Gotowa bibliografia na temat „OPTIMIZED RECOMMENDER SYSTEM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „OPTIMIZED RECOMMENDER SYSTEM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "OPTIMIZED RECOMMENDER SYSTEM"
Sumariya, Shrey, Shreyas Rami, Shubham Revadekar, Vidhan Shah i Sudhir Bagul. "Hospital Recommender System". BOHR International Journal of Engineering 2, nr 1 (2023): 1–6. http://dx.doi.org/10.54646/bije.011.
Pełny tekst źródłaSumariya, Shrey, Shreyas Rami Rami, Shubham Revadekar, Vidhan Shah i Sudhir Bagul. "Hospital Recommender System". BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning 1, nr 1 (2022): 99–103. http://dx.doi.org/10.54646/bijiam.016.
Pełny tekst źródłaYuan, Weiwei, i Donghai Guan. "OPTIMIZED TRUST-AWARE RECOMMENDER SYSTEM USING GENETIC ALGORITHM". Neural Network World 27, nr 1 (2017): 77–94. http://dx.doi.org/10.14311/nnw.2017.27.004.
Pełny tekst źródłaVerma, Sandhya, i Amit Kumar Manjhvar. "Optimized Ranking Based Recommender System for Various Application Based Fields". International Journal of Database Theory and Application 9, nr 1 (28.02.2016): 137–44. http://dx.doi.org/10.14257/ijdta.2016.9.2.15.
Pełny tekst źródłaLi, Jian Yang, Xiao Ping Liu i Rui Li. "Optimized RBF for CBR-Recommendation System". Applied Mechanics and Materials 214 (listopad 2012): 568–72. http://dx.doi.org/10.4028/www.scientific.net/amm.214.568.
Pełny tekst źródłaLoukili, Manal, Fayçal Messaoudi i Mohammed El Ghazi. "Machine learning based recommender system for e-commerce". IAES International Journal of Artificial Intelligence (IJ-AI) 12, nr 4 (1.12.2023): 1803. http://dx.doi.org/10.11591/ijai.v12.i4.pp1803-1811.
Pełny tekst źródłaHerce-Zelaya, Julio, Carlos Porcel, Álvaro Tejeda-Lorente, Juan Bernabé-Moreno i Enrique Herrera-Viedma. "Introducing CSP Dataset: A Dataset Optimized for the Study of the Cold Start Problem in Recommender Systems". Information 14, nr 1 (29.12.2022): 19. http://dx.doi.org/10.3390/info14010019.
Pełny tekst źródłaBahrami, N., M. Argany, N. N. Samani i A. R. Vafaeinejad. "DESIGNING A CONTEXT-AWARE RECOMMENDER SYSTEM IN THE OPTIMIZATION OF THE RELIEF AND RESCUE". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W18 (18.10.2019): 171–77. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-171-2019.
Pełny tekst źródłaGupta, Shalini, i Veer Sain Dixit. "A Meta-Heuristic Algorithm Approximating Optimized Recommendations for E-Commerce Business Promotions". International Journal of Information Technology Project Management 11, nr 2 (kwiecień 2020): 23–49. http://dx.doi.org/10.4018/ijitpm.2020040103.
Pełny tekst źródłaMuruganandam, Kishore, i Shaphan Manipaul S. "A Real Time Tourism Recommender System using KNN and RBM Approach". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 357–62. http://dx.doi.org/10.22214/ijraset.2023.51527.
Pełny tekst źródłaCzęści książek na temat "OPTIMIZED RECOMMENDER SYSTEM"
Sandesara, Mudita, Prithvi Sharan, Deepti Saraswat i Rupal A. Kapdi. "An Optimized Search-Enabled Hotel Recommender System". W Lecture Notes in Electrical Engineering, 487–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9876-8_37.
Pełny tekst źródłaBehera, Gopal, i Neeta Nain. "Collaborative Recommender System (CRS) Using Optimized SGD - ALS". W Communications in Computer and Information Science, 627–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81462-5_55.
Pełny tekst źródłaKumar, Akshi, Nitin Sachdeva i Archit Garg. "Analysis of GA Optimized ANN for Proactive Context Aware Recommender System". W Hybrid Intelligent Systems, 92–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76351-4_10.
Pełny tekst źródłaKadıoğlu, Serdar, Bernard Kleynhans i Xin Wang. "Optimized Item Selection to Boost Exploration for Recommender Systems". W Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 427–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78230-6_27.
Pełny tekst źródłaBansal, Saumya, i Niyati Baliyan. "Detecting Group Shilling Profiles in Recommender Systems: A Hybrid Clustering and Grey Wolf Optimizer Technique". W Design and Applications of Nature Inspired Optimization, 133–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17929-7_7.
Pełny tekst źródłaAvram, Anca M. "Radioiodine Theranostics of Differentiated Thyroid Carcinoma". W Integrated Diagnostics and Theranostics of Thyroid Diseases, 111–27. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35213-3_7.
Pełny tekst źródłaGarosi, Ehsan. "Nurses Work System Optimization: Macroergonomics Perspective". W New Research in Nursing - Education and Practice [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110400.
Pełny tekst źródłaChawla, Suruchi. "Web Page Recommender System using hybrid of Genetic Algorithm and Trust for Personalized Web Search". W Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms, 656–75. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8048-6.ch034.
Pełny tekst źródłaKhalid, Saifullah. "Application of Adaptive Tabu Search Algorithm in Hybrid Power Filter and Shunt Active Power Filters". W Sustaining Power Resources through Energy Optimization and Engineering, 276–308. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9755-3.ch012.
Pełny tekst źródłaTalbot, Patricia A., i Jennifer Jones. "Engaging Heads, Hands, and Hearts to Optimize Study Abroad Outcomes". W Teacher Education, 1438–56. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0164-0.ch070.
Pełny tekst źródłaStreszczenia konferencji na temat "OPTIMIZED RECOMMENDER SYSTEM"
Kloucha, Chakib K., Bassem S. El Yossef, Imad Al Hamlawi, Muzahidin M Salim, Wiliem Pausin, Anik Pal, Hussein Mustapha, Soumil Shah i Ahmad Naim Hussein. "Machine Learning Model for Drilling Equipment Recommender System for Improved Decision Making and Optimum Performance". W ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211731-ms.
Pełny tekst źródłaYap, Ghim-Eng, Ah-Hwee Tan i Hwee-Hwa Pang. "Dynamically-optimized context in recommender systems". W the 6th international conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1071246.1071289.
Pełny tekst źródłaIizuka, Kojiro, Takeshi Yoneda i Yoshifumi Seki. "Greedy optimized multileaving for personalization". W RecSys '19: Thirteenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3298689.3347008.
Pełny tekst źródłaMallia Milanes, Mario, i Matthew Montebello. "Crowdsourced Recommender System". W Fourth International Conference on Higher Education Advances. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/head18.2018.8020.
Pełny tekst źródłaHammar, Mikael, Robin Karlsson i Bengt J. Nilsson. "Using maximum coverage to optimize recommendation systems in e-commerce". W RecSys '13: Seventh ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2507157.2507169.
Pełny tekst źródłaKhandelwal, Hitesh, Viet Ha-Thuc, Avishek Dutta, Yining Lu, Nan Du, Zhihao Li i Qi Hu. "Jointly Optimize Capacity, Latency and Engagement in Large-scale Recommendation Systems". W RecSys '21: Fifteenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3460231.3474606.
Pełny tekst źródłaUr Rehman, Faizan, Ahmed Lbath, Bilal Sadiq, Md Abdur Rahman, Abdullah Murad, Imad Afyouni, Akhlaq Ahmad i Saleh Basalamah. "A constraint-aware optimized path recommender in a crowdsourced environment". W 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA). IEEE, 2015. http://dx.doi.org/10.1109/aiccsa.2015.7507185.
Pełny tekst źródłaZhang, Lei, Xuan Liu, Yidi Cao i Bin Wu. "O- Recommend: An Optimized User-Based Collaborative Filtering Recommendation System". W 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018. http://dx.doi.org/10.1109/padsw.2018.8644910.
Pełny tekst źródłaZou, Lixin, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu i Dawei Yin. "Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems". W KDD '19: The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3292500.3330668.
Pełny tekst źródłaFerrari Dacrema, Maurizio, Paolo Cremonesi i Dietmar Jannach. "Methodological Issues in Recommender Systems Research (Extended Abstract)". W Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/650.
Pełny tekst źródłaRaporty organizacyjne na temat "OPTIMIZED RECOMMENDER SYSTEM"
Powell. L52196 Practical Guidelines for Conducting an External Corrosion Direct Assessment (ECDA) Program. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 2008. http://dx.doi.org/10.55274/r0011369.
Pełny tekst źródłaTorrijos, Ivan Dario Pinerez, Tina Puntervold, Skule Strand, Panagiotis Aslanidis, Ingebret Fjelde i Aleksandr Mamonov. Core restoration: A guide for improved wettability assessments. University of Stavanger, listopad 2021. http://dx.doi.org/10.31265/usps.198.
Pełny tekst źródła