Gotowa bibliografia na temat „Optoelectronic and Photovoltaic”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Optoelectronic and Photovoltaic”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Optoelectronic and Photovoltaic"

1

Islam, Md Rasidul, Md Rayid Hasan Mojumder, Raza Moshwan, A. S. M. Jannatul Islam, M. A. Islam, Md Shizer Rahman i Md Humaun Kabir. "Strain-Driven Optical, Electronic, and Mechanical Properties of Inorganic Halide Perovskite CsGeBr3". ECS Journal of Solid State Science and Technology 11, nr 3 (28.02.2022): 033001. http://dx.doi.org/10.1149/2162-8777/ac56c2.

Pełny tekst źródła
Streszczenie:
Of late, inorganic perovskite material, especially the lead-free CsGeBr3, has gained considerable interest in the green photovoltaic industry due to its outstanding optoelectronic, thermal, and elastic properties. This work systematically investigated the strain-driven optical, electronic, and mechanical properties of CsGeBr3 through the first-principles density functional theory. The unstrained planar CsGeBr3 compound demonstrates a direct bandgap of 0.686 at its R-point. However, incorporating external biaxial tensile (compressive) strain can be tuned the bandgap lowering (increasing) to this perovskite. Moreover, due to the increase of tensile (compressive) strain, a red-shift (blue-shift) behavior of the absorption-coefficient and dielectric function is found in the photon energy spectrum. Strain-induced mechanical properties also reveal that CsGeBr3 perovskites are mechanically stable and highly malleable material and can be made suitable for photovoltaic applications. The strain-dependent optoelectronic and mechanical behaviors of CsGeBr3 explored here would benefit its future applications in optoelectronics and photovoltaic cells design.
Style APA, Harvard, Vancouver, ISO itp.
2

Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin i Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices". Materials 15, nr 24 (7.12.2022): 8731. http://dx.doi.org/10.3390/ma15248731.

Pełny tekst źródła
Streszczenie:
Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III–V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Yongtao, Alex Belianinov, Liam Collins, Roger Proksch, Anton V. Ievlev, Bin Hu, Sergei V. Kalinin i Olga S. Ovchinnikova. "Ferroic twin domains in metal halide perovskites". MRS Advances 4, nr 51-52 (2019): 2817–30. http://dx.doi.org/10.1557/adv.2019.358.

Pełny tekst źródła
Streszczenie:
AbstractAn emerging family of materials—metal halide perovskites (MHPs)—have made incredible achievements in optoelectronics in the past decade. Owing to its potential role in optoelectronic properties, the ferroic state of MHPs has been investigated by lots of researchers. Here, we review the literature regarding investigations into possible ferroic behaviors in MHPs. We summarize the recent discoveries of ferroic twin domains in MHPs. We examine the ferroelasticity and the ferroelectricity of these twin domains. Several properties relevant to the twin domains are critically analyzed, including crystallographic structure, mechanical variation, chemical variation, etc. Finally, we discussed the effects of these domains on materials’ optoelectronic properties and their potential roles in photovoltaic action.
Style APA, Harvard, Vancouver, ISO itp.
4

Siddique, Sabir Ali, Muhammad Arshad, Sabiha Naveed, Muhammad Yasir Mehboob, Muhammad Adnan, Riaz Hussain, Babar Ali, Muhammad Bilal Ahmed Siddique i Xin Liu. "Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study". RSC Advances 11, nr 44 (2021): 27570–82. http://dx.doi.org/10.1039/d1ra04529f.

Pełny tekst źródła
Streszczenie:
We used a quantum chemical approach to investigate the optoelectronic properties of dyes T1–T5 for dye-sensitized solar cells using DFT and TD-DFT computation. The newly designed molecules exhibited outstanding photovoltaic and optoelectronic properties.
Style APA, Harvard, Vancouver, ISO itp.
5

Yadav, Dr Saurabh Kumar. "Optoelectronic Behavior of Free Standing Al Wire Over Monolayer WSe2". International Journal of Recent Technology and Engineering (IJRTE) 11, nr 2 (30.07.2022): 14–17. http://dx.doi.org/10.35940/ijrte.b7010.0711222.

