Gotowa bibliografia na temat „Optoelectronic and Photovoltaic”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Optoelectronic and Photovoltaic”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Optoelectronic and Photovoltaic"
Islam, Md Rasidul, Md Rayid Hasan Mojumder, Raza Moshwan, A. S. M. Jannatul Islam, M. A. Islam, Md Shizer Rahman i Md Humaun Kabir. "Strain-Driven Optical, Electronic, and Mechanical Properties of Inorganic Halide Perovskite CsGeBr3". ECS Journal of Solid State Science and Technology 11, nr 3 (28.02.2022): 033001. http://dx.doi.org/10.1149/2162-8777/ac56c2.
Pełny tekst źródłaMiroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin i Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices". Materials 15, nr 24 (7.12.2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Pełny tekst źródłaLiu, Yongtao, Alex Belianinov, Liam Collins, Roger Proksch, Anton V. Ievlev, Bin Hu, Sergei V. Kalinin i Olga S. Ovchinnikova. "Ferroic twin domains in metal halide perovskites". MRS Advances 4, nr 51-52 (2019): 2817–30. http://dx.doi.org/10.1557/adv.2019.358.
Pełny tekst źródłaSiddique, Sabir Ali, Muhammad Arshad, Sabiha Naveed, Muhammad Yasir Mehboob, Muhammad Adnan, Riaz Hussain, Babar Ali, Muhammad Bilal Ahmed Siddique i Xin Liu. "Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study". RSC Advances 11, nr 44 (2021): 27570–82. http://dx.doi.org/10.1039/d1ra04529f.
Pełny tekst źródłaYadav, Dr Saurabh Kumar. "Optoelectronic Behavior of Free Standing Al Wire Over Monolayer WSe2". International Journal of Recent Technology and Engineering (IJRTE) 11, nr 2 (30.07.2022): 14–17. http://dx.doi.org/10.35940/ijrte.b7010.0711222.
Pełny tekst źródłaSun, C. K., R. Nguyen, C. T. Chang i D. J. Albares. "Photovoltaic-FET for optoelectronic RF/μwave switching". IEEE Transactions on Microwave Theory and Techniques 44, nr 10 (1996): 1747–50. http://dx.doi.org/10.1109/22.538971.
Pełny tekst źródłaAlam, Mir Waqas, Sajid Ali Ansari i Faheem Ahmed. "Editorial for the Special Issue “Organic/Metal Oxide Thin Films for Optoelectronic/Photovoltaic and Sensing Applications”". Crystals 13, nr 2 (19.01.2023): 173. http://dx.doi.org/10.3390/cryst13020173.
Pełny tekst źródłaQuyen, Nguyen Nhat, Tz-Ju Hong, Chin En Hsu, Wen-Yen Tzeng, Chien-Ming Tu, Chia-Nung Kuo, Hung-Chung Hsueh, Chin Shan Lue i Chih-Wei Luo. "Nematic electron and phonon dynamics in SnS crystals". Applied Physics Letters 121, nr 17 (24.10.2022): 172105. http://dx.doi.org/10.1063/5.0099486.
Pełny tekst źródłaWu, Jeslin J., i Uwe R. Kortshagen. "Photostability of thermally-hydrosilylated silicon quantum dots". RSC Advances 5, nr 126 (2015): 103822–28. http://dx.doi.org/10.1039/c5ra22827a.
Pełny tekst źródłaMarques Lameirinhas, Ricardo A., João Paulo N. Torres i João P. de Melo Cunha. "A Photovoltaic Technology Review: History, Fundamentals and Applications". Energies 15, nr 5 (1.03.2022): 1823. http://dx.doi.org/10.3390/en15051823.
Pełny tekst źródłaRozprawy doktorskie na temat "Optoelectronic and Photovoltaic"
Lim, Swee Hoe. "Metallic nanostructures for optoelectronic and photovoltaic applications". Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3365871.
Pełny tekst źródłaTitle from first page of PDF file (viewed August 20, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Vallés, Pelarda Marta. "Different approaches to improve perovskite-based photovoltaic and optoelectronic devices". Doctoral thesis, Universitat Jaume I, 2022. http://dx.doi.org/10.6035/14104.2022.368259.
