Artykuły w czasopismach na temat „OPTIMIZED RECOMMENDER SYSTEM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „OPTIMIZED RECOMMENDER SYSTEM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sumariya, Shrey, Shreyas Rami, Shubham Revadekar, Vidhan Shah i Sudhir Bagul. "Hospital Recommender System". BOHR International Journal of Engineering 2, nr 1 (2023): 1–6. http://dx.doi.org/10.54646/bije.011.
Pełny tekst źródłaSumariya, Shrey, Shreyas Rami Rami, Shubham Revadekar, Vidhan Shah i Sudhir Bagul. "Hospital Recommender System". BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning 1, nr 1 (2022): 99–103. http://dx.doi.org/10.54646/bijiam.016.
Pełny tekst źródłaYuan, Weiwei, i Donghai Guan. "OPTIMIZED TRUST-AWARE RECOMMENDER SYSTEM USING GENETIC ALGORITHM". Neural Network World 27, nr 1 (2017): 77–94. http://dx.doi.org/10.14311/nnw.2017.27.004.
Pełny tekst źródłaVerma, Sandhya, i Amit Kumar Manjhvar. "Optimized Ranking Based Recommender System for Various Application Based Fields". International Journal of Database Theory and Application 9, nr 1 (28.02.2016): 137–44. http://dx.doi.org/10.14257/ijdta.2016.9.2.15.
Pełny tekst źródłaLi, Jian Yang, Xiao Ping Liu i Rui Li. "Optimized RBF for CBR-Recommendation System". Applied Mechanics and Materials 214 (listopad 2012): 568–72. http://dx.doi.org/10.4028/www.scientific.net/amm.214.568.
Pełny tekst źródłaLoukili, Manal, Fayçal Messaoudi i Mohammed El Ghazi. "Machine learning based recommender system for e-commerce". IAES International Journal of Artificial Intelligence (IJ-AI) 12, nr 4 (1.12.2023): 1803. http://dx.doi.org/10.11591/ijai.v12.i4.pp1803-1811.
Pełny tekst źródłaHerce-Zelaya, Julio, Carlos Porcel, Álvaro Tejeda-Lorente, Juan Bernabé-Moreno i Enrique Herrera-Viedma. "Introducing CSP Dataset: A Dataset Optimized for the Study of the Cold Start Problem in Recommender Systems". Information 14, nr 1 (29.12.2022): 19. http://dx.doi.org/10.3390/info14010019.
Pełny tekst źródłaBahrami, N., M. Argany, N. N. Samani i A. R. Vafaeinejad. "DESIGNING A CONTEXT-AWARE RECOMMENDER SYSTEM IN THE OPTIMIZATION OF THE RELIEF AND RESCUE". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W18 (18.10.2019): 171–77. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-171-2019.
Pełny tekst źródłaGupta, Shalini, i Veer Sain Dixit. "A Meta-Heuristic Algorithm Approximating Optimized Recommendations for E-Commerce Business Promotions". International Journal of Information Technology Project Management 11, nr 2 (kwiecień 2020): 23–49. http://dx.doi.org/10.4018/ijitpm.2020040103.
Pełny tekst źródłaMuruganandam, Kishore, i Shaphan Manipaul S. "A Real Time Tourism Recommender System using KNN and RBM Approach". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 357–62. http://dx.doi.org/10.22214/ijraset.2023.51527.
Pełny tekst źródłaZuo, Fang, Uladzislau Siniauski, Haochen Yang i Guanghui Wang. "OP-K-Means: Optimized Algorithm for Recommendation System Based on User Preferences". Journal of Physics: Conference Series 2171, nr 1 (1.01.2022): 012002. http://dx.doi.org/10.1088/1742-6596/2171/1/012002.
Pełny tekst źródłaAl-Asadi, Ammar Abdulsalam, i Mahdi Nsaif Jasim. "Cluster-based denoising autoencoders for rate prediction recommender systems". Indonesian Journal of Electrical Engineering and Computer Science 30, nr 3 (1.06.2023): 1805. http://dx.doi.org/10.11591/ijeecs.v30.i3.pp1805-1812.