Pełny tekst źródła
Streszczenie:
In this manuscript, we reported the electronic and optical behavior of free standing Aluminium nanowire mounted on tungsten diselenide (WSe2) sheet. The density functional theory has been used as a toolset for all computational calculations. We mounted the aluminum nanowire over a 2-dimensional sheet of tungsten diselenide and investigated the modulated optoelectronic properties of it. Based on our studies, we majorly found a conductive behavior of the proposed structure along with a strong absorption in visible range. Due to its prominent optical properties, the proposed structure will be very useful in futuristic optoelectronics devices such as photovoltaic, laser, optical sensors.
Style APA, Harvard, Vancouver, ISO itp.
6

Sun, C. K., R. Nguyen, C. T. Chang i D. J. Albares. "Photovoltaic-FET for optoelectronic RF/μwave switching". IEEE Transactions on Microwave Theory and Techniques 44, nr 10 (1996): 1747–50. http://dx.doi.org/10.1109/22.538971.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Alam, Mir Waqas, Sajid Ali Ansari i Faheem Ahmed. "Editorial for the Special Issue “Organic/Metal Oxide Thin Films for Optoelectronic/Photovoltaic and Sensing Applications”". Crystals 13, nr 2 (19.01.2023): 173. http://dx.doi.org/10.3390/cryst13020173.

Pełny tekst źródła
Streszczenie:
The Special Issue entitled “Organic/Metal Oxide Thin Films for Optoelectronic/Photovoltaic and Sensing Applications” is comprised of thirteen original research articles devoted to the development and designing of new and novel organic/metal oxide thin film-based nanomaterials (NMs) for electrochemical and optoelectronic applications [...]
Style APA, Harvard, Vancouver, ISO itp.
8

Quyen, Nguyen Nhat, Tz-Ju Hong, Chin En Hsu, Wen-Yen Tzeng, Chien-Ming Tu, Chia-Nung Kuo, Hung-Chung Hsueh, Chin Shan Lue i Chih-Wei Luo. "Nematic electron and phonon dynamics in SnS crystals". Applied Physics Letters 121, nr 17 (24.10.2022): 172105. http://dx.doi.org/10.1063/5.0099486.

Pełny tekst źródła
Streszczenie:
Tin sulfide (SnS) is one of the promising materials for the applications of optoelectronics and photovoltaics. This study determines the nematic dynamics of photoexcited electrons and phonons in SnS single crystals using polarization-dependent pump–probe spectroscopy at various temperatures. As well as the fast (0.21–1.38 ps) and slow (>5 ps) relaxation processes, a 36–41 GHz coherent acoustic phonon with a sound velocity of 4883 m/s that is generated by the thermoelastic effect is also observed in the transient reflectivity change (Δ R/ R) spectra. Electrons and coherent acoustic phonons show significant in-plane anisotropy from 330 to 430 K due to strong electron–phonon coupling. However, this in-plane anisotropy weakens dramatically in the low-temperature (<330 K) and high-temperature (>430 K) phases. These results add to the knowledge about the anisotropy of electrons and coherent acoustic phonons that give SnS applications in photovoltaic or optoelectronic devices.
Style APA, Harvard, Vancouver, ISO itp.
9

Wu, Jeslin J., i Uwe R. Kortshagen. "Photostability of thermally-hydrosilylated silicon quantum dots". RSC Advances 5, nr 126 (2015): 103822–28. http://dx.doi.org/10.1039/c5ra22827a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Marques Lameirinhas, Ricardo A., João Paulo N. Torres i João P. de Melo Cunha. "A Photovoltaic Technology Review: History, Fundamentals and Applications". Energies 15, nr 5 (1.03.2022): 1823. http://dx.doi.org/10.3390/en15051823.

Pełny tekst źródła
Streszczenie:
Photovoltaic technology has become a huge industry, based on the enormous applications for solar cells. In the 19th century, when photoelectric experiences started to be conducted, it would be unexpected that these optoelectronic devices would act as an essential energy source, fighting the ecological footprint brought by non-renewable sources, since the industrial revolution. Renewable energy, where photovoltaic technology has an important role, is present in 3 out of 17 United Nations 2030 goals. However, this path cannot be taken without industry and research innovation. This article aims to review and summarise all the meaningful milestones from photovoltaics history. Additionally, an extended review of the advantages and disadvantages among different technologies is done. Photovoltaics fundamentals are also presented from the photoelectric effect on a p-n junction to the electrical performance characterisation and modelling. Cells’ performance under unusual conditions are summarised, such as due to temperature variation or shading. Finally, some applications are presented and some project feasibility indicators are analysed. Thus, the review presented in this article aims to clarify to readers noteworthy milestones in photovoltaics history, summarise its fundamentals and remarkable applications to catch the attention of new researchers for this interesting field.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Optoelectronic and Photovoltaic"

1

Lim, Swee Hoe. "Metallic nanostructures for optoelectronic and photovoltaic applications". Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3365871.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed August 20, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
2

Vallés, Pelarda Marta. "Different approaches to improve perovskite-based photovoltaic and optoelectronic devices". Doctoral thesis, Universitat Jaume I, 2022. http://dx.doi.org/10.6035/14104.2022.368259.

Pełny tekst źródła
Streszczenie:
Halide perovskites have had a huge impact on different fields in the last decade due to their versatility and amazing optoelectronic properties. However, there are still some issues to improve towards their future utilization and commercialization. In this thesis, several topics associated with perovskite-based photovoltaic and optoelectronic devices are addressed. The different works contribute to enhance the optoelectronic properties of perovskite quantum dots, to replace the most employed hole transporting material in photovoltaic devices (spiro-OMeTAD) and, moreover, to study a methodology which can be incorporated in up-scaling procedures towards their future commercialization as solar cells.
Programa de Doctorat en Ciències
Style APA, Harvard, Vancouver, ISO itp.
3

Ho, Kai Wai. "Evaluation and characterization of efficient organic optoelectronic materials and devices". HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/816.

Pełny tekst źródła
Streszczenie:
With the progression towards lighter but larger-display self-sustainable mobile devices, device efficiency becomes increasingly important, owing to the higher power display consumption but at the same time more limitation on the size and volume of energy storage. In this thesis, selected aspects regarding to efficiency of three types of optoelectronic devices, indoor photovoltaics (IPVs), perovskite thin-film transistors (TFTs) and organic light-emitting diodes (OLEDs) have been investigated. IPVs can make off-grid devices self-sustainable by harvesting ambient light energy. Its weak irradiance necessitates high-efficiency IPVs to generate sufficient power. Our work addresses the need of knowing the limit of the device parameters for correct evaluation and understanding the efficiency loss for developing clinical tactics. We delivered a general scheme for evaluating the limiting efficiency and the corresponding device parameters of IPVs under various lights, illuminance and material bandgap. In contrast to the AM1.5G conditions, a maximum power conversion efficiency (PCE) of 51-57 % can be achieved under the optimal bandgap of 1.82-1.96 eV. We also propose using the second thickness peak of interference instead of the first as a better optimal absorber thickness after identifying the finite absorption as the major source of efficiency loss. The work provides insights for device evaluation and material design for efficient IPV devices. The novel hybrid organic-inorganic perovskites have gained enormous research interest for its various excellent optoelectronic properties such as high mobility. TFT as an alternative application to the majorly focused photovoltaics is realized in this work. There are few reports on perovskite TFTs due to wetting issues. By employing polymethacrylates with ester groups and aromatic substituents which provide polar and cation-π interactions with the Pb2+ ions, quality films could be fabricated with large crystals and high electron mobility in TFTs. We further improved the performance by resolving interfacial mixing between the perovskite and the polymer using the crosslinkable SU-8, achieving the highest mobility of 1.05 cm2 V−1 s−1. Subsequently, we cured the grain boundaries using methylamine solvent vapor annealing, suppressing the TFT subthreshold swing. The work provides a map for the improvement of perovskite TFTs. It has been revealed that molecular orientations of the emitters in OLEDs with the transition dipole moment lying in plane enhances light outcoupling efficiency. Multiple experimental techniques are needed to provide complementary orientation information and their physical origin. Here, we propose using TFT to probe the orientation of the phosphorescent emitters. Homoleptic fac-Ir(ppy)3 and heteroleptic trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) were deposited on polystyrene (PS) and SiO2 substrates. Compared to the PS surface inducing isotropic orientation as the control, trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) possessed decreased carrier mobilities on SiO2. With the study of initial film growth, we infer that preferred orientation induced by the polar SiO2 surface led to an increase in energetic disorder in the well-stacked trans-Ir(ppy)2(acac) and hopping distance in the amorphous trans-Ir(ppy)2(tmd). The highly symmetric fac-Ir(ppy)3 remained its isotropic orientation despite the dipolar interaction. Surprisingly, the TFT technique gives much higher sensitivity to surface-induced orientation, and thus may potentially serve as a unique electrical probe for molecular orientation.
Style APA, Harvard, Vancouver, ISO itp.
4

Ho, Ka Wai. "Evaluation and characterization of efficient organic optoelectronic materials and devices". HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/873.

Pełny tekst źródła
Streszczenie:
With the progression towards lighter but larger-display self-sustainable mobile devices, device efficiency becomes increasingly important, owing to the higher power display consumption but at the same time more limitation on the size and volume of energy storage. In this thesis, selected aspects regarding to efficiency of three types of optoelectronic devices, indoor photovoltaics (IPVs), perovskite thin-film transistors (TFTs) and organic light-emitting diodes (OLEDs) have been investigated. IPVs can make off-grid devices self-sustainable by harvesting ambient light energy. Its weak irradiance necessitates high-efficiency IPVs to generate sufficient power. Our work addresses the need of knowing the limit of the device parameters for correct evaluation and understanding the efficiency loss for developing clinical tactics. We delivered a general scheme for evaluating the limiting efficiency and the corresponding device parameters of IPVs under various lights, illuminance and material bandgap. In contrast to the AM1.5G conditions, a maximum power conversion efficiency (PCE) of 51-57 % can be achieved under the optimal bandgap of 1.82-1.96 eV. We also propose using the second thickness peak of interference instead of the first as a better optimal absorber thickness after identifying the finite absorption as the major source of efficiency loss. The work provides insights for device evaluation and material design for efficient IPV devices. The novel hybrid organic-inorganic perovskites have gained enormous research interest for its various excellent optoelectronic properties such as high mobility. TFT as an alternative application to the majorly focused photovoltaics is realized in this work. There are few reports on perovskite TFTs due to wetting issues. By employing polymethacrylates with ester groups and aromatic substituents which provide polar and cation-π interactions with the Pb2+ ions, quality films could be fabricated with large crystals and high electron mobility in TFTs. We further improved the performance by resolving interfacial mixing between the perovskite and the polymer using the crosslinkable SU-8, achieving the highest mobility of 1.05 cm2 V−1 s−1. Subsequently, we cured the grain boundaries using methylamine solvent vapor annealing, suppressing the TFT subthreshold swing. The work provides a map for the improvement of perovskite TFTs. It has been revealed that molecular orientations of the emitters in OLEDs with the transition dipole moment lying in plane enhances light outcoupling efficiency. Multiple experimental techniques are needed to provide complementary orientation information and their physical origin. Here, we propose using TFT to probe the orientation of the phosphorescent emitters. Homoleptic fac-Ir(ppy)3 and heteroleptic trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) were deposited on polystyrene (PS) and SiO2 substrates. Compared to the PS surface inducing isotropic orientation as the control, trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) possessed decreased carrier mobilities on SiO2. With the study of initial film growth, we infer that preferred orientation induced by the polar SiO2 surface led to an increase in energetic disorder in the well-stacked trans-Ir(ppy)2(acac) and hopping distance in the amorphous trans-Ir(ppy)2(tmd). The highly symmetric fac-Ir(ppy)3 remained its isotropic orientation despite the dipolar interaction. Surprisingly, the TFT technique gives much higher sensitivity to surface-induced orientation, and thus may potentially serve as a unique electrical probe for molecular orientation.
Style APA, Harvard, Vancouver, ISO itp.
5

Eicker, Ursula Irmgard. "Optical studies of amorphous silicon alloys for optoelectronic and photovoltaic devices". Thesis, Heriot-Watt University, 1989. http://hdl.handle.net/10399/1036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

BRUNI, FRANCESCO. "NOVEL MATERIAL DESIGN AND MANIPULATION STRATEGIES FOR ADVANCED OPTOELECTRONIC APPLICATIONS". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/151660.

Pełny tekst źródła
Streszczenie:
Il mio progetto di dottorato è stato focalizzato sui semiconduttori organici per applicazioni fotovoltaiche e di fotorivelazione. Inizialmente ho lavorato sul controllo morfologico di blende binarie di molecole organiche e fullereni usando la cosiddetta strategia dei pigmenti latenti. In particolare ho lavorato sull'ingenierizzazione dello strato attivo di celle solari organiche a eterogiunzione. Ho dimostrato una nuova strategia per controllare la segregazione di fase in film sottili di molecole elettron donatrici e fullereni, introducendo nel sistema un network di legami di idrogeno attivato termicamente. Successivamente ho studiato i processi di accumulazione di carica all’interfaccia tra acqua e un semiconduttore polimerico per applicazioni biomediche per mezzo di nanocristalli colloidali biemissivi con alta sensibilità verso agenti elettronattrattori. In fine, ho dedicato l’ultima parte del mio lavoro all’approfondimento delle possibili applicazioni di questa classe di nanocristalli come sensori raziometrici di pH intracellulare e come vernici per il monitoraggio ottico della pressione.
My PhD has been focused on organic semiconductors for photovoltaics and photodetecting applications. Initially, I worked on the control of the morphology in binary blends of small organic molecules and fullerenes using the so called latent pigment approach. Subsequently, I investigated the charge accumulation and polarization effect occurring at the interface between water and a polymeric semiconductor used as optical component in retinal prosthesis by means of inorganic colloidal nanocrystals featuring a ratiometric sensing ability for electron withdrawing agents. As a last part of the work, I focalized on the applications of these nanocrystals as ratiometric sensors for intracellular pH probing and pressure optical monitoring. Specifically, during the first part of my PhD, I worked in the field of organic photovoltaics on the morphology engineering of the active layer of small molecules bulk-heterojunction solar cells. I demonstrated a new strategy to fine tune the phase-segregation in thin films of a suitably functionalized electron donor blended with fullerene derivatives by introducing in the system a post-deposition thermally activated network of hydrogen bonds that leads to improved stability and high crystallinity. Moreover, this process increases the carrier mobility of the donor species and allows for controlling the size of segregated domains resulting in an improved efficiency of the photovoltaic devices. This work revealed the great potential of the latent hydrogen bonding strategy that I subsequently exploited to fabricate nanometric semiconductive features on the film surface by using a very simple maskless lithographic technique. To do so, I focalized a UV laser into a confocal microscope and used the objective as a “brush” to thermically induce a localized hydrogen bonding driven crystallization with diffraction limited resolution. My work on organic semiconductors continued with a study on the surface polarization driven charge separation at the P3HT/water interfaces in optoelectronic devices for biologic applications. In this work, I probed the local accumulation of positive charges on the P3HT surface in aqueous environment by exploiting the ratiometric sensing capabilities of particular engineered core/shell heterostuctures called dot-in-bulk nanocrystals (DiB-NCs). These structures feature two-colour emission due to the simultaneous recombination of their core and shell localized excitons. Importantly, the two emissions are differently affected by the external chemical environment, making DiB-NCs ideal optical ratiometric sensors. In the second part of my PhD, I, therefore, focalized on the single particle sensing application of DiB-NCs. Specifically, I used them to ratiometrically probe intracellular pH in living cells. With this aim, I studied their ratiometric response in solution by titration with an acid and a base. Subsequently, I internalized them into living human embryonic kidney (HEK) cells and monitored an externally induced alteration of the intracellular pH. Importantly, viability test on DiB-NCs revealed no cytotoxicity demonstrating their great potential as ratiometric pH probes for biologic application. Finally, I used DiB-NCs as a proof-of-concept single particle ratiometric pressure sensitive paint (r-PSP). In this application, the emission ratio between the core and the shell emission is used to determine the oxygen partial pressure and therefore the atmospheric pressure of the NC environment.
Style APA, Harvard, Vancouver, ISO itp.
7

Shi, Tingting. "Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418391935.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sola, Margherita. "Optoelectronic properties of LaVO3 perovskite for photovoltaic applications investigated by surface potential measurements". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10716/.

Pełny tekst źródła
Streszczenie:
La ricerca su materiali innovativi per applicazioni fotovoltaiche si è orientata negli ultimi anni verso lo studio delle perovskiti, per lo sviluppo di nuove tipologie di celle solari ad alta efficienza e basso costo; tuttavia, la commercializzazione di tali celle solari è ancora lontana, a causa della loro grande instabilità. L’ossido di lantanio-vanadio (LaVO3), che presenta la struttura cristallina della perovskite, è un materiale molto promettente per applicazioni fotovoltaiche, in quanto potrebbe risolvere il problema della stabilità. Gli obiettivi della tesi sono stati: lo studio delle proprietà ottiche ed elettriche del LaVO3; l’implementazione e l’ottimizzazione di un apparato sperimentale di surface photovoltage spectroscopy (SPS), insieme con lo sviluppo del relativo software di acquisizione dati. L’apparato per SPS è stato implementato con successo, il set-up sperimentale è stato ottimizzato ed è stato sviluppato un software per l’acquisizione dati.
 Lo studio delle proprietà morfologiche del LaVO3 alla nanoscala, condotto mediante microscopia a forza atomica, ha permesso l’identificazione delle condizioni di deposizione ottimali dei film sottili. Lo studio delle proprietà elettriche, condotto mediante scanning Kelvin probe microscopy, ha permesso la determinazione del valore dell’altezza barriera all’interfaccia LaVO3/ZnO e delle work function di ZnO e LaVO3. Si noti che il valore di work function del LaVO3 non era mai stato riportato prima in letteratura. Le misure SPV sul LaVO3 hanno generato un segnale minore del limite di rilevazione dell’apparato: ciò significa che le coppie elettrone-lacuna fotogenerate non vengono separate e raccolte in modo efficiente. In conclusione, il LaVO3 è noto per avere proprietà ottiche ottimali ed elevata stabilità, che sono vantaggi considerevoli per eventuali dispositivi fotovoltaici. Tuttavia, le misure di SPV hanno chiaramente dimostrato che questo materiale non è ottimale come mezzo per il trasporto di carica.
Style APA, Harvard, Vancouver, ISO itp.
9

Han, Lu. "Light Management in Photovoltaic Devices and Nanostructure Engineering in Nitride-based Optoelectronic Devices". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1486996393294605.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Grand, Caroline. "Controlling electronic properties and morphology of isoindigo-based polymers for photovoltaic applications". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54856.

Pełny tekst źródła
Streszczenie:
Novel organic conjugated materials have led to new technologies in the field of flexible electronics, with applications in the area of sensors, field effect transistors, or photovoltaic devices. Several material parameters and properties come into play in these devices, including energy of the frontier molecular orbitals, thin film morphology, and charge transport. These properties can be controlled by the chemistry of organic materials, and through processing conditions. In particular, this dissertation focuses on the isoindigo unit as an electron deficient unit to tune polymer light absorption, charge separation, charge transport in the first part of this dissertation, and morphology control in organic photovoltaic (OPV) devices in a subsequent section. The first part of this dissertation introduces the synthesis and properties of isoindigo-containing polymers as n-type, p-type, or ambipolar semiconductors, and their application in all-polymer or polymer:fullerene blends OPV active layers. It is found that polymers with phenyl linkages along the backbone tend to have broader light absorption than polymers with alternating phenyl-thiophene rings; however, steric hindrance in the former leads to low charge mobilities, and poor device performance. In addition, this section highlights the importance of controlling phase separation in OPV devices by focusing on all-polymer blends, which show large phase separation, and polymer:fullerene blends, where the morphology can be controlled through processing additives generating a two-fold increase in device efficiency. Looking at poly(oligothiophene-isoindigo) polymers as model systems, emphasis is placed on photovoltage losses in these devices due to a decrease in effective energy gap between the polymers and fullerene as the oligothiophene donating strength is increased, as well as explanation of the device parameters through description of morphology as solubility is varied. The second portion of this dissertation focuses on solution properties of polymers and their correlation to thin film morphology. A first study investigates the influence of alkyl side chains on solubility, molecular packing, and phase separation in blends of poly(terthiophene-alt-isoindigo) with fullerenes. Specifically, as side chains are lengthened, solubility is increased, but with limited impact on the blends morphology. On the other hand increased backbone torsion leads to variations in energy levels, polymer packing and large phase separation in blends with fullerenes. These thermodynamic parameters are to put in perspective with the kinetic control of film formation during the coating process. This is discussed in a second study, which looks at the mechanism of thin film formation when processing additives are used. In particular, this study highlights the interactions that provide a driving force for polymer crystallite formation, depending on the mechanism followed when aliphatic and aromatic additives are used. These observations are then used to predict the morphology in spin-coated thin films.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Optoelectronic and Photovoltaic"

1

Zishen, Zhao, SPIE (Society), Wuhan dian guang guo jia shi yan shi, Zhongguo guang xue xue hui i China Jiao yu bu, red. Photonics and Optoelectronics Meetings (POEM) 2009: Optoelectronic devices and integration : 8-10 August 2009, Wuhan, China. Bellingham, Wash: SPIE, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vaseashta, A., D. Dimova-Malinovska i J. M. Marshall, red. Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3562-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

M, Marshall J., i Dimova-Malinovska D, red. Photovoltaic and photoactive materials: Properties, technology, and applications. Dordrecht: Kluwer Academic, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Derrick, Anthony. Solar photovoltaic products: A guide for development workers. London: Intermediate Technology Publications in association with the Swedish Missionary Council and the Stockholm Environment Institute, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Konstantatos, Gerasimos, i Edward H. Sargent, red. Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/cbo9781139022750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Luque, A. Solar cells and optics for photovoltaic concentration. Bristol, England: A. Hilger, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Meeting, Materials Research Society, i Symposium T, "Photovoltaics and optoelectronics from nanoparticles" (2010 : San Francisco, California), red. Photovoltaics and optoelectronics from nanoparticles: Symposium held April 5-9, 2010, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jeon, Heonsu. Display, solid-state lighting, photovoltaics, and optoelectronics in energy: 2-6 November 2009, Shanghai, China. Redaktorzy Optical Society of America, SPIE (Society) i Asia Communications and Photonics (2009 : Shanghai, China). Bellingham, Wash: SPIE, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

International Symposium on Physics and Applications of Amorphous Semiconductors (2nd 1988 Institute for Scientific Interchange). Second International Workshop on physics and applications of amorphous semiconductors: Optoelectric and photovoltaic devices, Torino, Italy, September 12-16, 1988. Singapore: World Scientific, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jeon, Heonsu. Display, solid-state lighting, photovoltaics, and optoelectronics in energy II: 8-12 December 2010, Shanghai, China. Redaktorzy SPIE (Society), IEEE Photonics Society i Fu dan da xue (Shanghai, China). Bellingham, Wash: SPIE, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Optoelectronic and Photovoltaic"

1

Rispens, M. T., i J. C. Hummelen. "Photovoltaic Applications". W Fullerenes: From Synthesis to Optoelectronic Properties, 387–435. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9902-3_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Baker, I. M. "Photovoltaic IR detectors". W Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, 450–73. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ciszek, T. F. "Photovoltaic Silicon Crystal Growth". W Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials, 451–76. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470012086.ch16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kalyanasundaram, K., i M. Grätzel. "Efficient Photovoltaic Solar Cells Based on Dye Sensitization of Nanocrystalline Oxide Films". W Optoelectronic Properties of Inorganic Compounds, 169–94. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Heintze, M., K. Eberhardt, F. Kessler i G. H. Bauer. "Comparison of a-Ge:H Preparation Techniques in View of Optoelectronic Optimization". W Tenth E.C. Photovoltaic Solar Energy Conference, 1075–78. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Meiling, H., R. E. I. Schropp, W. G. J. H. M. Sark, J. Bezemer i W. F. Weg. "Improved Thickness Uniformity and Optoelectronic Properties of a-Si:H Thin Films". W Tenth E.C. Photovoltaic Solar Energy Conference, 339–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_87.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Khan, Karina, Aditi Gaur, Kamal Nayan Sharma, Amit Soni i Jagrati Sahariya. "Review on Optoelectronic Response of Emerging Solar Photovoltaic Materials". W Energy Systems and Nanotechnology, 79–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1256-5_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Birkholz, M., A. Hartmann, S. Fiechter i H. Tributsch. "Defect Chemistry and Homogeneity Range of Pyrite and their Influence on the Optoelectronic Behaviour". W Tenth E.C. Photovoltaic Solar Energy Conference, 96–99. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tiwari, Udit, i Sahab Dass. "Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water". W Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.

Pełny tekst źródła
Streszczenie:
AbstractMetal halide perovskites have triggered a quantum leap in the photovoltaic technology marked by a humongous improvement in the device performance in a matter of just a few years. Despite their promising optoelectronic properties, their use in the photovoltaic sector remains restricted due to their inherent instability towards moisture. Here, we report a simple, cost-effective and highly efficient protection strategy that enables their use as photoelectrodes for photoelectrochemical hydrogen production while being immersed in water. A uniform coating of candle soot and silica is developed as an efficient hydrophobic coating that protects the perovskite from water while allowing the photogenerated electrons to reach the counter electrode. We achieve remarkable stability with photocurrent density above 1.5 mA cm−2 at 1 V versus saturated calomel electrode (SCE) for ~1 h under constant illumination. These results indicate an efficient route for the development of stable perovskite photoelectrodes for solar water splitting.
Style APA, Harvard, Vancouver, ISO itp.
10