Pełny tekst źródłaPrograma de Doctorat en Ciències
Ho, Kai Wai. "Evaluation and characterization of efficient organic optoelectronic materials and devices". HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/816.
Pełny tekst źródłaHo, Ka Wai. "Evaluation and characterization of efficient organic optoelectronic materials and devices". HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/873.
Pełny tekst źródłaEicker, Ursula Irmgard. "Optical studies of amorphous silicon alloys for optoelectronic and photovoltaic devices". Thesis, Heriot-Watt University, 1989. http://hdl.handle.net/10399/1036.
Pełny tekst źródłaBRUNI, FRANCESCO. "NOVEL MATERIAL DESIGN AND MANIPULATION STRATEGIES FOR ADVANCED OPTOELECTRONIC APPLICATIONS". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/151660.
Pełny tekst źródłaMy PhD has been focused on organic semiconductors for photovoltaics and photodetecting applications. Initially, I worked on the control of the morphology in binary blends of small organic molecules and fullerenes using the so called latent pigment approach. Subsequently, I investigated the charge accumulation and polarization effect occurring at the interface between water and a polymeric semiconductor used as optical component in retinal prosthesis by means of inorganic colloidal nanocrystals featuring a ratiometric sensing ability for electron withdrawing agents. As a last part of the work, I focalized on the applications of these nanocrystals as ratiometric sensors for intracellular pH probing and pressure optical monitoring. Specifically, during the first part of my PhD, I worked in the field of organic photovoltaics on the morphology engineering of the active layer of small molecules bulk-heterojunction solar cells. I demonstrated a new strategy to fine tune the phase-segregation in thin films of a suitably functionalized electron donor blended with fullerene derivatives by introducing in the system a post-deposition thermally activated network of hydrogen bonds that leads to improved stability and high crystallinity. Moreover, this process increases the carrier mobility of the donor species and allows for controlling the size of segregated domains resulting in an improved efficiency of the photovoltaic devices. This work revealed the great potential of the latent hydrogen bonding strategy that I subsequently exploited to fabricate nanometric semiconductive features on the film surface by using a very simple maskless lithographic technique. To do so, I focalized a UV laser into a confocal microscope and used the objective as a “brush” to thermically induce a localized hydrogen bonding driven crystallization with diffraction limited resolution. My work on organic semiconductors continued with a study on the surface polarization driven charge separation at the P3HT/water interfaces in optoelectronic devices for biologic applications. In this work, I probed the local accumulation of positive charges on the P3HT surface in aqueous environment by exploiting the ratiometric sensing capabilities of particular engineered core/shell heterostuctures called dot-in-bulk nanocrystals (DiB-NCs). These structures feature two-colour emission due to the simultaneous recombination of their core and shell localized excitons. Importantly, the two emissions are differently affected by the external chemical environment, making DiB-NCs ideal optical ratiometric sensors. In the second part of my PhD, I, therefore, focalized on the single particle sensing application of DiB-NCs. Specifically, I used them to ratiometrically probe intracellular pH in living cells. With this aim, I studied their ratiometric response in solution by titration with an acid and a base. Subsequently, I internalized them into living human embryonic kidney (HEK) cells and monitored an externally induced alteration of the intracellular pH. Importantly, viability test on DiB-NCs revealed no cytotoxicity demonstrating their great potential as ratiometric pH probes for biologic application. Finally, I used DiB-NCs as a proof-of-concept single particle ratiometric pressure sensitive paint (r-PSP). In this application, the emission ratio between the core and the shell emission is used to determine the oxygen partial pressure and therefore the atmospheric pressure of the NC environment.
Shi, Tingting. "Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418391935.
Pełny tekst źródłaSola, Margherita. "Optoelectronic properties of LaVO3 perovskite for photovoltaic applications investigated by surface potential measurements". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10716/.
Pełny tekst źródłaHan, Lu. "Light Management in Photovoltaic Devices and Nanostructure Engineering in Nitride-based Optoelectronic Devices". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1486996393294605.
Pełny tekst źródłaGrand, Caroline. "Controlling electronic properties and morphology of isoindigo-based polymers for photovoltaic applications". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54856.
Pełny tekst źródłaKsiążki na temat "Optoelectronic and Photovoltaic"
Zishen, Zhao, SPIE (Society), Wuhan dian guang guo jia shi yan shi, Zhongguo guang xue xue hui i China Jiao yu bu, red. Photonics and Optoelectronics Meetings (POEM) 2009: Optoelectronic devices and integration : 8-10 August 2009, Wuhan, China. Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaVaseashta, A., D. Dimova-Malinovska i J. M. Marshall, red. Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3562-4.
Pełny tekst źródłaM, Marshall J., i Dimova-Malinovska D, red. Photovoltaic and photoactive materials: Properties, technology, and applications. Dordrecht: Kluwer Academic, 2002.
Znajdź pełny tekst źródłaDerrick, Anthony. Solar photovoltaic products: A guide for development workers. London: Intermediate Technology Publications in association with the Swedish Missionary Council and the Stockholm Environment Institute, 1991.
Znajdź pełny tekst źródłaKonstantatos, Gerasimos, i Edward H. Sargent, red. Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/cbo9781139022750.
Pełny tekst źródłaLuque, A. Solar cells and optics for photovoltaic concentration. Bristol, England: A. Hilger, 1989.
Znajdź pełny tekst źródłaMeeting, Materials Research Society, i Symposium T, "Photovoltaics and optoelectronics from nanoparticles" (2010 : San Francisco, California), red. Photovoltaics and optoelectronics from nanoparticles: Symposium held April 5-9, 2010, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2010.
Znajdź pełny tekst źródłaJeon, Heonsu. Display, solid-state lighting, photovoltaics, and optoelectronics in energy: 2-6 November 2009, Shanghai, China. Redaktorzy Optical Society of America, SPIE (Society) i Asia Communications and Photonics (2009 : Shanghai, China). Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaInternational Symposium on Physics and Applications of Amorphous Semiconductors (2nd 1988 Institute for Scientific Interchange). Second International Workshop on physics and applications of amorphous semiconductors: Optoelectric and photovoltaic devices, Torino, Italy, September 12-16, 1988. Singapore: World Scientific, 1990.
Znajdź pełny tekst źródłaJeon, Heonsu. Display, solid-state lighting, photovoltaics, and optoelectronics in energy II: 8-12 December 2010, Shanghai, China. Redaktorzy SPIE (Society), IEEE Photonics Society i Fu dan da xue (Shanghai, China). Bellingham, Wash: SPIE, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Optoelectronic and Photovoltaic"
Rispens, M. T., i J. C. Hummelen. "Photovoltaic Applications". W Fullerenes: From Synthesis to Optoelectronic Properties, 387–435. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9902-3_12.
Pełny tekst źródłaBaker, I. M. "Photovoltaic IR detectors". W Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, 450–73. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_15.
Pełny tekst źródłaCiszek, T. F. "Photovoltaic Silicon Crystal Growth". W Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials, 451–76. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470012086.ch16.
Pełny tekst źródłaKalyanasundaram, K., i M. Grätzel. "Efficient Photovoltaic Solar Cells Based on Dye Sensitization of Nanocrystalline Oxide Films". W Optoelectronic Properties of Inorganic Compounds, 169–94. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_5.
Pełny tekst źródłaHeintze, M., K. Eberhardt, F. Kessler i G. H. Bauer. "Comparison of a-Ge:H Preparation Techniques in View of Optoelectronic Optimization". W Tenth E.C. Photovoltaic Solar Energy Conference, 1075–78. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_275.
Pełny tekst źródłaMeiling, H., R. E. I. Schropp, W. G. J. H. M. Sark, J. Bezemer i W. F. Weg. "Improved Thickness Uniformity and Optoelectronic Properties of a-Si:H Thin Films". W Tenth E.C. Photovoltaic Solar Energy Conference, 339–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_87.
Pełny tekst źródłaKhan, Karina, Aditi Gaur, Kamal Nayan Sharma, Amit Soni i Jagrati Sahariya. "Review on Optoelectronic Response of Emerging Solar Photovoltaic Materials". W Energy Systems and Nanotechnology, 79–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1256-5_6.
Pełny tekst źródłaBirkholz, M., A. Hartmann, S. Fiechter i H. Tributsch. "Defect Chemistry and Homogeneity Range of Pyrite and their Influence on the Optoelectronic Behaviour". W Tenth E.C. Photovoltaic Solar Energy Conference, 96–99. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_25.
Pełny tekst źródłaTiwari, Udit, i Sahab Dass. "Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water". W Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.
Pełny tekst źródłaDoghmane, Houssem Eddine, Tahar Touam, Azeddine Chelouche, Fatiha Challali i Djamel Djouadi. "Synthesis and Characterization of Tio2 Thin Films for Photovoltaic and Optoelectronic Applications". W ICREEC 2019, 311–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_39.
Pełny tekst źródłaStreszczenia konferencji na temat "Optoelectronic and Photovoltaic"
Jozwikowski, Krzysztof, Jozef Piotrowski, Krzysztof Adamiec i Antoni Rogalski. "Computer simulation of HgCdTe photovoltaic devices based on complex heterostructures". W Optoelectronics '99 - Integrated Optoelectronic Devices, redaktorzy Gail J. Brown i Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344584.
Pełny tekst źródłaZogg, Hans. "Photovoltaic IV-VI on silicon infrared devices for thermal imaging applications". W Optoelectronics '99 - Integrated Optoelectronic Devices, redaktorzy Gail J. Brown i Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344567.
Pełny tekst źródłaAlem, Salima, Remi de Bettignies, Michel Cariou, Emmanuel Allard, Stephanie Chopin, Jack Cousseau, Sylvie Dabos-Seignon i Jean-Michel Nunzi. "Realization and characterization of plastic photovoltaic cells". W Integrated Optoelectronic Devices 2004, redaktorzy James G. Grote i Toshikuni Kaino. SPIE, 2004. http://dx.doi.org/10.1117/12.528319.
Pełny tekst źródłaMcClary, Scott A., Siming Li, Xinxing Yin, Patricia Dippo, Darius Kuciauskas, Yanfa Yan, Jason B. Baxter i Rakesh Agrawal. "Optoelectronic Characterization of Emerging Solar Absorber Cu3AsS4". W 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980590.
Pełny tekst źródłaLiu, Shengzhong. "Perovskite – a Wonder for Photovoltaic & Optoelectronic Applications". W Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.as1i.1.
Pełny tekst źródłaAdonin, Alexej S., Konstantin O. Petrosjanc i Igor V. Poljakov. "Optoelectronic integrated circuit with built-in photovoltaic supply". W Second Conference on Photonics for Transportation, redaktorzy Vladimir G. Inozemtsev i Victor A. Shilin. SPIE, 2002. http://dx.doi.org/10.1117/12.463472.
Pełny tekst źródłaMonastyrskii, Liubomyr S., Petro P. Parandii, M. Panasiuk i Igor B. Olenych. "Photovoltaic effect in porous silicon heterostructures". W International Conference on Optoelectronic Information Technologies, redaktorzy Sergey V. Svechnikov, Volodymyr P. Kojemiako i Sergey A. Kostyukevych. SPIE, 2001. http://dx.doi.org/10.1117/12.429750.
Pełny tekst źródłaMilić, Jovana V. "Layered Hybrid Perovskites: From Supramolecular Templating to Multifunctional Materials". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw4_04.
Pełny tekst źródłaTurner-Evans, Daniel B., Michael D. Kelzenberg, Chris T. Chen, Emily C. Warmann, Adele C. Tamboli i Harry A. Atwater. "Optoelectronic design of multijunction wire-array solar cells". W 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186497.
Pełny tekst źródłaZhang, Cheng, Eric Annih, Rui Li i Sam-Shajing Sun. "C12-PTV with controlled regioregularity for photovoltaic application". W SPIE OPTO: Integrated Optoelectronic Devices, redaktorzy Robert L. Nelson, François Kajzar i Toshikuni Kaino. SPIE, 2009. http://dx.doi.org/10.1117/12.808508.
Pełny tekst źródłaRaporty organizacyjne na temat "Optoelectronic and Photovoltaic"
Potter, Jr, i Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2012. http://dx.doi.org/10.21236/ada562250.
Pełny tekst źródła