Gotowa bibliografia na temat „Ordered Nanocomposite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ordered Nanocomposite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ordered Nanocomposite"
Chen, Guangming, Zongneng Qi i Deyan Shen. "Shear-induced ordered structure in polystyrene/clay nanocomposite". Journal of Materials Research 15, nr 2 (luty 2000): 351–56. http://dx.doi.org/10.1557/jmr.2000.0055.
Pełny tekst źródłaKausar, Ayesha. "Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications". Journal of Plastic Film & Sheeting 35, nr 1 (15.08.2018): 65–98. http://dx.doi.org/10.1177/8756087918794009.
Pełny tekst źródłaZhang, Yi He, Qing Song Su, Li Yu, Li Bing Liao, Hong Zheng, Hai Tao Huang, Guo Ge Zhang, Ying Bang Yao, Cindy Lau i Helen Lai Wah Chan. "Preparation of Low-K Fluorinated Polyimide/Phlogopite Nanocomposites". Advanced Materials Research 47-50 (czerwiec 2008): 987–90. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.987.
Pełny tekst źródłaMasuda, Hideki, Kenji Yasui, Mitsuo Watanabe, Kazuyuki Nishio, Tata N. Rao i Akira Fujishima. "Fabrication of Ordered Diamond/metal Nanocomposite Structures". Chemistry Letters 29, nr 10 (październik 2000): 1112–13. http://dx.doi.org/10.1246/cl.2000.1112.
Pełny tekst źródłaLunn, Jonathan D., i Daniel F. Shantz. "Peptide Brush—Ordered Mesoporous Silica Nanocomposite Materials". Chemistry of Materials 21, nr 15 (11.08.2009): 3638–48. http://dx.doi.org/10.1021/cm901025n.
Pełny tekst źródłaAndrieux, Sébastien, Lilian Medina, Michael Herbst, Lars A. Berglund i Cosima Stubenrauch. "Monodisperse highly ordered chitosan/cellulose nanocomposite foams". Composites Part A: Applied Science and Manufacturing 125 (październik 2019): 105516. http://dx.doi.org/10.1016/j.compositesa.2019.105516.
Pełny tekst źródłaZhao, Ziguang, Ruochen Fang, Qinfeng Rong i Mingjie Liu. "Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures". Advanced Materials 29, nr 45 (23.10.2017): 1703045. http://dx.doi.org/10.1002/adma.201703045.
Pełny tekst źródłaMatsumoto, Taki, Nobuo Iyi, Yoshiro Kaneko, Kenji Kitamura, Satoru Masaki, Tomohito Imai, Wataru Sugimoto, Yoshio Takasu i Yasushi Murakami. "Preparation of a transparent and flexible self-standing film of layered titania/isostearate nanocomposite". Journal of Materials Research 20, nr 5 (maj 2005): 1308–15. http://dx.doi.org/10.1557/jmr.2005.0165.
Pełny tekst źródłaTao, Bai Rui, Feng Juan Miao i Yong Jie Zheng. "Preparation and Characterization of Electrochemical Glucose Sensor Based on Nickel Electrodes Supported by Silicon Microchannel Plates". Applied Mechanics and Materials 138-139 (listopad 2011): 1126–31. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.1126.
Pełny tekst źródłaQin, Yuyang, Qingyu Peng, Yue Zhu, Xu Zhao, Zaishan Lin, Xiaodong He i Yibin Li. "Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure". Nanoscale Advances 1, nr 12 (2019): 4895–903. http://dx.doi.org/10.1039/c9na00444k.
Pełny tekst źródłaRozprawy doktorskie na temat "Ordered Nanocomposite"
Santos, Peter J. (Peter Jeffries). "Self-assembling nanocomposite Tectons for ordered superlattices". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127907.
Pełny tekst źródłaCataloged from the official PDF of thesis.
Includes bibliographical references (pages 260-280).