Pełny tekst źródłaAlabduljabbar, Reham. "Matrix Factorization Collaborative-Based Recommender System for Riyadh Restaurants: Leveraging Machine Learning to Enhance Consumer Choice". Applied Sciences 13, nr 17 (24.08.2023): 9574. http://dx.doi.org/10.3390/app13179574.
Pełny tekst źródłaAhmed, Esmael, i Adane Letta. "Book Recommendation Using Collaborative Filtering Algorithm". Applied Computational Intelligence and Soft Computing 2023 (11.03.2023): 1–12. http://dx.doi.org/10.1155/2023/1514801.
Pełny tekst źródłaSu, Xinjie, Peng Li i Xinru Zhu. "The Influence of Herd Mentality on Rating Bias and Popularity Bias: A Bi-Process Debiasing Recommendation Model Based on Matrix Factorization". Behavioral Sciences 13, nr 1 (10.01.2023): 63. http://dx.doi.org/10.3390/bs13010063.
Pełny tekst źródłaWang, Ruijun. "Spring Festival Holiday Tourism Data Mining Based on the Deep Learning Model". Scientific Programming 2022 (18.06.2022): 1–13. http://dx.doi.org/10.1155/2022/9991794.
Pełny tekst źródłaWang, Xixian, Xiaoming Wang, Binrui Huang, Mingzhan Dai i Jianwei Li. "Efficient Personalized Recommendation Based on Federated Learning with Similarity Ciphertext Calculation". Security and Communication Networks 2022 (16.09.2022): 1–15. http://dx.doi.org/10.1155/2022/8607234.
Pełny tekst źródłaS, Saranya, i C. Jeyalakshmi. "Collaborative Movie Recommendation System using Enhanced Fuzzy C-Means Clustering with Dove Swarm Optimization Algorithm". ECTI Transactions on Computer and Information Technology (ECTI-CIT) 17, nr 3 (22.07.2023): 308–18. http://dx.doi.org/10.37936/ecti-cit.2023173.251272.
Pełny tekst źródłaVats, Satvik, i B. B. Sagar. "An independent time optimized hybrid infrastructure for big data analytics". Modern Physics Letters B 34, nr 28 (21.07.2020): 2050311. http://dx.doi.org/10.1142/s021798492050311x.
Pełny tekst źródłaNeupane, Krishna Prasad, Ervine Zheng, Yu Kong i Qi Yu. "A Dynamic Meta-Learning Model for Time-Sensitive Cold-Start Recommendations". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 7 (28.06.2022): 7868–76. http://dx.doi.org/10.1609/aaai.v36i7.20756.
Pełny tekst źródłaLujak, Marin, Holger Billhardt, Jürgen Dunkel, Alberto Fernández, Ramón Hermoso i Sascha Ossowski. "A distributed architecture for real-time evacuation guidance in large smart buildings". Computer Science and Information Systems 14, nr 1 (2017): 257–82. http://dx.doi.org/10.2298/csis161014002l.
Pełny tekst źródłaVats, Satvik, Bharat Bhushan Sagar, Karan Singh, Ali Ahmadian i Bruno A. Pansera. "Performance Evaluation of an Independent Time Optimized Infrastructure for Big Data Analytics that Maintains Symmetry". Symmetry 12, nr 8 (2.08.2020): 1274. http://dx.doi.org/10.3390/sym12081274.
Pełny tekst źródłaDella Corte, Dennis, Wolfgang Colsman, Ben Welker i Brian Rennick. "Library eArchiving with ZONTAL Space and the Allotrope Data Format". Digital Library Perspectives 36, nr 1 (15.01.2020): 69–77. http://dx.doi.org/10.1108/dlp-09-2019-0036.
Pełny tekst źródłaKatarya, Rahul, i Om Prakash Verma. "Recommender system with grey wolf optimizer and FCM". Neural Computing and Applications 30, nr 5 (27.12.2016): 1679–87. http://dx.doi.org/10.1007/s00521-016-2817-3.
