Gotowa bibliografia na temat „Optical phased array (OPA)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Optical phased array (OPA)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Optical phased array (OPA)"
Liu, Qiankun, Tom Smy, Ahmad Atieh, Pavel Cheben, Alejandro Sánchez-Postigo i Winnie N. Ye. "Integrated circular optical phased array". EPJ Web of Conferences 255 (2021): 01004. http://dx.doi.org/10.1051/epjconf/202125501004.
Pełny tekst źródłaWang, Zheng, Yibo Yang, Ruiting Wang, Guangzhen Luo, Pengfei Wang, Yanmei Su, Jiaoqing Pan i Yejin Zhang. "Improved SPGD Algorithm for Optical Phased Array Phase Calibration". Applied Sciences 12, nr 15 (5.08.2022): 7879. http://dx.doi.org/10.3390/app12157879.
Pełny tekst źródłaYue, Jian, Anqi Cui, Fei Wang, Lei Han, Jinguo Dai, Xiangyi Sun, Hang Lin, Chunxue Wang, Changming Chen i Daming Zhang. "Design of Monolithic 2D Optical Phased Arrays Heterogeneously Integrated with On-Chip Laser Arrays Based on SOI Photonic Platform". Micromachines 13, nr 12 (30.11.2022): 2117. http://dx.doi.org/10.3390/mi13122117.
Pełny tekst źródłaNguyen, Anh-Hang, i Hyuk-Kee Sung. "Improving the Performance of Optical Phased Array by Reducing Relative Intensity Noise of Optically Injection-Locked Laser Array". Photonics 9, nr 11 (17.11.2022): 868. http://dx.doi.org/10.3390/photonics9110868.
Pełny tekst źródłaLei, Yufang, Lingxuan Zhang, Yulong Xue, Yangming Ren, Qihao Zhang, Wenfu Zhang i Xiaochen Sun. "Suppressing grating lobes of large-aperture optical phased array with circular array design". Applied Optics 62, nr 15 (18.05.2023): 4110. http://dx.doi.org/10.1364/ao.488916.
Pełny tekst źródłaChen, Jingye, Shi Zhao, Wenlei Li, Xiaobin Wang, Xiang’e Han i Yaocheng Shi. "Silicon Optical Phased Array Hybrid Integrated with III–V Laser for Grating Lobe-Free Beam Steering". Photonics 11, nr 10 (10.10.2024): 952. http://dx.doi.org/10.3390/photonics11100952.
Pełny tekst źródłaWang, Zhicheng, Junbo Feng, Haitang Li, Yuqing Zhang, Yilu Wu, Yuqi Hu, Jiagui Wu i Junbo Yang. "Ultra-Compact and Broadband Nano-Integration Optical Phased Array". Nanomaterials 13, nr 18 (8.09.2023): 2516. http://dx.doi.org/10.3390/nano13182516.
Pełny tekst źródłaNguyen, Anh-Hang, Jun-Hyung Cho i Hyuk-Kee Sung. "Theoretical Demonstration of Security Improvement of Optical Phased Array Based on Optically Injection-Locked Lasers". Photonics 8, nr 11 (23.10.2021): 469. http://dx.doi.org/10.3390/photonics8110469.
Pełny tekst źródłaLiu, Qiankun, Daniel Benedikovic, Tom Smy, Ahmad Atieh, Pavel Cheben i Winnie N. Ye. "Circular Optical Phased Arrays with Radial Nano-Antennas". Nanomaterials 12, nr 11 (6.06.2022): 1938. http://dx.doi.org/10.3390/nano12111938.
Pełny tekst źródłaZhao, Shi, Jingye Chen i Yaocheng Shi. "All-Solid-State Beam Steering via Integrated Optical Phased Array Technology". Micromachines 13, nr 6 (3.06.2022): 894. http://dx.doi.org/10.3390/mi13060894.
Pełny tekst źródłaRozprawy doktorskie na temat "Optical phased array (OPA)"
Leonard, Cathy Wood. "Optical feeds for phased array antennas". Thesis, Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/80079.
Pełny tekst źródłaMaster of Science
Weverka, Robert T. "Optical signal processing of phased array radar". Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3207762.
Pełny tekst źródłaKut, King Kan Warren. "Design and characterization of subwavelength grating (SWG) engineered silicon photonics devices fabricated by immersion lithography". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST099.
Pełny tekst źródłaSilicon photonics technology leverages the mature fabrication processes of the semi-conductor industry for the large volume production of opto-electronic devices. Subwavelength grating (SWG) metamaterials enable advanced engineering of mode confinement and dispersion, that have been used to demonstrate state-of-the-art performance of integrated photonic devices. SWGs generally require minimum feature sizes as small as a 100 nm to suppress reflection and diffraction effects. Hitherto, most reported SWG-based devices have been fabricated using electron-beam lithography. However, this technique is not compatible with large volume fabrication, hampering the commercial adoption of SWG-based photonic devices. Currently, immersion lithography is being deployed in silicon photonic foundries, enabling the patterning of features of 70 nm, when used in conjunction with optical proximity correction (OPC) models. The main goal of this PhD is to study the feasibility of immersion lithography and OPC for the realization of high-performance SWG devices. The SWG devices developed here have been fabricated using the OPC models and 300 mm SOI wafer technology at CEA-Leti. Three devices have been considered as case studies, each with a specific technological challenge: i) a power splitter requiring a single full etch step, ii) a fiber-chip grating coupler interleaving full and shallow etch steps, and iii) an optical antenna array covering a large surface area with a shallow etch step. The power splitter is implemented using a SWG-engineered multi-mode interferometer (MMI) coupler. The SWG is used to control the dispersion of the optical modes to achieve an ultrawide operating spectral bandwidth. This device experimentally showed state-of-the-art bandwidth of 350 nm, in good agreement with simulations. Note that the bandwidth of a conventional MMI without SWG is around 100 nm. The fiber-chip coupler relies on an L-shaped geometry with SWG in full and shallow etch steps to maximize the field radiated towards the fiber. The measured coupling efficiency, of - 1.70 dB (68 %) at a wavelength of 1550 nm, is the highest value reported for an L-shaped coupler fabricated without electron-beam lithography. Still, this value differs from the calculated efficiency of 0.80 dB (83 %), and compares to experimental values achieved with fiber-chip grating couplers without SWG (~ -1.50 dB). One of the main reasons for the limited experimental performance is the strong sensitivity of the structure to errors in the alignment between the full and shallow etch steps. The optical antenna uses shallowly etched SWG teeth to minimize the grating strength, allowing the implementation of a large area emission aperture, of 48 × 48 µm, which is required to minimize the beam divergence. A two-dimensional (2D) optical phased array (OPA) with an antenna pitch of 90 µm × 90 µm, comprising 16 antennas was designed and fabricated. The SWG-based unitary antenna has a measured full width at half maximum divergence of 1.40° at a wavelength of 1550 nm, while the beam emitted from the phased array has a divergence of 0.25°, both in very good agreement with expected values. These results serve as a good proof-of-concept demonstration of this novel antenna architecture. In summary, the results shown in this PhD illustrate the great potential of immersion lithography and OPC for harnessing SWG-engineering, paving the way for their commercial adoption. Devices with full or shallow etch steps exhibited excellent performance close to that predicted by simulations. The fiber-chip grating couplers deviated from expected results, probably due to the tight fabrication tolerances associated with the combination of full and shallow etch steps
Thomas, James A. "Optical phased array beam deflection using lead lanthanum zirconate titanate /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9907669.
Pełny tekst źródłaAkhter, Afsana N. (Afsana Nahid) 1975. "Improved performance of a virtually imaged phased array for optical demultiplexing". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80039.
Pełny tekst źródłaIncludes bibliographical references (p. 66).
by Afsana N. Akhter.
S.B.and M.Eng.
Yang, Jr-Syu. "Laser/optical fiber phased array generation of ultrasound for quality control of manufacturing processes". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/17286.
Pełny tekst źródłaSabouri, S., M. Namdari, S. Hosseini i K. Jamshidi. "Study of an array of grating couplers for wireless optical communications". SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35123.
Pełny tekst źródłaXie, Walter. "Integrated Optical Phased Arrays and Highly Efficient Spot-size Converting Coupler for LIDAR Applications". Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/21114.
Pełny tekst źródłaRabb, David J. "The spherical fourier cell and application for true-time delay". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1197045216.
Pełny tekst źródłaSarkar, Niladri. "MEMS Actuation and Self-Assembly Applied to RF and Optical Devices". Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/902.
Pełny tekst źródłaKsiążki na temat "Optical phased array (OPA)"
B, Bhasin K., Hendrickson Brian M, Society of Photo-optical Instrumentation Engineers. i American Academy of Otolaryngology--Head and Neck Surgery Foundation., red. Optoelectronic signal processing for phased-array antennas. Bellingham, Wash., USA: SPIE, 1988.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. MMIC devices for active phased array antennas: Final report. [Washington, DC?: National Aeronautics and Space Administration, 1986.
Znajdź pełny tekst źródłaM, Koepf Gerhard, Hendrickson Brian M i Society of Photo-optical Instrumentation Engineers., red. Optoelectronic signal processing for phased-array antennas II: 16-17 January 1990, Los Angeles, California. Bellingham, Wash., USA: SPIE, 1990.
Znajdź pełny tekst źródłaB, Bhasin K., i Lewis Research Center, red. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Znajdź pełny tekst źródłaM, Hendrickson Brian, i Society of Photo-optical Instrumentation Engineers., red. Optoelectronic signal processing for phased-array antennas IV: 26-27 January 1994, Los Angeles, California. Bellingham, Wash., USA: SPIE, 1994.
Znajdź pełny tekst źródłaA, Richard M., i Lewis Research Center, red. Optical control of an 8-element Ka-band phased array using a high-speed optoelectronic interconnect. [Cleveland, Ohio: NASA Lewis Research Center, 1990.
Znajdź pełny tekst źródłaPaul, Casasent David, i Society of Photo-optical Instrumentation Engineers., red. Transition of optical processors into systems 1995: 18 April 1995, Orlando, Florida. Bellingham, Wash: SPIE, 1995.
Znajdź pełny tekst źródłaShi-Kay, Yao, Hendrickson Brian M i Society of Photo-optical Instrumentation Engineers., red. Optical technology for microwave applications VI and Optoelectronic signal processing for phased-array antennas III: 20-23 April 1992, Orlando, Florida. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1992.
Znajdź pełny tekst źródłaOptical RF distribution links for MMIC phased array antennas. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Znajdź pełny tekst źródłaOptoelectronic Signal Processing for Phased-Array Antennas Iv/V 2155. Society of Photo Optical, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Optical phased array (OPA)"
Wang, Zhiqing, Zhiyu Xiang i Eryun Liu. "Object Guided Beam Steering Algorithm for Optical Phased Array (OPA) LIDAR". W Intelligence Science and Big Data Engineering. Visual Data Engineering, 262–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36189-1_22.
Pełny tekst źródłaDong, Tao, Jingwen He i Yue Xu. "Design of Optical Antennas and Arrays". W Photonic Integrated Phased Array Technology, 37–77. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9919-4_2.
Pełny tekst źródłaZmuda, Henry. "Optical Beamforming for Phased Array Antennas". W Adaptive Antenna Arrays, 219–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05592-2_13.
Pełny tekst źródłaLuo, Xiangang. "Radiation Engineering and Optical Phased Array". W Engineering Optics 2.0, 645–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5755-8_14.
Pełny tekst źródłaKrishnamoorthy, U., K. Li, K. Yu, D. Lee, J. P. Heritage i O. Solgaard. "Dual-Mode micromirrors for Optical Phased Array Applications". W Transducers ’01 Eurosensors XV, 1266–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_298.
Pełny tekst źródłaZhang, Huihui, Qiang Liu, Qiqi Yuan i Qingzhong Huang. "Two-Dimensional Beam Steering in Optical Phased Array with Grating Array Superlattices". W Lecture Notes in Electrical Engineering, 99–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4110-4_12.
Pełny tekst źródłaFonte, A., S. Moscato, R. Moro, A. Pallotta, A. Mazzanti, A. Bilato, G. De Filippi i in. "D-band Phased Array Antenna Module for 5G Backhaul". W Key enabling technologies for future wireless, wired, optical and satcom applications, 101–11. New York: River Publishers, 2024. http://dx.doi.org/10.1201/9781003587309-11.
Pełny tekst źródłaLau, Kam Y. "Broadband Microwave Fiber-Optic Links with RF Phase Control for Phased-Array Antennas". W Springer Series in Optical Sciences, 229–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16458-3_23.
Pełny tekst źródłaGagino, Marco, Alonso Millan-Mejia, Erwin Bente i Victor Dolores-Calzadilla. "On-Chip Calibration of an Optical Phased Array Through Chip Facet Reflections". W The 25th European Conference on Integrated Optics, 493–99. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63378-2_80.
Pełny tekst źródłaManni, Francesco, Paolo Colantonio, Rocco Giofrè, Ernesto Limiti, Patrick Ettore Longhi, Steven Caicedo Mejillones, Stefano Moscato i Alessandro Fonte. "Ka-Band GaN-on-SiC Power Amplifier for High EIRP Satellite Phased Antenna Array". W Key enabling technologies for future wireless, wired, optical and satcom applications, 133–42. New York: River Publishers, 2024. http://dx.doi.org/10.1201/9781003587309-13.
Pełny tekst źródłaStreszczenia konferencji na temat "Optical phased array (OPA)"
Wang, Wuxiucheng, Yongchao Liu, Ming Gong i Hui Wu. "Dual-Mode, Subarray Design for Optical Phased Array With Electro-Optic Phase Shifters". W CLEO: Applications and Technology, JTh2A.188. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.188.
Pełny tekst źródłaLiu, Yuan, Chongxin Zhang, Daniel M. DeSantis, Diya Hu, Thomas Meissner, Andres Garcia Coleto, Benjamin Mazur, Jelena Notaros i Jonathan Klamkin. "High-Resolution Arrayed-Waveguide-Grating-Assisted Passive Integrated Optical Phased Array for 2-D Beam Steering". W CLEO: Science and Innovations, STu4N.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.stu4n.1.
Pełny tekst źródłaWu, Chensheng, Kento Komatsu, Rihoko Tsuchiya, Takuo Tanemura i Yoshiaki Nakano. "Al-Free GaAs Optical Phased Array for Near-Infrared Sensing". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cmp11b_04.
Pełny tekst źródłaNakai, Makoto, i Isamu Takai. "Beam Steering with Integrated Optical Phased Array using DNN". W JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.19p_a310_8.
Pełny tekst źródłaWu, Dachuan, Bowen Yu i Yasha Yi. "Phase-Combining Unit for Aliasing Suppression in Optical Phased Array". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cfa12e_03.
Pełny tekst źródłaAshtiani, Farshid, i Firooz Aflatouni. "2-D Optical Phased Arrays with Multilayer Antenna Elements and Off-Aperture Phase Control". W CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sth2g.2.
Pełny tekst źródłaKuo, Pin-Cheng, Sheng-I. Kuo, Ju-Wei Wang, Yin-He Jian, Zohauddin Ahmad, Po-Han Fu, You-Chia Chang i in. "Actively Steerable Integrated Optical Phased Array (OPA) for Optical Wireless Communication (OWC)". W Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofc.2022.m1c.7.
Pełny tekst źródłaKuo, Pin-Cheng, Sheng-I. Kuo, Ju-Wei Wang, Yin-He Jian, Zohauddin Ahmad, Po-Han Fu, You-Chia Chang i in. "Actively Steerable Integrated Optical Phased Array (OPA) for Optical Wireless Communication (OWC)". W Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofc.2022.m1c.7.
Pełny tekst źródłaLi, Yingzhi, Baisong Chen, Quanxin Na, Xianshu Luo, Guo-qiang Lo, Qijie Xie i Junfeng Song. "High Data Rate Optical Wireless Communication over Wide Range by Using Nonuniform-space Optical Phased Array". W Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w3i.4.
Pełny tekst źródłaDi, Yujie, Caiming Sun, Shuyan Chen, Weiwei Liu, Yizhan Dai, Binghui Li, Wu Shi i in. "Capacity Enhancement of VLC by Blue-green Wavelength Division Multiplexing Using Optical Phased Array". W Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.m4f.2.
Pełny tekst źródłaRaporty organizacyjne na temat "Optical phased array (OPA)"
Chen, Ray T. Three Dimensionally Interconnected Silicon Nanomembranes for Optical Phased Array (OPA) and Optical True Time Delay (TTD) Applications. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2012. http://dx.doi.org/10.21236/ada567453.
Pełny tekst źródłaMickelson, Alan R. An Investigation of the Channel Crosstalk in Optical Heterdyne Controlled Phased Array Radars. (Phenomenological Modeling of Optically Assisted Phased Array Radar). Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1996. http://dx.doi.org/10.21236/ada309641.
Pełny tekst źródłaMickelson, Alan R. An Investigation of the Channel Crosstalk in Optical Heterodyne Controlled Phased Array Radars. Fort Belvoir, VA: Defense Technical Information Center, maj 1993. http://dx.doi.org/10.21236/ada265412.
Pełny tekst źródła