Nanocomposites, materials of heterogeneous composition with at least one of the phases having dimensions between 1-100 nm, can be produced with unique properties dependent on their composition and geometric configuration. However, it is a major challenge to precisely and simultaneously design the structure of synthetic nanocomposites at the nanoscale, microscale, and macroscale. To create advanced nanocomposites in which both structure and composition can be programmed across these disparate size regimes, we have developed a new nanoparticle-based building block, the Nanocomposite Tecton (NCT). An NCT consists of an inorganic nanoparticle core and a polymeric shell, with each chain terminating in a supramolecular binding group at the periphery of the NCT.
As each NCT contains both an inorganic nanoparticle and a polymer phase, each building block is itself a nanocomposite, and the incorporation of supramolecular binding groups allows for the directed assembly of NCTs that contain complementary binding groups. These reversible supramolecular interactions enable the assembly of NCTs into ordered arrays, and the collective behavior of the binding groups can be regulated by the dynamics of the polymer chains. The NCTs are capable of rapidly self-assembling into several different crystalline phases that are determined by the design of the building block, and are resilient against dispersity in the molecular weight of the polymer brush and the diameter of the nanoparticle cores. NCTs have been synthesized with both gold and iron oxide nanoparticle cores, indicating the ability to produce NCTs at reasonable scales.
Moreover, the incorporation of multiple nanoparticle compositions allows for the synthesis of NCT-based materials with plasmonic and magnetic properties that can affect, as well as be affected by, the assembly process. We further demonstrate that the crystallization kinetics can be modulated to induce the assembly of NCTs into faceted crystallites with micron-sized diameters, and the resulting NCT crystallites can be post-processed into bulk solids with arbitrary macroscopic shape and controlled grain size. The NCT design concept is therefore a highly modular and versatile building block capable of fabricating materials with controlled structures at the levels of atomic composition and molecular geometry, nanoscale organization, microstructure, and macroscopic form.
by Peter J. Santos.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Fulvio, Pasquale Fernando. "Synthesis and Characterization of Ordered Mesoporous Inorganic Nanocomposite Materials". Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1258990927.
Pełny tekst źródłaYoo, Suk Joon. "Organic-inorganic nanocomposite membranes from highly ordered mesoporous thin films for solubility-based separations". [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1070.
Pełny tekst źródłaBrewer, Darcy M. J. "Electrodeposited metal nanocomposite catalysts utilizing the hexagonally ordered two-dimensional nanochannel arrays of anodic alumina". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0007/MQ45924.pdf.
Pełny tekst źródłaKulkarni, Sunil. "Mechanically Robust Ordered Nanocomposites Exhibiting a NIR Bandgap". Diss., Temple University Libraries, 2009. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/22207.
Pełny tekst źródłaPh.D.
This dissertation reports a simple route to synthesis nanostructured composites by immobilizing colloidal crystals (CCs) of monodisperse SiO2 spheres in crosslinked polymer network. The resulting ordered nanocomposites exhibited the highest modulus reported yet, to the best of our knowledge, for similar materials. The ordered nanocomposites were optically active and the Bragg diffracted light in a NIR region and wavelength of the Bragg peak could be tuned simply by changing the silica concentration in the composite. They also exhibited intense angle dependent iridescence.
Temple University--Theses
Bowman, Michelle Kathleen. "Controlling Sub-Microdomain Structure in Microphase-Ordered Block Copolymers and Their Nanocomposites". NCSU, 2008. http://www.lib.ncsu.edu/theses/available/etd-05092008-155151/.
Pełny tekst źródłaWang, Baochun Verfasser], Martin [Akademischer Betreuer] Möller i Andrij Z. [Akademischer Betreuer] [Pich. "Nanocellulose/polymer nanocomposites with ordered structures / Baochun Wang ; Martin Möller, Andrij Pich". Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1125972882/34.
Pełny tekst źródłaWang, Baochun [Verfasser], Martin [Akademischer Betreuer] Möller i Andrij Z. [Akademischer Betreuer] Pich. "Nanocellulose/polymer nanocomposites with ordered structures / Baochun Wang ; Martin Möller, Andrij Pich". Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://nbn-resolving.de/urn:nbn:de:hbz:82-rwth-2016-012745.
Pełny tekst źródłaWang, Baochun [Verfasser], Martin Akademischer Betreuer] Möller i Andrij Z. [Akademischer Betreuer] [Pich. "Nanocellulose/polymer nanocomposites with ordered structures / Baochun Wang ; Martin Möller, Andrij Pich". Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1125972882/34.
Pełny tekst źródłaHorechyy, Andriy. "Ordered Structures from Nanoparticles/Block Copolymer Hybrids: Ex-situ Approaches toward Binary and Ternary Nanocomposites". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-70685.
Pełny tekst źródłaKsiążki na temat "Ordered Nanocomposite"
Brewer, Darcy M. J. Electrodeposited metal nanocomposite catalysts utilizing the hexagonally ordered two-dimensional nanochannel arrays of anodic alumina. Dept of Chemistry, U of Toronto, 1999.
Znajdź pełny tekst źródłaAraújo, Ana Cláudia Vaz de. Síntese de nanopartículas de óxido de ferro e nanocompósitos com polianilina. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-120-2.
Pełny tekst źródłaCzęści książek na temat "Ordered Nanocomposite"
Andrieux, Sébastien. "Monodisperse Highly Ordered Nanocomposite Foams". W Springer Theses, 91–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27832-8_5.
Pełny tekst źródłaHayashi, Noriko, i Tetsuo Kondo. "Enzymatically Produced Nano-ordered Elements Containing Cellulose Iβ Crystalline Domains of Cladophora Cellulose". W Handbook of Polymer Nanocomposites. Processing, Performance and Application, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45232-1_58.
Pełny tekst źródłaChen, D., i L. Zhang. "Harmonic Vibration of Inclined Porous Nanocomposite Beams". W Lecture Notes in Civil Engineering, 497–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_52.
Pełny tekst źródłaPud, Alexander A., Nikolay A. Ogurtsov i Olga S. Kruglyak. "Influence of dopant on the specific features of formation and properties of nanocomposites of poly(3-methylthiophene) with polyvinylidene fluoride". W NEW FUNCTIONAL SUBSTANCES AND MATERIALS FOR CHEMICAL ENGINEERING, 159–74. PH “Akademperiodyka”, 2021. http://dx.doi.org/10.15407/akademperiodyka.444.159.
Pełny tekst źródła"Influence Fractal Structure on Proton Conductance of Hybrid Organic-Inorganic Nanocomposites". W Polymer-Inorganic Nanostructured Composites Based on Amorphous Silica, Layered Silicates, and Polyionenes, 81–91. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-7998-9728-6.ch004.
Pełny tekst źródła"Evolution of Organic-Inorganic Nanocomposites During Gel Formation". W Polymer-Inorganic Nanostructured Composites Based on Amorphous Silica, Layered Silicates, and Polyionenes, 57–80. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-7998-9728-6.ch003.
Pełny tekst źródłaKu, Bon-Cheol, Alexandre Blumstein, Jayant Kumar, Lynne A. Samuelson i Dong Wook Kim. "Ordered Polymer Nanocomposites: Barrier Properties". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, 3467–77. Taylor & Francis, 2014. http://dx.doi.org/10.1081/e-enn3-120013848.
Pełny tekst źródłaKumar, Jayant, Alexandre Blumstein, Bon-Cheol Ku, Dong Wook Kim i Lynne Samuelson. "Barrier Properties of Ordered Polymer Nanocomposites". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version), 267–77. CRC Press, 2008. http://dx.doi.org/10.1201/noe0849396397.ch23.
Pełny tekst źródłaKu, Bon-Cheol, Jayant Kumar, Alexandre Blumstein, Dong Wook Kim i Lynne Samuelson. "Barrier Properties of Ordered Multilayer Polymer Nanocomposites". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version). CRC Press, 2004. http://dx.doi.org/10.1201/9781439834398.ch9.