Pełny tekst źródłaGelvez Garcia, Nancy Yaneth, Jesús Gil-Ruíz i Jhon Fredy Bayona-Navarro. "Optimization of Recommender Systems Using Particle Swarms". Ingeniería 28, Suppl (28.02.2023): e19925. http://dx.doi.org/10.14483/23448393.19925.
Pełny tekst źródłaPajuelo-Holguera, Francisco, Juan A. Gómez-Pulido i Fernando Ortega. "Performance of Two Approaches of Embedded Recommender Systems". Electronics 9, nr 4 (25.03.2020): 546. http://dx.doi.org/10.3390/electronics9040546.
Pełny tekst źródłaAnbu, A. "Analyzing the misleading information on Covid-19 using MBCFWS4". Multidisciplinary Science Journal 5, nr 2 (9.04.2023): 2023021. http://dx.doi.org/10.31893/multiscience.2023021.
Pełny tekst źródłaSong, Li Yang, Xiao Ru He i Ji Cheng Zhang. "Optimization of Acid Fracturing Design in Yubei Fractured Reservoir". Applied Mechanics and Materials 580-583 (lipiec 2014): 2495–501. http://dx.doi.org/10.4028/www.scientific.net/amm.580-583.2495.
Pełny tekst źródłaZhai, Hai-bin. "Exploiting Post-Click Behaviors for Recommender System". International Journal on Cybernetics & Informatics 11, nr 4 (27.08.2022): 113–23. http://dx.doi.org/10.5121/ijci.2022.110409.
Pełny tekst źródłaAngelis, Sotiris, Konstantinos Kotis i Dimitris Spiliotopoulos. "Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces". Big Data and Cognitive Computing 5, nr 4 (16.12.2021): 80. http://dx.doi.org/10.3390/bdcc5040080.
Pełny tekst źródłaSong, Yicheng, Nachiketa Sahoo i Elie Ofek. "When and How to Diversify—A Multicategory Utility Model for Personalized Content Recommendation". Management Science 65, nr 8 (sierpień 2019): 3737–57. http://dx.doi.org/10.1287/mnsc.2018.3127.
Pełny tekst źródłaSun, Ning. "Overview of definition, evaluation, and algorithms of serendipity in recommender systems". Applied and Computational Engineering 6, nr 1 (14.06.2023): 565–71. http://dx.doi.org/10.54254/2755-2721/6/20230861.
Pełny tekst źródłaLim, Ying Fei, Su Cheng Haw, Kok Why Ng i Elham Abdulwahab Anaam. "Hybrid-based Recommender System for Online Shopping: A Review". Journal of Engineering Technology and Applied Physics 5, nr 1 (15.03.2023): 12–34. http://dx.doi.org/10.33093/jetap.2023.5.1.3.
Pełny tekst źródłaChen, Shuo, i Min Wu. "Attention Collaborative Autoencoder for Explicit Recommender Systems". Electronics 9, nr 10 (18.10.2020): 1716. http://dx.doi.org/10.3390/electronics9101716.
Pełny tekst źródłaYao, ZiXi. "Review of Movie Recommender Systems Based on Deep Learning". SHS Web of Conferences 159 (2023): 02010. http://dx.doi.org/10.1051/shsconf/202315902010.
Pełny tekst źródłaChen, Keyu, i Shiliang Sun. "CP-Rec: Contextual Prompting for Conversational Recommender Systems". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 11 (26.06.2023): 12635–43. http://dx.doi.org/10.1609/aaai.v37i11.26487.
Pełny tekst źródłaKim, Minseok, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin i Jae-Gil Lee. "Meta-Learning for Online Update of Recommender Systems". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 4 (28.06.2022): 4065–74. http://dx.doi.org/10.1609/aaai.v36i4.20324.
Pełny tekst źródłaQuest, Gemina, Rosalie Arendt, Christian Klemm, Vanessa Bach, Janik Budde, Peter Vennemann i Matthias Finkbeiner. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany". Energies 15, nr 16 (15.08.2022): 5900. http://dx.doi.org/10.3390/en15165900.
Pełny tekst źródłaRizkallah, Sandra, Amir F. Atiya i Samir Shaheen. "New Vector-Space Embeddings for Recommender Systems". Applied Sciences 11, nr 14 (13.07.2021): 6477. http://dx.doi.org/10.3390/app11146477.
Pełny tekst źródłaGallacher, D. J. "Optimised descriptors recommended for Australian sugarcane germplasm (Saccharum spp. hybrid)". Australian Journal of Agricultural Research 48, nr 6 (1997): 775. http://dx.doi.org/10.1071/a96106.
Pełny tekst źródłaMu, Shanlei, Yaliang Li, Wayne Xin Zhao, Siqing Li i Ji-Rong Wen. "Knowledge-Guided Disentangled Representation Learning for Recommender Systems". ACM Transactions on Information Systems 40, nr 1 (31.01.2022): 1–26. http://dx.doi.org/10.1145/3464304.
Pełny tekst źródłaLiu, Lewis, i Kun Zhao. "Asynchronous Stochastic Gradient Descent for Extreme-Scale Recommender Systems". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 328–35. http://dx.doi.org/10.1609/aaai.v35i1.16108.
Pełny tekst źródłaPasdar, Amirmohammad, Young Choon Lee, Tahereh Hassanzadeh i Khaled Almi’ani. "Resource Recommender for Cloud-Edge Engineering". Information 12, nr 6 (25.05.2021): 224. http://dx.doi.org/10.3390/info12060224.
Pełny tekst źródłaRockson, Seth Bedu, Madihah Md Rasid, Mohd Shafiq Anuar, Siti Maherah Hussin, Norzanah Rosmin, Norjulia Mohamad Nordin i Michael Gyan. "DESIGNING TECHNO-ECONOMIC OFF-GRID PHOTOVOLTAIC SYSTEM USING AN IMPROVED DIFFERENTIAL EVOLUTION ALGORITHM". Jurnal Teknologi 85, nr 4 (25.06.2023): 153–65. http://dx.doi.org/10.11113/jurnalteknologi.v85.18334.
Pełny tekst źródłaManikandan, B., P. Rama i S. Chakaravarthi. "An automatic product recommendation system in e-commerce using Flamingo Search Optimizer and Fuzzy Temporal Multi Neural Classifier". Journal of Autonomous Intelligence 6, nr 2 (4.08.2023): 568. http://dx.doi.org/10.32629/jai.v6i2.568.
Pełny tekst źródłaMustika, Hani Febri, i Aina Musdholifah. "Book Recommender System Using Genetic Algorithm and Association Rule Mining". Computer Engineering and Applications Journal 8, nr 2 (11.06.2019): 85–92. http://dx.doi.org/10.18495/comengapp.v8i2.305.
Pełny tekst źródłaAssad, Ussama, Muhammad Arshad Shehzad Hassan, Umar Farooq, Asif Kabir, Muhammad Zeeshan Khan, S. Sabahat H. Bukhari, Zain ul Abidin Jaffri, Judit Oláh i József Popp. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods". Energies 15, nr 6 (9.03.2022): 2003. http://dx.doi.org/10.3390/en15062003.
Pełny tekst źródłaSon, Juyeon, Wonyoung Choi i Sang-Min Choi. "Trust information network in social Internet of things using trust-aware recommender systems". International Journal of Distributed Sensor Networks 16, nr 4 (kwiecień 2020): 155014772090877. http://dx.doi.org/10.1177/1550147720908773.
Pełny tekst źródłaPopa, Alina. "DESIGNING A HOLISTIC ADAPTIVE RECOMMENDER SYSTEM (HARS) FOR CUSTOMER RELATIONSHIP DEVELOPMENT: A CONCEPTUAL FRAMEWORK". Journal of Social Sciences IV, nr 2 (maj 2021): 84–97. http://dx.doi.org/10.52326/jss.utm.2021.4(2).09.
Pełny tekst źródłaZhang, Liang, Quanshen Wei, Lei Zhang, Baojiao Wang i Wen-Hsien Ho. "Diversity Balancing for Two-Stage Collaborative Filtering in Recommender Systems". Applied Sciences 10, nr 4 (13.02.2020): 1257. http://dx.doi.org/10.3390/app10041257.
Pełny tekst źródła