Gotowa bibliografia na temat „Optical Plasmons”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Optical Plasmons”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Optical Plasmons"
Babicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications". Nanomaterials 13, nr 7 (3.04.2023): 1270. http://dx.doi.org/10.3390/nano13071270.
Pełny tekst źródłaDavis, Timothy J., Daniel E. Gómez i Ann Roberts. "Plasmonic circuits for manipulating optical information". Nanophotonics 6, nr 3 (26.10.2016): 543–59. http://dx.doi.org/10.1515/nanoph-2016-0131.
Pełny tekst źródłaSong, Justin C. W., i Mark S. Rudner. "Chiral plasmons without magnetic field". Proceedings of the National Academy of Sciences 113, nr 17 (11.04.2016): 4658–63. http://dx.doi.org/10.1073/pnas.1519086113.
Pełny tekst źródłaWang, Jingyu, Min Gao, Yonglin He i Zhilin Yang. "Ultrasensitive and ultrafast nonlinear optical characterization of surface plasmons". APL Materials 10, nr 3 (1.03.2022): 030701. http://dx.doi.org/10.1063/5.0083239.
Pełny tekst źródłaМорозов, М. Ю., И. М. Моисеенко, А. В. Коротченков i В. В. Попов. "Замедление терагерцовых плазменных волн в конической структуре с графеном, накачиваемым с помощью оптических плазменных волн". Физика и техника полупроводников 55, nr 6 (2021): 518. http://dx.doi.org/10.21883/ftp.2021.06.50920.9525.
Pełny tekst źródłaBalevičius, Zigmas. "Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing". Coatings 10, nr 12 (5.12.2020): 1187. http://dx.doi.org/10.3390/coatings10121187.
Pełny tekst źródłaUmakoshi, Takayuki, Misaki Tanaka, Yuika Saito i Prabhat Verma. "White nanolight source for optical nanoimaging". Science Advances 6, nr 23 (czerwiec 2020): eaba4179. http://dx.doi.org/10.1126/sciadv.aba4179.
Pełny tekst źródłaYe, Fan, Juan M. Merlo, Michael J. Burns i Michael J. Naughton. "Optical and electrical mappings of surface plasmon cavity modes". Nanophotonics 3, nr 1-2 (1.04.2014): 33–49. http://dx.doi.org/10.1515/nanoph-2013-0038.
Pełny tekst źródłaMoskovits, Martin. "Canada’s early contributions to plasmonics". Canadian Journal of Chemistry 97, nr 6 (czerwiec 2019): 483–87. http://dx.doi.org/10.1139/cjc-2018-0365.
Pełny tekst źródłaKawata, Satoshi. "Plasmonics for Nanoimaging and Nanospectroscopy". Applied Spectroscopy 67, nr 2 (luty 2013): 117–25. http://dx.doi.org/10.1366/12-06861.
Pełny tekst źródłaRozprawy doktorskie na temat "Optical Plasmons"
Jory, Michael John. "Optical sensing with surface plasmons". Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240308.
Pełny tekst źródłaLin, Ling. "Optical Manipulation Using Planar/Patterned Metallo-dielectric Multilayer Structures". Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1249.
Pełny tekst źródłaScales, Christine. "Magneto-plasmons in optical slab waveguides". Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26765.
Pełny tekst źródłaGeorge, Sebastian. "Optical and Magneto-Optical Measurements of Plasmonic Magnetic Nanostructures". Thesis, Uppsala universitet, Materialfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229511.
Pełny tekst źródłaAuguié, Baptiste. "Optical properties of gold nanostructures". Thesis, University of Exeter, 2009. http://hdl.handle.net/10036/73955.
Pełny tekst źródłaVemuri, Padma Rekha. "Surface Plasmon Based Nanophotonic Optical Emitters". Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc5584/.
Pełny tekst źródłaIyer, Srinivasan. "Effects of surface plasmons in subwavelength metallic structures". Doctoral thesis, KTH, Optik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103613.
Pełny tekst źródłaQC 20121017
Kurth, Martin L. "Plasmonic nanofocusing and guiding structures for nano-optical sensor technology". Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/118670/1/Martin_Kurth_Thesis.pdf.
Pełny tekst źródłaJia, Kun. "Optical detection of (bio)molecules". Thesis, Troyes, 2013. http://www.theses.fr/2013TROY0032/document.
Pełny tekst źródłaOptical biosensors have witnessed unprecedented developments over recent years, mainly due to the lively interplay between biotechnology, optical physics and materials chemistry. In this thesis, two different optical biosensing platforms have been designed for sensitive and specific detection of (bio)molecules. Specifically, the first optical detection system is constructed on the basis of bioluminescence derived from engineered Escherichia coli bacterial cells. Upon stressed by the toxic compounds, the bacterial cells produce light via a range of complex biochemical reactions in vivo and the resulted bioluminescent evolution thus can be used for toxicant detection. The bacterial bioluminescent assays are able to provide competitive sensitivity, while they are limited in the specificity. Therefore, the second optical detection platform is built on the localized surface plasmon resonance (LSPR) immunosensors. In this optical biosensor, the noble metal (gold and silver) nanoparticles with tunable plasmonic properties are used as transducer for probing the specific biomolecules interactions occurred in the nano-bio interface. These nanoparticles were obtained after a high temperature thermal treatment of an initially thin-metallic film deposited on a glass substrate through a TEM grid or on a bacteria layer fixed on the glass. After appropriate optimization on metal nanostructures morphology and surface biomodification, the applicable sensitivity and specificity can be both guaranteed in this LSPR immunosensor
Chinowsky, Timothy Mark. "Optical multisensors based on surface plasmon resonance /". Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/5857.
Pełny tekst źródłaKsiążki na temat "Optical Plasmons"
Sönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.
Znajdź pełny tekst źródłaV, Klimov V. Nanoplazmonika. Moskva: Fizmatlit, 2010.
Znajdź pełny tekst źródła1957-, Shalaev Vladimir M., red. Nanoplasmonics. Amsterdam: Elsevier, 2006.
Znajdź pełny tekst źródłaTalpur, Abdul Rahim. Optical remote sensing with intensity referenced signals and surface plasmons. Salford: University of Salford, 1988.
Znajdź pełny tekst źródłaStockman, Mark I. Plasmonics: Metallic nanostructures and their optical properties IX : 21-25 August 2011, San Diego, California, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2011.
Znajdź pełny tekst źródła1975-, Qiu Min, red. Optical properties of nanostructures. Singapore: Pan Stanford, 2011.
Znajdź pełny tekst źródłaJ, Halas Naomi, i Society of Photo-optical Instrumentation Engineers., red. Plasmonics: Metallic nanostructures and their optical properties : 3-5 August 2003, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2003.
Znajdź pełny tekst źródła1966-, Kawata Satoshi, Shalaev Vladimir M. 1957-, Tsai Din P. 1959- i Society of Photo-optical Instrumentation Engineers., red. Plasmonics: Nanoimaging, nanofabrication, and their applications II : 16-17 August, 2006, San Diego, California, USA. Bellingham, Wash: SPIE, 2006.
Znajdź pełny tekst źródłaStockman, Mark I. Plasmonics: Metallic nanostructures and their optical properties VI : 10-14 August 2008, San Diego, California, USA. Redaktor Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.
Znajdź pełny tekst źródłaLuca, Dal Negro, red. Materials for nanophotonics--plasmonics, metamaterials and light localization: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Optical Plasmons"
Kajikawa, Kotaro. "Surface Plasmons". W Optical Properties of Advanced Materials, 67–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33527-3_3.
Pełny tekst źródłaSchattschneider, Peter, i Bernard Jouffrey. "Plasmons and Related Excitations". W Springer Series in Optical Sciences, 151–224. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-540-48995-5_3.
Pełny tekst źródłaTrügler, Andreas. "The World of Plasmons". W Optical Properties of Metallic Nanoparticles, 11–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_2.
Pełny tekst źródłaTrügler, Andreas. "Imaging of Surface Plasmons". W Optical Properties of Metallic Nanoparticles, 131–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_5.
Pełny tekst źródłaHachtel, Jordan A. "Probing Plasmons in Three Dimensions". W The Nanoscale Optical Properties of Complex Nanostructures, 75–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70259-9_5.
Pełny tekst źródłaKlingshirn, Claus F. "Optical Properties of Plasmons, Plasmon–Phonon Mixed States and of Magnons". W Semiconductor Optics, 301–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28362-8_12.
Pełny tekst źródłaEldlio, Mohamed, Franklin Che i Michael Cada. "Drude-Lorentz Model of Semiconductor Optical Plasmons". W Lecture Notes in Electrical Engineering, 41–49. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6818-5_4.
Pełny tekst źródłaBOUHELIER, ALEXANDRE, i LUKAS NOVOTNY. "NEAR-FIELD OPTICAL EXCITATION AND DETECTION OF SURFACE PLASMONS". W Springer Series in Optical Sciences, 139–53. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-4333-8_10.
Pełny tekst źródłaBoardman, A. D., K. Booth i P. Egan. "Optical Guided Waves, Linear and Nonlinear Surface Plasmons". W Guided Wave Nonlinear Optics, 201–30. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2536-9_13.
Pełny tekst źródłaLi, Yilei. "Coupling of Strongly Localized Graphene Plasmons to Molecular Vibrations". W Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy, 19–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25376-3_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Optical Plasmons"
Yunus, W. Mahmood Mat, Rosmiza Mokhtar, Mohd Maarof Moksin, Zainal Abidin Talib i Zainul Abidin Hassan. "Optical characterisation of thin metal film using surface plasmons resonance". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tua.8.
Pełny tekst źródłaQuandt, Alexander, i Robert Warmbier. "About plasmons and plasmonics in graphene". W 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193345.
Pełny tekst źródłaUmakoshi, Takayuki, Yuika Saito i Prabhat Verma. "Metallic tips for efficient plasmon nanofocusing and advanced optical nano-imaging". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6a_a410_3.
Pełny tekst źródłaCalajó, Giuseppe, Philipp K. Jenke, Lee A. Rozema, Philip Walther, Darrick E. Chang i Joel D. Cox. "Nonlinear quantum logic with colliding graphene plasmons". W CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fm2a.6.
Pełny tekst źródłaBukácek, Jan, i Jirí Homola. "Diffractive structures supporting long-range surface plasmons for plasmonic biosensing and imaging". W Optical Sensors 2023, redaktorzy Robert A. Lieberman, Francesco Baldini i Jiri Homola. SPIE, 2023. http://dx.doi.org/10.1117/12.2670445.
Pełny tekst źródłaSrituravanich, W., N. Fang, C. Sun, S. Durant, M. Ambati i X. Zhang. "Plasmonic Lithography". W ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46023.
Pełny tekst źródłaGarcía de Abajo, Javier. "Quantum Effects in Graphene Plasmons". W Optical Fiber Communication Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ofc.2013.ow3f.3.
Pełny tekst źródłaJacobson, Michele L., Thomas H. Reilly III i Kathy L. Rowlen. "Harnessing surface plasmons". W Optical Science and Technology, the SPIE 49th Annual Meeting, redaktorzy Gregory V. Hartland i Xiao-Yang Zhu. SPIE, 2004. http://dx.doi.org/10.1117/12.560503.
Pełny tekst źródłaGarcía de Abajo, Javier. "Plasmons in Low Dimensional Structures". W Workshop on Optical Plasmonic Materials. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/opm.2014.ow2d.1.
Pełny tekst źródłaHuang, D. H., O. Roslyak, G. Gumbs, W. Pan i A. A. Maradudin. "Nonlocal scattering tensor due to electromagnetic coupling of surface plasmons to dirac plasmons in graphene". W SPIE Optical Engineering + Applications, redaktor Leonard M. Hanssen. SPIE, 2016. http://dx.doi.org/10.1117/12.2235226.
Pełny tekst źródłaRaporty organizacyjne na temat "Optical Plasmons"
Vo-Dinh, Tuan. Plasmonics-Enhanced Optical Imaging Systems for Bioenergy Research. Office of Scientific and Technical Information (OSTI), listopad 2022. http://dx.doi.org/10.2172/1899352.
Pełny tekst źródłaThornberg, Steven Michael, Michael I. White, Arthur Norman Rumpf i Kent Bryant Pfeifer. Surface plasmon sensing of gas phase contaminants using optical fiber. Office of Scientific and Technical Information (OSTI), październik 2009. http://dx.doi.org/10.2172/973354.
Pełny tekst źródłaIanno, N. J., i P. F. Williams. Advanced Optical Diagnostics of High Density Etching Plasmas. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2000. http://dx.doi.org/10.21236/ada391843.
Pełny tekst źródłaCamden, Jon P. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy. Office of Scientific and Technical Information (OSTI), styczeń 2015. http://dx.doi.org/10.2172/1168830.
Pełny tekst źródłaSingh, Anjali. What Is Optogenetics and How Does It Work? ConductScience, lipiec 2022. http://dx.doi.org/10.55157/cs20220704.
Pełny tekst źródłaTaylor, A. J., G. Omenetto, G. Rodriguez, C. W. Siders, J. L. W. Siders i C. Downer. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change. Office of Scientific and Technical Information (OSTI), lipiec 1999. http://dx.doi.org/10.2172/759189.
Pełny tekst źródłaI.Y. Dodin and N.J. Fisch. Storing, Retrieving, and Processing Optical Information by Raman Backscattering in Plasmas. Office of Scientific and Technical Information (OSTI), styczeń 2002. http://dx.doi.org/10.2172/793016.
Pełny tekst źródłaThomas C. Killian. Optical Studies of Strong Coupling and Recombination in Ultracold Neutral Plasmas. Office of Scientific and Technical Information (OSTI), sierpień 2004. http://dx.doi.org/10.2172/827645.
Pełny tekst źródłaKrushelnick, K. M., W. Tighe i S. Suckewer. X-ray laser studies using plasmas created by optical field ionization. Office of Scientific and Technical Information (OSTI), styczeń 1995. http://dx.doi.org/10.2172/10111143.
Pełny tekst źródłaStender, Anthony. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal. Office of Scientific and Technical Information (OSTI), styczeń 2013. http://dx.doi.org/10.2172/1116721.
Pełny tekst źródła