Pełny tekst źródłaRangel-Rojo, Raúl, Tiziana Cesca, Héctor Sánchez-Esquivel, Karen Yahaira Raygoza-Sánchez, Niccolò Michieli, Ionut Balasa, Boris Kalinic i Giovanni Mattei. "Ordered arrays of metallic nanoprisms for photonic applications". W Nanocomposites for Photonic and Electronic Applications, 111–38. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818396-0.00005-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Ordered Nanocomposite"
Wu, Linda Y. L., B. Leng, W. He, A. Bisht i C. C. Wong. "Metal-polymer nanocomposite films with ordered vertically-aligned metal cylinders for optical application". W 2013 IEEE International Nanoelectronics Conference (INEC). IEEE, 2013. http://dx.doi.org/10.1109/inec.2013.6466056.
Pełny tekst źródłaRangari, Vijaya, Tiffianni Watson i Shaik Jeelani. "Fabrication, Thermal and Mechanical Characterization of Silicon Carbide-Expancel Nanocomposite". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17049.
Pełny tekst źródłaCastro, Nathan J., Christopher O’Brien i Lijie Grace Zhang. "Development of Biomimetic and Bioactive 3D Nanocomposite Scaffolds for Osteochondral Regeneration". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66107.
Pełny tekst źródłaSigamani, Nirmal Shankar, Zoubeida Ounaies i Henry Sodano. "Synthesis and Characterization of PVDF-Based SWNT/GO Hybrid Films". W ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8021.
Pełny tekst źródłaIsmail, Rabah Mahmoud Ahmad, R. Rathinam, Marwa Al-Jamal, Sathish Kumar Ramachandran, Hashem Al-Mattarneh, Bhasker Pant i Pandurang Y. Patil. "Mn-BIM Based Photo-Catalytic Degradation of Hazardous Industrial Organic Pollutants in Fresh Water". W International Conference on Recent Advancements in Biomedical Engineering. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-1c4w1k.
Pełny tekst źródłaPashayi, Kamyar, Hafez Raeisi Fard, Fengyuan Lai, Joel Plawsky i Theodorian Borca-Tasciuc. "Annealing Temperature Effect on the Structure of High Thermal Conductivity Silver/Epoxy Nanocomposites". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65578.
Pełny tekst źródłaFarahani, Rouhollah Dermanaki, Hamid Dalir, Martin Le´vesque i Daniel Therriault. "Mechanical Properties of Three-Dimensional Microstructures Infiltrated by Carbon Nanotube/Epoxy Nanocomposite Under Shear Flow". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39086.
Pełny tekst źródłaOyen, Michelle L., i Ching-Chang Ko. "Variability of Nanoindentation Responses of Bone and Artificial Bone-Like Composites". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59530.
Pełny tekst źródłaHerren, Blake, Tingting Gu, Qinggong Tang, Mrinal Saha i Yingtao Liu. "3D Printing and Stretching Effects on Alignment Microstructure in PDMS/CNT Nanocomposites". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10512.
Pełny tekst źródłaThaler, Dominic, Nahal Aliheidari i Amir Ameli. "Electrical Properties of Additively Manufactured Acrylonitrile Butadiene Styrene/Carbon Nanotube Nanocomposite". W ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8002.
Pełny tekst źródłaRaporty organizacyjne na temat "Ordered Nanocomposite"
Lin, Zhiqun, Mufit Akinc, Xiaoli Tan i Nicola Bowler. Design and Development of Novel Hierarchically Ordered Block Copolymer-Magnetoelectric Particle Nanocomposites. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2012. http://dx.doi.org/10.21236/ada582280.
Pełny tekst źródłaLiu, Shiqiang S. Propulsion and PWR Rapid Response Research and Development (R&R) Support: Delivery Order 0030: Study of Hot Deformation of Nanocomposite Rare Earth Magnets. Fort Belvoir, VA: Defense Technical Information Center, marzec 2006. http://dx.doi.org/10.21236/ada454269.
Pełny tekst źródła