Doghmane, Houssem Eddine, Tahar Touam, Azeddine Chelouche, Fatiha Challali i Djamel Djouadi. "Synthesis and Characterization of Tio2 Thin Films for Photovoltaic and Optoelectronic Applications". W ICREEC 2019, 311–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Optoelectronic and Photovoltaic"

1

Jozwikowski, Krzysztof, Jozef Piotrowski, Krzysztof Adamiec i Antoni Rogalski. "Computer simulation of HgCdTe photovoltaic devices based on complex heterostructures". W Optoelectronics '99 - Integrated Optoelectronic Devices, redaktorzy Gail J. Brown i Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zogg, Hans. "Photovoltaic IV-VI on silicon infrared devices for thermal imaging applications". W Optoelectronics '99 - Integrated Optoelectronic Devices, redaktorzy Gail J. Brown i Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344567.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Alem, Salima, Remi de Bettignies, Michel Cariou, Emmanuel Allard, Stephanie Chopin, Jack Cousseau, Sylvie Dabos-Seignon i Jean-Michel Nunzi. "Realization and characterization of plastic photovoltaic cells". W Integrated Optoelectronic Devices 2004, redaktorzy James G. Grote i Toshikuni Kaino. SPIE, 2004. http://dx.doi.org/10.1117/12.528319.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

McClary, Scott A., Siming Li, Xinxing Yin, Patricia Dippo, Darius Kuciauskas, Yanfa Yan, Jason B. Baxter i Rakesh Agrawal. "Optoelectronic Characterization of Emerging Solar Absorber Cu3AsS4". W 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Liu, Shengzhong. "Perovskite – a Wonder for Photovoltaic & Optoelectronic Applications". W Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.as1i.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Adonin, Alexej S., Konstantin O. Petrosjanc i Igor V. Poljakov. "Optoelectronic integrated circuit with built-in photovoltaic supply". W Second Conference on Photonics for Transportation, redaktorzy Vladimir G. Inozemtsev i Victor A. Shilin. SPIE, 2002. http://dx.doi.org/10.1117/12.463472.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Monastyrskii, Liubomyr S., Petro P. Parandii, M. Panasiuk i Igor B. Olenych. "Photovoltaic effect in porous silicon heterostructures". W International Conference on Optoelectronic Information Technologies, redaktorzy Sergey V. Svechnikov, Volodymyr P. Kojemiako i Sergey A. Kostyukevych. SPIE, 2001. http://dx.doi.org/10.1117/12.429750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Milić, Jovana V. "Layered Hybrid Perovskites: From Supramolecular Templating to Multifunctional Materials". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw4_04.

Pełny tekst źródła
Streszczenie:
Hybrid organic-inorganic perovskite materials have become one of the most promising semiconductors in optoelectronics, yet their instability under operating conditions obstructs their application.[1] This has stimulated a range of strategies to address this challenge, including the development of low-dimensional or layered perovskite architectures comprising of organic spacer moieties templating hybrid perovskite slabs.[2] We purposefully tailor supramolecular interactions with the organic components to template hybrid perovskite architectures,[3–6] such as through halogen bonding[4] or π-based interactions,[5–6] as well as host-guest complexation,[7] which has been uniquely assessed by solid-state NMR crystallography. As a result, we have achieved perovskite solar cells with superior operational stabilities without compromising their photovoltaic performances,[3,5,7] which provides a versatile strategy for hybrid perovskite photovoltaics. Moreover, we have extended the functionality of the organic spacer layers by introducing electroactive components into layered hybrid perovskite frameworks[8–9] and exploiting their mechanochromism,[10] providing a new platform for advanced optoelectronic applications.
Style APA, Harvard, Vancouver, ISO itp.
9

Turner-Evans, Daniel B., Michael D. Kelzenberg, Chris T. Chen, Emily C. Warmann, Adele C. Tamboli i Harry A. Atwater. "Optoelectronic design of multijunction wire-array solar cells". W 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Cheng, Eric Annih, Rui Li i Sam-Shajing Sun. "C12-PTV with controlled regioregularity for photovoltaic application". W SPIE OPTO: Integrated Optoelectronic Devices, redaktorzy Robert L. Nelson, François Kajzar i Toshikuni Kaino. SPIE, 2009. http://dx.doi.org/10.1117/12.808508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Optoelectronic and Photovoltaic"

1

Potter, Jr, i Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2012. http://dx.doi.org/10.21236/ada562250.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii