Murphy. "Corrigendum: Neutral Organic Super Electron Donors Made Catalytic". Angewandte Chemie International Edition 58, nr 43 (21.10.2019): 15183. http://dx.doi.org/10.1002/anie.201910425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Rohrbach, Simon, Rushabh S. Shah, Tell Tuttle i John A. Murphy. "Berichtigung: Neutral Organic Super Electron Donors Made Catalytic". Angewandte Chemie 131, nr 43 (14.10.2019): 15325. http://dx.doi.org/10.1002/ange.201910425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Broggi, Julie, Thierry Terme i Patrice Vanelle. "ChemInform Abstract: Organic Electron Donors as Powerful Single-Electron Reducing Agents in Organic Synthesis". ChemInform 45, nr 19 (23.04.2014): no. http://dx.doi.org/10.1002/chin.201419251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Anderson, Greg M., Iain Cameron, John A. Murphy i Tell Tuttle. "Predicting the reducing power of organic super electron donors". RSC Advances 6, nr 14 (2016): 11335–43. http://dx.doi.org/10.1039/c5ra26483a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kushto, Gary P., Antti J. Makinen i Paul A. Lane. "Organic Photovoltaic Cells Using Group 10 Metallophthalocyanine Electron Donors". IEEE Journal of Selected Topics in Quantum Electronics 16, nr 6 (listopad 2010): 1552–59. http://dx.doi.org/10.1109/jstqe.2010.2052354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Guidi, Vanina V., Zhou Jin, Devin Busse, William B. Euler i Brett L. Lucht. "Bis(phosphine Imide)s: Easily Tunable Organic Electron Donors". Journal of Organic Chemistry 70, nr 19 (wrzesień 2005): 7737–43. http://dx.doi.org/10.1021/jo051196u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zhou, Shengze, Hardeep Farwaha i John A. Murphy. "ChemInform Abstract: The Development of Organic Super Electron Donors". ChemInform 43, nr 44 (4.10.2012): no. http://dx.doi.org/10.1002/chin.201244258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

YAMASHITA, Yoshiro. "Novel electron acceptors and donors containing fused-heterocycles." Journal of Synthetic Organic Chemistry, Japan 47, nr 12 (1989): 1108–17. http://dx.doi.org/10.5059/yukigoseikyokaishi.47.1108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hoffman, Robert V. "THE OXIDATION OF ELECTRON DONORS WITH SULFONYL PEROXIDES". Organic Preparations and Procedures International 18, nr 3 (czerwiec 1986): 179–201. http://dx.doi.org/10.1080/00304948609458139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Doni, Eswararao, i John A. Murphy. "Evolution of neutral organic super-electron-donors and their applications". Chem. Commun. 50, nr 46 (2014): 6073–87. http://dx.doi.org/10.1039/c3cc48969h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Li, Shuixing, Zhongqiang Zhang, Minmin Shi, Chang-Zhi Li i Hongzheng Chen. "Molecular electron acceptors for efficient fullerene-free organic solar cells". Physical Chemistry Chemical Physics 19, nr 5 (2017): 3440–58. http://dx.doi.org/10.1039/c6cp07465k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Garnier, Jean, Douglas W. Thomson, Shengze Zhou, Phillip I. Jolly, Leonard E. A. Berlouis i John A. Murphy. "Hybrid super electron donors – preparation and reactivity". Beilstein Journal of Organic Chemistry 8 (3.07.2012): 994–1002. http://dx.doi.org/10.3762/bjoc.8.112.

Pełny tekst źródła
Streszczenie:
Neutral organic electron donors, featuring pyridinylidene–imidazolylidene, pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene linkages are reported. The pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene–imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed.
Style APA, Harvard, Vancouver, ISO itp.
22

Murphy, John A. "ChemInform Abstract: Discovery and Development of Organic Super-Electron-Donors". ChemInform 45, nr 28 (26.06.2014): no. http://dx.doi.org/10.1002/chin.201428243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Martin, Julien D., i C. Adam Dyker. "Facile preparation and isolation of neutral organic electron donors based on 4-dimethylaminopyridine". Canadian Journal of Chemistry 96, nr 6 (czerwiec 2018): 522–25. http://dx.doi.org/10.1139/cjc-2017-0526.

Pełny tekst źródła
Streszczenie:
A number of new neutral bis-2-(4-dimethylamino)pyridinylidene electron donors featuring N-akyl groups of varying lengths (propyl, butyl, hexyl, dodecyl) have been prepared from 4-dimethylaminopyridine by means of a simple two-step procedure. Each derivative could be isolated in high yield and could be stored indefinitely under inert atmosphere. The electron donors were chemically oxidized to the corresponding bipyridinium ions, and all compounds were characterized by NMR spectroscopy and cyclic voltammetry. As an emerging class of electron transfer agents, the availability of the isolated neutral bispyridinylidenes should be beneficial for cases that are incompatible with generating the electron donor in situ.
Style APA, Harvard, Vancouver, ISO itp.
24

Wonner, P., T. Steinke i S. M. Huber. "Activation of Quinolines by Cationic Chalcogen Bond Donors". Synlett 30, nr 14 (9.08.2019): 1673–78. http://dx.doi.org/10.1055/s-0039-1690110.

Pełny tekst źródła
Streszczenie:
The application of already established as well as novel selenium- and sulfur-based cationic chalcogen bond donors in the catalytic activation of quinoline derivatives is presented. In the presence of selected catalysts, rate accelerations of up to 2300 compared to virtually inactive reference compounds are observed. The catalyst loading can be reduced to 1 mol% while still achieving nearly full conversion for electron-poor and electron-rich quinolines. Contrary to expectations, preorganized catalysts were less active than the more flexible variants.
Style APA, Harvard, Vancouver, ISO itp.
25

Santos, Fabiano S., Elamparuthi Ramasamy, V. Ramamurthy i Fabiano S. Rodembusch. "Correction: Photoinduced electron transfer across an organic molecular wall: octa acid encapsulated ESIPT dyes as electron donors". Photochemical & Photobiological Sciences 16, nr 8 (2017): 1335. http://dx.doi.org/10.1039/c7pp90026k.

Pełny tekst źródła
Streszczenie:
Correction for ‘Photoinduced electron transfer across an organic molecular wall: octa acid encapsulated ESIPT dyes as electron donors’ by Fabiano S. Santos et al., Photochem. Photobiol. Sci., 2017, 16, 840–844.
Style APA, Harvard, Vancouver, ISO itp.
26

Sandanayaka, Atula S. D., Hisahiro Sasabe, Toshikazu Takata i Osamu Ito. "Photoinduced electron transfer processes of fullerene rotaxanes containing various electron-donors". Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11, nr 2-3 (wrzesień 2010): 73–92. http://dx.doi.org/10.1016/j.jphotochemrev.2010.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Seel, Catharina Julia, Antonín Králík, Melanie Hacker, Annika Frank, Burkhard König i Tanja Gulder. "Atom-Economic Electron Donors for Photobiocatalytic Halogenations". ChemCatChem 10, nr 18 (25.07.2018): 3960–63. http://dx.doi.org/10.1002/cctc.201800886.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Onitsch, Christine, Arnulf Rosspeintner, Gonzalo Angulo, Markus Griesser, Milan Kivala, Brian Frank, François Diederich i Georg Gescheidt. "Donor-Substituted Diphenylacetylene Derivatives Act as Electron Donors and Acceptors". Journal of Organic Chemistry 76, nr 14 (15.07.2011): 5628–35. http://dx.doi.org/10.1021/jo2005022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Bryce, Martin R., Malcolm A. Coffin i William Clegg. "New vinylogous tetrathiafulvalene .pi.-electron donors with peripheral alkylseleno substitution". Journal of Organic Chemistry 57, nr 6 (marzec 1992): 1696–99. http://dx.doi.org/10.1021/jo00032a018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Miao, Junhui, Bin Meng, Jun Liu i Lixiang Wang. "Small-Molecule Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Terminal Groups of Small-Molecule Donors". Organic Materials 01, nr 01 (listopad 2019): 088–94. http://dx.doi.org/10.1055/s-0039-3401017.

Pełny tekst źródła
Streszczenie:
Small-molecule donor/polymer acceptor type (MD/PA-type) organic solar cells (OSCs) have the great advantage of superior thermal stability. However, very few small molecular donors can match polymer acceptors, leading to low power conversion efficiency (PCE) of MD/PA-type OSCs. In this work, we studied the effect of terminal groups of small molecular donors on the optoelectronic properties and OSC device performance of MD/PA-type OSCs. We select a benzodithiophene unit bearing carbazolyl substituents as the core, terthiophene as the bridging unit, and electron-withdrawing methyl 2-cyanoacetate, 3-ethylrhodanine, and 2H-indene-1,3-dione as the terminal groups to develop three small-molecule donors. With the increase of the electron-withdrawing capability of the terminal groups, the small molecular donors exhibit redshifted absorption spectra and downshifted LUMO levels. Among the three small-molecule donors, the one with 3-ethylrhodanine terminal group exhibits the best photovoltaic performance with the PCE of 8.0% in MD/PA-type OSCs. This work provides important guidelines for the design of small-molecule donors for MD/PA-type OSC applications.
Style APA, Harvard, Vancouver, ISO itp.
31

Jiang, Xudong, Yunhua Xu, Xiaohui Wang, Yang Wu, Guitao Feng, Cheng Li, Wei Ma i Weiwei Li. "Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor". Physical Chemistry Chemical Physics 19, nr 11 (2017): 8069–75. http://dx.doi.org/10.1039/c7cp00494j.

Pełny tekst źródła
Streszczenie:
Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor were studied to show power conversion efficiencies of 4% with external quantum efficiencies above 0.4.
Style APA, Harvard, Vancouver, ISO itp.
32

Dyachenko, V. I., B. L. Tumanskii, Yu I. Lyakhovetskii, N. M. Loim, R. G. Gasanov, N. N. Bubnov, A. F. Kolomiets i A. V. Fokin. "One-electron transfer in the reactions of polyfluoroketones with organic donors". Bulletin of the Russian Academy of Sciences Division of Chemical Science 41, nr 3 (marzec 1992): 599. http://dx.doi.org/10.1007/bf00863099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Torres, Isabela C., Kanika S. Inglett i K. R. Reddy. "Heterotrophic microbial activity in lake sediments: effects of organic electron donors". Biogeochemistry 104, nr 1-3 (30.06.2010): 165–81. http://dx.doi.org/10.1007/s10533-010-9494-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Tintori, Guillaume, Pierre Nabokoff, Ruqaya Buhaibeh, David Bergé-Lefranc, Sébastien Redon, Julie Broggi i Patrice Vanelle. "Base-Free Generation of Organic Electron Donors from Air-Stable Precursors". Angewandte Chemie 130, nr 12 (15.02.2018): 3202–7. http://dx.doi.org/10.1002/ange.201713079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Wang, Hua-Jing, Jing Shi, Ming Fang, Zhe Li i Qing-Xiang Guo. "Design of new neutral organic super-electron donors: a theoretical study". Journal of Physical Organic Chemistry 23, nr 1 (21.08.2009): 75–83. http://dx.doi.org/10.1002/poc.1590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Tintori, Guillaume, Pierre Nabokoff, Ruqaya Buhaibeh, David Bergé-Lefranc, Sébastien Redon, Julie Broggi i Patrice Vanelle. "Base-Free Generation of Organic Electron Donors from Air-Stable Precursors". Angewandte Chemie International Edition 57, nr 12 (15.02.2018): 3148–53. http://dx.doi.org/10.1002/anie.201713079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lazareva, N. F., i I. M. Lazarev. "α-Silyl amines as electron donors: application in synthetic organic chemistry". Russian Chemical Bulletin 73, nr 4 (kwiecień 2024): 761–86. http://dx.doi.org/10.1007/s11172-024-4191-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wang, Jinfeng, Siwei Liu, Kai Chang, Qiuyan Liao, Sheng Li, Hongwei Han, Qianqian Li i Zhen Li. "Synergy effect of electronic characteristics and spatial configurations of electron donors on photovoltaic performance of organic dyes". Journal of Materials Chemistry C 8, nr 41 (2020): 14453–61. http://dx.doi.org/10.1039/d0tc02556a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Doni, Eswararao, i John A. Murphy. "Reductive decyanation of malononitriles and cyanoacetates using photoactivated neutral organic super-electron-donors". Org. Chem. Front. 1, nr 9 (2014): 1072–76. http://dx.doi.org/10.1039/c4qo00202d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Zhou, T. F., X. Y. Ma, W. X. Han, X. P. Guo, R. Q. Gu, L. J. Yu, J. Li, Y. M. Zhao i Tao Wang. "D–D–A dyes with phenothiazine–carbazole/triphenylamine as double donors in photopolymerization under 455 nm and 532 nm laser beams". Polymer Chemistry 7, nr 31 (2016): 5039–49. http://dx.doi.org/10.1039/c6py00918b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Molina-Ontoria, Agustín, María Gallego, Luís Echegoyen, Emilio M. Pérez i Nazario Martín. "Organic solar cells based on bowl-shaped small-molecules". RSC Advances 5, nr 40 (2015): 31541–46. http://dx.doi.org/10.1039/c5ra02073e.

Pełny tekst źródła
Streszczenie:
A supramolecular approach involving bowl-shape molecules as electron donors has been used for the preparation of small-molecule solar cells. The PCE values depend directly on the formation of the supramolecular complex.
Style APA, Harvard, Vancouver, ISO itp.
42

Miyaji, Tsutomu, Takanori Suzuki, Tsuneyuki Okubo, Akihisa Okada, Yoshiro Yamashita i Tsutomu Miyashi. "Benzidine Type Electron Donors Fused with 1,2,5-Chalcogenadiazole Units". HETEROCYCLES 35, nr 1 (1993): 395. http://dx.doi.org/10.3987/com-92-s34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Tintori, Guillaume, Arona Fall, Nadhrata Assani, Yuxi Zhao, David Bergé-Lefranc, Sébastien Redon, Patrice Vanelle i Julie Broggi. "Generation of powerful organic electron donors by water-assisted decarboxylation of benzimidazolium carboxylates". Organic Chemistry Frontiers 8, nr 6 (2021): 1197–205. http://dx.doi.org/10.1039/d0qo01488e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Paleti, Sri Harish Kumar, Nicola Gasparini, Christos L. Chochos i Derya Baran. "High performance conjugated terpolymers as electron donors in nonfullerene organic solar cells". Journal of Materials Chemistry C 8, nr 38 (2020): 13422–29. http://dx.doi.org/10.1039/d0tc01379j.

Pełny tekst źródła
Streszczenie:
Three pi-conjugated terpolymers based on the nonconventional molecular design strategy D1–D2–D1–A comprising two different multi-fused ladder-type arene electron-donating units and an electron-withdrawing unit are synthesized for organic photovoltaics.
Style APA, Harvard, Vancouver, ISO itp.
45

Uchiyama, Takayuki, Takashi Sano, Yoshiko Okada-Shudo i Varun Vohra. "Durable organic solar cells produced by in situ encapsulation of an air-sensitive natural organic semiconductor by the fullerene derivative and the metal oxide layer". Journal of Materials Chemistry C 8, nr 21 (2020): 7162–69. http://dx.doi.org/10.1039/d0tc00379d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Brancaleon, Lorenzo, Darryl Brousmiche i Linda J. Johnston. "Article". Canadian Journal of Chemistry 77, nr 5-6 (1.06.1999): 787–91. http://dx.doi.org/10.1139/v99-060.

Pełny tekst źródła
Streszczenie:
The electron transfer photochemistry of 2,3-dicyanonaphthalene has been studied by a combination of fluorescence and transient absorption spectroscopy. The singlet excited state has a lifetime of 26 ns in acetonitrile and reacts with aromatic and alkene donors with oxidation potentials less than ~1.8 V with rate constants that are close to the diffusion-controlled limit. Transient absorption measurements demonstrate that the fluorescence quenching leads to efficient formation of free-radical ions. The radical ion yields have been measured for several donors and are compared to those for the more commonly used sensitizer, 1.4-dicyanonaphthalene. In the absence of added donors, direct excitation of 2,3-dicyanonaphthalene provides evidence for photoionization at high laser energy, in addition to triplet formation. The results illustrate the utility of this sensitizer for photoinduced electron transfer reactions.Key words: photoinduced electron transfer, laser flash photolysis, fluorescence, photosensitizers.
Style APA, Harvard, Vancouver, ISO itp.
47

Sun, Jian-Ke, Ya-Jun Zhang, Gui-Peng Yu, Jie Zhang, Markus Antonietti i Jiayin Yuan. "Three birds, one stone – photo-/piezo-/chemochromism in one conjugated nanoporous ionic organic network". Journal of Materials Chemistry C 6, nr 34 (2018): 9065–70. http://dx.doi.org/10.1039/c8tc01324a.

Pełny tekst źródła
Streszczenie:
A nanoporous material bearing a high ion density and inherent organic radical character was synthesized by a facile one-pot process, which exhibits photo-, piezo- and chemochromism, driven by the diverse electron transfer processes between the acceptor framework and different electron donors.
Style APA, Harvard, Vancouver, ISO itp.
48

Quinton, Cassandre, Valérie Alain-Rizzo, Cécile Dumas-Verdes, Gilles Clavier, Laurence Vignau i Pierre Audebert. "Triphenylamine/tetrazine based π-conjugated systems as molecular donors for organic solar cells". New Journal of Chemistry 39, nr 12 (2015): 9700–9713. http://dx.doi.org/10.1039/c5nj02097b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Rueping, Magnus, Pavlo Nikolaienko, Yury Lebedev i Alina Adams. "Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations". Green Chemistry 19, nr 11 (2017): 2571–75. http://dx.doi.org/10.1039/c7gc00877e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Yang, Zhenqing, Changjin Shao i Dapeng Cao. "Screening donor groups of organic dyes for dye-sensitized solar cells". RSC Advances 5, nr 29 (2015): 22892–98. http://dx.doi.org/10.1039/c4ra17261b.

Pełny tekst źródła
Streszczenie:
Based on an experimentally synthesized dye D5 (also named d01 here), we designed and screened a series of dyes d02–d12 with different electron donors, and recommended several high performance dyes for DSSCs.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii