Gotowa bibliografia na temat „OPTIMIZER ALGORITHM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „OPTIMIZER ALGORITHM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "OPTIMIZER ALGORITHM"
Mehta, Pranav, Betul Sultan Yildiz, Sadiq M. Sait i Ali Riza Yildiz. "Hunger games search algorithm for global optimization of engineering design problems". Materials Testing 64, nr 4 (1.04.2022): 524–32. http://dx.doi.org/10.1515/mt-2022-0013.
Pełny tekst źródłaAbdel-Basset, Mohamed, Reda Mohamed, Karam M. Sallam i Ripon K. Chakrabortty. "Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm". Mathematics 10, nr 19 (23.09.2022): 3466. http://dx.doi.org/10.3390/math10193466.
Pełny tekst źródłaKhan, Muhammad Fahad, Muqaddas Bibi, Farhan Aadil i Jong-Weon Lee. "Adaptive Node Clustering for Underwater Sensor Networks". Sensors 21, nr 13 (30.06.2021): 4514. http://dx.doi.org/10.3390/s21134514.
Pełny tekst źródłaSameh, Mariam A., Mostafa I. Marei, M. A. Badr i Mahmoud A. Attia. "An Optimized PV Control System Based on the Emperor Penguin Optimizer". Energies 14, nr 3 (1.02.2021): 751. http://dx.doi.org/10.3390/en14030751.
Pełny tekst źródłaMehta, Pranav, Betül Sultan Yıldız, Nantiwat Pholdee, Sumit Kumar, Ali Riza Yildiz, Sadiq M. Sait i Sujin Bureerat. "A novel generalized normal distribution optimizer with elite oppositional based learning for optimization of mechanical engineering problems". Materials Testing 65, nr 2 (1.02.2023): 210–23. http://dx.doi.org/10.1515/mt-2022-0259.
Pełny tekst źródłaEwees, Ahmed A., Zakariya Yahya Algamal, Laith Abualigah, Mohammed A. A. Al-qaness, Dalia Yousri, Rania M. Ghoniem i Mohamed Abd Elaziz. "A Cox Proportional-Hazards Model Based on an Improved Aquila Optimizer with Whale Optimization Algorithm Operators". Mathematics 10, nr 8 (12.04.2022): 1273. http://dx.doi.org/10.3390/math10081273.
Pełny tekst źródłaYıldız, Betül Sultan, Vivek Patel, Nantiwat Pholdee, Sadiq M. Sait, Sujin Bureerat i Ali Rıza Yıldız. "Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design". Materials Testing 63, nr 4 (1.04.2021): 336–40. http://dx.doi.org/10.1515/mt-2020-0049.
Pełny tekst źródłaZhang, Runze, i Yujie Zhu. "Predicting the Mechanical Properties of Heat-Treated Woods Using Optimization-Algorithm-Based BPNN". Forests 14, nr 5 (2.05.2023): 935. http://dx.doi.org/10.3390/f14050935.
Pełny tekst źródłaAlRassas, Ayman Mutahar, Mohammed A. A. Al-qaness, Ahmed A. Ewees, Shaoran Ren, Mohamed Abd Elaziz, Robertas Damaševičius i Tomas Krilavičius. "Optimized ANFIS Model Using Aquila Optimizer for Oil Production Forecasting". Processes 9, nr 7 (9.07.2021): 1194. http://dx.doi.org/10.3390/pr9071194.
Pełny tekst źródłaGuerra, Juan F., Ramon Garcia-Hernandez, Miguel A. Llama i Victor Santibañez. "A Comparative Study of Swarm Intelligence Metaheuristics in UKF-Based Neural Training Applied to the Identification and Control of Robotic Manipulator". Algorithms 16, nr 8 (21.08.2023): 393. http://dx.doi.org/10.3390/a16080393.
Pełny tekst źródłaRozprawy doktorskie na temat "OPTIMIZER ALGORITHM"
Bhandare, Ashray Sadashiv. "Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural Networks". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513273210921513.
Pełny tekst źródłaLakshminarayanan, Srivathsan. "Nature Inspired Grey Wolf Optimizer Algorithm for Minimizing Operating Cost in Green Smart Home". University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1438102173.
Pełny tekst źródłaMartz, Matthew. "Preliminary Design of an Autonomous Underwater Vehicle Using a Multiple-Objective Genetic Optimizer". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/33291.
Pełny tekst źródłaMaster of Science
Parandekar, Amey V. "Development of a Decision Support Framework forIntegrated Watershed Water Quality Management and a Generic Genetic Algorithm Based Optimizer". NCSU, 1999. http://www.lib.ncsu.edu/theses/available/etd-19990822-032656.
Pełny tekst źródłaPARANDEKAR, AMEY, VIJAY. Development of a Decision Support Framework for Integrated Watershed Water Quality Management and a Generic Genetic Algorithm Based Optimizer. (Under the direction of Dr. S. Ranji Ranjithan.)The watershed management approach is a framework for addressing water quality problems at a watershed scale in an integrated manner that considers many conflicting issues including cost, environmental impact and equity in evaluating alternative control strategies. This framework enhances the capabilities of current environmental analysis frameworks by the inclusion of additional systems analytic tools such as optimization algorithms that enable efficient search for cost effective control strategies and uncertainty analysis procedures that estimate the reliability in achieving water quality targets. Traditional optimization procedures impose severe restrictions in using complex nonlinear environmental processes within a systematic search. Hence, genetic algorithms (GAs), a class of general, probabilistic, heuristic, global, search procedures, are used. Current implementation of this framework is coupled with US EPA's BASINS software system. A component of the current research is also the development of GA object classes and optimization model classes for generic use. A graphical user interface allows users to formulate mathematical programming problems and solve them using GA methodology. This set of GA object and the user interface classes together comprise the Generic Genetic Algorithm Based Optimizer (GeGAOpt), which is demonstrated through applications in solving interactively several unconstrained as well as constrained function optimization problems.Design of these systems is based on object oriented paradigm and current software engineering practices such as object oriented analysis (OOA) and object oriented design (OOD). The development follows the waterfall model for software development. The Unified Modeling Language (UML) is used for the design. The implementation is carried out using the JavaTM programming environment
Parandekar, Amey V. "Development of a decision support framework for integrated watershed water quality management and a Generic Genetic Algorithm Based Optimizer". Raleigh, NC : North Carolina State University, 1999. http://www.lib.ncsu.edu/etd/public/etd-492632279902331/etd.pdf.
Pełny tekst źródłaPillai, Ajit Chitharanjan. "On the optimization of offshore wind farm layouts". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25470.
Pełny tekst źródłaLuo, Hui Long. "Optimized firefly algorithm and application". Thesis, University of Macau, 2015. http://umaclib3.umac.mo/record=b3335707.
Pełny tekst źródłaThulo, Motlatsi Isaac. "Optimized Security-aware VM placement algorithm". Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/73387.
Pełny tekst źródładissertation (MSc)--University of Pretoria, 2019.
Computer Science
MSc
Unrestricted
陳從輝 i Chung-fai Chan. "MOS parameter extraction globally optimized with genetic algorithm". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31212785.
Pełny tekst źródłaPomerleau, François. "Registration algorithm optimized for simultaneous localization and mapping". Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1465.
Pełny tekst źródłaKsiążki na temat "OPTIMIZER ALGORITHM"
W, Longman Richard, i Langley Research Center, red. Optimized system identification. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaW, Longman Richard, i Langley Research Center, red. Optimized system identification. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaC, Chung Wilson, Smith Mark J. T i United States. National Aeronautics and Space Administration., red. Subband image coding with jointly optimized quantizers. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaOliva, Diego, i Erik Cuevas. Advances and Applications of Optimised Algorithms in Image Processing. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48550-8.
Pełny tekst źródłaElliott, Donald M. Application of a genetic algorithm to optimize quality assurance in software development. Monterey, Calif: Naval Postgraduate School, 1993.
Znajdź pełny tekst źródłaMartins, Tiago, i Rui Neves. Stock Exchange Trading Using Grid Pattern Optimized by A Genetic Algorithm with Speciation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76680-1.
Pełny tekst źródłaJet Propulsion Laboratory (U.S.), red. A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1990.
Znajdź pełny tekst źródłaL, Palumbo Daniel, i Langley Research Center, red. Performance of optimized actuator and sensor arrays in an active noise control system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Znajdź pełny tekst źródłaCujec, Anne-Marie. An optimized bit cell design for a pipelined current-mode algorithmic A/D converter. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Znajdź pełny tekst źródłaFenn, Sebastian. Optimised algorithms and circuit architectures for performance finite field arithmetic in Reed-Solomon codecs. Huddersfield: The University, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "OPTIMIZER ALGORITHM"
Xing, Bo, i Wen-Jing Gao. "Group Search Optimizer Algorithm". W Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, 171–76. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03404-1_12.
Pełny tekst źródłaMani, Melika, Omid Bozorg-Haddad i Xuefeng Chu. "Ant Lion Optimizer (ALO) Algorithm". W Advanced Optimization by Nature-Inspired Algorithms, 105–16. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5221-7_11.
Pełny tekst źródłaAbualigah, Laith, Nada Khalil Al-Okbi, Seyedali Mirjalili, Mohammad Alshinwan, Husam Al Hamad, Ahmad M. Khasawneh, Waheeb Abu-Ulbeh, Mohamed Abd Elaziz, Heming Jia i Amir H. Gandomi. "Moth-Flame Optimization Algorithm, Arithmetic Optimization Algorithm, Aquila Optimizer, Gray Wolf Optimizer, and Sine Cosine Algorithm". W Handbook of Moth-Flame Optimization Algorithm, 241–63. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003205326-16.
Pełny tekst źródłaMeiwal, Priyanka, Harish Sharma i Nirmala Sharma. "Fully Informed Grey Wolf Optimizer Algorithm". W Algorithms for Intelligent Systems, 497–512. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4936-6_55.
Pełny tekst źródłaSulaiman, Mohd Herwan, Zuriani Mustaffa, Mohd Mawardi Saari, Hamdan Daniyal, Ahmad Johari Mohamad, Mohd Rizal Othman i Mohd Rusllim Mohamed. "Barnacles Mating Optimizer Algorithm for Optimization". W Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018, 211–18. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3708-6_18.
Pełny tekst źródłaShen, Hai, Yunlong Zhu, Wenping Zou i Zhu Zhu. "Group Search Optimizer Algorithm for Constrained Optimization". W Computer Science for Environmental Engineering and EcoInformatics, 48–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22691-5_9.
Pełny tekst źródłaBhesdadiya, R. H., Indrajit N. Trivedi, Pradeep Jangir, Arvind Kumar, Narottam Jangir i Rahul Totlani. "A Novel Hybrid Approach Particle Swarm Optimizer with Moth-Flame Optimizer Algorithm". W Advances in Computer and Computational Sciences, 569–77. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3770-2_53.
Pełny tekst źródłaHemmasian, Amir Pouya, Kazem Meidani, Seyedali Mirjalili i Amir Barati Farimani. "Accelerating Optimization Using Vectorized Moth-Flame Optimizer (vMFO)". W Handbook of Moth-Flame Optimization Algorithm, 97–109. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003205326-8.
Pełny tekst źródłaDoufene, Dyhia, Slimane Bouazabia, Sid A. Bessedik i Khaled Ouzzir. "Grey Wolf Optimizer Algorithm for Suspension Insulator Designing". W Proceedings of Sixth International Congress on Information and Communication Technology, 763–71. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2380-6_67.
Pełny tekst źródłaLeke, Collins Achepsah, i Tshilidzi Marwala. "Missing Data Estimation Using Ant-Lion Optimizer Algorithm". W Studies in Big Data, 103–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01180-2_7.
Pełny tekst źródłaStreszczenia konferencji na temat "OPTIMIZER ALGORITHM"
Guangyou, Yang. "A Modified Particle Swarm Optimizer Algorithm". W 2007 8th International Conference on Electronic Measurement and Instruments. IEEE, 2007. http://dx.doi.org/10.1109/icemi.2007.4350772.
Pełny tekst źródłaZhao Xiaoqiang, Liu Weirong i Wang Jun. "Genetic Algorithm optimizer for blend planning". W 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605751.
Pełny tekst źródłaFang, Zhou, Xiangxiang Xu, Xin Li, Huizhen Yang i Chenglong Gong. "SPGD algorithm optimization based on Adam optimizer". W Conference on Optical Sensing and Imaging Technology, redaktorzy Dong Liu, Xiangang Luo, Yadong Jiang i Jin Lu. SPIE, 2020. http://dx.doi.org/10.1117/12.2579991.
Pełny tekst źródłaZhang, Kang, i Xingsheng Gu. "A Fast Global Group Search Optimizer algorithm". W 2014 IEEE International Conference on Information and Automation (ICIA). IEEE, 2014. http://dx.doi.org/10.1109/icinfa.2014.6932626.
Pełny tekst źródłaBo, Wang, Liang GuoQiang i Wang ChanLin. "D-S Algorithm Based on Particle Swarm Optimizer". W 2007 8th International Conference on Electronic Measurement and Instruments. IEEE, 2007. http://dx.doi.org/10.1109/icemi.2007.4350681.
Pełny tekst źródłaWang, Tianlei, Leqing Chen, Qimei Zhang, Xiaoxi Hao, Renju Liu i Yongwen Xie. "Improved sparrow search algorithm by hybrid equalization optimizer". W 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2022. http://dx.doi.org/10.1109/icpics55264.2022.9873760.
Pełny tekst źródłaHaynes, David D., i Steven M. Corns. "Algorithm for a Tabu — Ant Colony Optimizer". W 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015. http://dx.doi.org/10.1109/cec.2015.7256935.
Pełny tekst źródłaR, Karthikeyan. "Grey Wolf Optimizer algorithm-based unit commitment problem". W 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2020. http://dx.doi.org/10.1109/i-smac49090.2020.9243458.
Pełny tekst źródłaHou, Chunzhi, Jiarui Shi i Baohang Zhang. "Evolving Dendritic Neuron Model by Equilibrium Optimizer Algorithm". W 2021 IEEE International Conference on Progress in Informatics and Computing (PIC). IEEE, 2021. http://dx.doi.org/10.1109/pic53636.2021.9687084.
Pełny tekst źródłaGiftson Joy, John Abish, i Robello Samuel. "Fast Drilling Optimizer for Drilling Automation". W SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200881-ms.
Pełny tekst źródłaRaporty organizacyjne na temat "OPTIMIZER ALGORITHM"
Bennaoui, Ahmed, AISSA AMEUR i SLAMI SAADI. Moth-Flame Optimizer Algorithm For Optimal Of Fuzzy Logic Controller for nonlinear system. Peeref, kwiecień 2023. http://dx.doi.org/10.54985/peeref.2304p4802037.
Pełny tekst źródłaWenren, Yonghu, Joon Lim, Luke Allen, Robert Haehnel i Ian Dettwiler. Helicopter rotor blade planform optimization using parametric design and multi-objective genetic algorithm. Engineer Research and Development Center (U.S.), grudzień 2022. http://dx.doi.org/10.21079/11681/46261.
Pełny tekst źródłaHorrocks, Ian, i Ulrike Sattler. Optimised Reasoning for SHIQ. Aachen University of Technology, 2001. http://dx.doi.org/10.25368/2022.118.
Pełny tekst źródłaMoore, Frank, Brendan Babb, Steven Becke, Heather Koyuk, Earl Lamson, Wedge III i Christopher. Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2005. http://dx.doi.org/10.21236/ada437529.
Pełny tekst źródłaQi, Fei, Zhaohui Xia, Gaoyang Tang, Hang Yang, Yu Song, Guangrui Qian, Xiong An, Chunhuan Lin i Guangming Shi. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, grudzień 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Pełny tekst źródłaJohnson, V. M., i L. L. Rogers. Using artifical neutral networks and the genetic algorithm to optimize well-field design: Phase I. Office of Scientific and Technical Information (OSTI), marzec 1998. http://dx.doi.org/10.2172/3385.
Pełny tekst źródłaCowell, Luke, i Ivan Carlos. PR-283-18202-R01 Improved SoLoNox T70S and T130S Controls to Reduce Part Load Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 2021. http://dx.doi.org/10.55274/r0012019.
Pełny tekst źródłaSullivan, Jr, Lai John M. i Q. Application of Neural Networks Coupled with Genetic Algorithms to Optimize Soil Cleanup Operations in Cold Climates. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1998. http://dx.doi.org/10.21236/ada637453.
Pełny tekst źródłaBaader, Franz, i Barbara Morawska. SAT Encoding of Unification in EL. Technische Universität Dresden, 2010. http://dx.doi.org/10.25368/2022.177.
Pełny tekst źródłaMahowald, Natalie. Collaborative Project: Building improved optimized parameter estimation algorithms to improve methane and nitrogen fluxes in a climate model. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1333698.
Pełny tekst źródła