Gotowa bibliografia na temat „Optical field manipulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Optical field manipulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Optical field manipulation"
Zhao, Xiaoting, Nan Zhao, Yang Shi, Hongbao Xin i Baojun Li. "Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation". Micromachines 11, nr 2 (21.01.2020): 114. http://dx.doi.org/10.3390/mi11020114.
Pełny tekst źródłaShi, Yuzhi, Qinghua Song, Ivan Toftul, Tongtong Zhu, Yefeng Yu, Weiming Zhu, Din Ping Tsai, Yuri Kivshar i Ai Qun Liu. "Optical manipulation with metamaterial structures". Applied Physics Reviews 9, nr 3 (wrzesień 2022): 031303. http://dx.doi.org/10.1063/5.0091280.
Pełny tekst źródłaRuiz-Cortés, Victor, i Juan P. Vite-Frías. "Lensless optical manipulation with an evanescent field". Optics Express 16, nr 9 (24.04.2008): 6600. http://dx.doi.org/10.1364/oe.16.006600.
Pełny tekst źródłaWang, Shuai, Xuewei Wang, Fucheng You i Han Xiao. "Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances". Micromachines 14, nr 8 (25.07.2023): 1487. http://dx.doi.org/10.3390/mi14081487.
Pełny tekst źródłaWang, Genwang, Ye Ding, Haotian Long, Yanchao Guan, Xiwen Lu, Yang Wang i Lijun Yang. "Simulation of Optical Nano-Manipulation with Metallic Single and Dual Probe Irradiated by Polarized Near-Field Laser". Applied Sciences 12, nr 2 (13.01.2022): 815. http://dx.doi.org/10.3390/app12020815.
Pełny tekst źródłaAnnadhasan, Mari, Avulu Vinod Kumar, Jada Ravi, Evgeny Mamonov, Tatiana Murzina i Rajadurai Chandrasekar. "Magnetic Field–Assisted Manipulation of Polymer Optical Microcavities". Advanced Photonics Research 2, nr 4 (25.02.2021): 2000146. http://dx.doi.org/10.1002/adpr.202000146.
Pełny tekst źródłaRui, Guanghao, i Qiwen Zhan. "Trapping of resonant metallic nanoparticles with engineered vectorial optical field". Nanophotonics 3, nr 6 (1.12.2014): 351–61. http://dx.doi.org/10.1515/nanoph-2014-0006.
Pełny tekst źródłaAhmed, Hammad, Hongyoon Kim, Yuebian Zhang, Yuttana Intaravanne, Jaehyuck Jang, Junsuk Rho, Shuqi Chen i Xianzhong Chen. "Optical metasurfaces for generating and manipulating optical vortex beams". Nanophotonics 11, nr 5 (10.01.2022): 941–56. http://dx.doi.org/10.1515/nanoph-2021-0746.
Pełny tekst źródłaLuo, Xiangang, Mingbo Pu, Fei Zhang, Mingfeng Xu, Yinghui Guo, Xiong Li i Xiaoliang Ma. "Vector optical field manipulation via structural functional materials: Tutorial". Journal of Applied Physics 131, nr 18 (14.05.2022): 181101. http://dx.doi.org/10.1063/5.0089859.
Pełny tekst źródłaBerthelot, J., S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger i R. Quidant. "Three-dimensional manipulation with scanning near-field optical nanotweezers". Nature Nanotechnology 9, nr 4 (2.03.2014): 295–99. http://dx.doi.org/10.1038/nnano.2014.24.
Pełny tekst źródłaRozprawy doktorskie na temat "Optical field manipulation"
Ganic, Djenan, i dga@rovsing dk. "Far-field and near-field optical trapping". Swinburne University of Technology. Centre for Micro-Photonics, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20051130.135436.
Pełny tekst źródłaGanic, Djenan. "Far-field and near-field optical trapping". Australasian Digital Thesis Program, 2005. http://adt.lib.swin.edu.au/public/adt-VSWT20051130.135436.
Pełny tekst źródłaA thesis submitted for the degree of Doctor of Philosophy, Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, 2005. Typescript. Includes bibliographical references (p. 164-177). Also available on cd-rom.
Morrish, Dru, i DruMorrish@gmail com. "Morphology dependent resonance of a microscope and its application in near-field scanning optical microscopy". Swinburne University of Technology. Centre for Micro-Photonics, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20051124.121838.
Pełny tekst źródłaRenaut, Claude. "Nanopinces optiques sur puce pour la manipulation de particules diélectriques". Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS010/document.
Pełny tekst źródłaOn chips optical nanocavities have become useful tools for trapping and manipulation of colloidal objects. In this thesis we study the nanocavities as building blocks for optical forces, trapping and handling of particles. Proof of concept of trapping dielectric microspheres appears as the starting point of the development of lab on chip. In the first chapter we go through the literature of optical forces in free space and integrated optics. The second chapter presents the experimental tools for the characterization of nanocavities and the set-up developed to perform optical measurements with the colloidal particles. The third chapter describes the proof-of-concept trapping of polystyrene particles of 500 nm, 1 and 2 µm. In the following chapter we analyze the particle trapping as function of the injected power into the cavities. The chapter five gives some examples of the possibilities of particles handling functions with coupled cavities. Eventually, in the last chapter we show assemblies of particles on different geometry of cavities studied in this thesis
Yang, Xingyu. "Manipulating the inverse Faraday effect at the nanoscale". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS219.
Pełny tekst źródłaLight-induced magnetism describes the effect where a material is magnetized by an optical pulse. In transparent materials, optically-induced magnetization can be realized directly by circularly polarized light. Sometimes, in metallic materials, this type of magnetization also exists due to the microscopic solenoidal path of electrons driven by circularly polarized light. In some cases, the light creates macroscopic circulating DC drift currents, which also induce DC magnetization in metal. In a broad sense, these light-induced magnetisms are known as the inverse Faraday effect.In the PhD project, I studied light-induced drift currents in multiple gold nanoantennas. We realized plasmonically enhanced stationary magnetic fields through these drift currents. The study is based on the Finite-Difference Time-Domain (FDTD) method and the corresponding light-induced magnetism theories. In different research topics, we have realized: 1) an ultrafast, confined, and strong stationary magnetic field in a bull-eye nanoantenna. 2) A stationary magnetic field through linear polarization in a nanorod. 3) A Neel-type skyrmion constructed by a stationary magnetic field in a nanoring. In these studies, we examined the optical properties of different nanoantennas and explained the physical origin of light-induced drift currents and stationary magnetic fields. We demonstrated the method to achieve plasmonically enhanced inverse Faraday effects and explored the possibility of realizing magnetization through linearly polarized incident light. Finally, we extended the inverse Faraday effect to more physical research areas, such as constructing skyrmions by stationary magnetic fields through the inverse Faraday effect.The magnetic effect of light remains a rich area of research. My studies might find applications in many areas, including magneto-optical materials and devices, optical data storage, biomedical applications, spintronics, quantum computing, fundamental research in electromagnetism, and advanced materials research
Fulton, Ray. "Atomic and molecular manipulation in pulsed optical fields". Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/125.
Pełny tekst źródłaPritchard, Matthew J. "Manipulation of ultracold atoms using magnetic and optical fields". Thesis, Durham University, 2006. http://etheses.dur.ac.uk/2373/.
Pełny tekst źródłaLowney, Joseph Daniel. "Manipulating and Probing Angular Momentum and Quantized Circulation in Optical Fields and Matter Waves". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612898.
Pełny tekst źródłaSergides, M. "Optical manipulation of micro- and nano-particles using evanescent fields". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1410938/.
Pełny tekst źródłaBraun, Marco. "Optically Controlled Manipulation of Single Nano-Objects by Thermal Fields". Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-206342.
Pełny tekst źródłaKsiążki na temat "Optical field manipulation"
Ohtsu, Motoichi. Progress in Nano-Electro-Optics VI: Nano-Optical Probing, Manipulation, Analysis, and Their Theoretical Bases. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Znajdź pełny tekst źródłaservice), SpringerLink (Online, red. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaLi, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Springer, 2018.
Znajdź pełny tekst źródłaLi, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Springer, 2017.
Znajdź pełny tekst źródłaStructured Light Fields Applications In Optical Trapping Manipulation And Organisation. Springer, 2012.
Znajdź pełny tekst źródłaWördemann, Mike. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation. Springer Berlin / Heidelberg, 2014.
Znajdź pełny tekst źródłaWördemann, Mike. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation. Springer, 2012.
Znajdź pełny tekst źródłaComputational Strong-Field Quantum Dynamics: Intense Light-Matter Interactions. de Gruyter GmbH, Walter, 2017.
Znajdź pełny tekst źródłaBrabec, Thomas, Dieter Bauer, Heiko Bauke, Thomas Fennel i Chris R. McDonald. Computational Strong-Field Quantum Dynamics: Intense Light-Matter Interactions. de Gruyter GmbH, Walter, 2017.
Znajdź pełny tekst źródłaBrabec, Thomas, Dieter Bauer, Heiko Bauke, Thomas Fennel i Chris R. McDonald. Computational Strong-Field Quantum Dynamics: Intense Light-Matter Interactions. de Gruyter GmbH, Walter, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Optical field manipulation"
Ohtsu, Motoichi. "Near-Field Optical Atom Manipulation: Toward Atom Photonics". W Near-field Nano/Atom Optics and Technology, 217–66. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-67937-0_11.
Pełny tekst źródłaHori, Hirokazu. "Quantum Optical Picture of Photon STM and Proposal of Single Atom Manipulation". W Near Field Optics, 105–14. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_13.
Pełny tekst źródłaAntignus, Yehezkel. "Optical Manipulation for Control of Bemisia tabaci and Its Vectored Viruses in the Greenhouse and Open Field". W Bemisia: Bionomics and Management of a Global Pest, 349–56. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2460-2_13.
Pełny tekst źródłaOhtsu, Motoichi, i Hirokazu Hori. "Fabrication and Manipulation". W Near-Field Nano-Optics, 209–33. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4835-5_7.
Pełny tekst źródłaOhtsu, M., S. Jiang, T. Pangaribuan i M. Kozuma. "Nanometer Resolution Photon STM and Single Atom Manipulation". W Near Field Optics, 131–39. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_16.
Pełny tekst źródłaVogel, K., W. P. Schleich i G. Kurizki. "Manipulation of Cavity Field States with Multi-Level Atoms". W Coherence and Quantum Optics VII, 589–90. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_166.
Pełny tekst źródłaGill, Jonathan V., Gilad M. Lerman, Edmund Chong, Dmitry Rinberg i Shy Shoham. "Illuminating Neural Computation Using Precision Optogenetics-Controlled Synthetic Perception". W Neuromethods, 363–92. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_12.
Pełny tekst źródłaCovey, Jacob P. "New Physics with the New Apparatus: High Resolution Optical Detection and Large, Stable Electric Fields". W Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules, 219–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98107-9_10.
Pełny tekst źródłaTang, Lei, i Keyu Xia. "Optical Chirality and Single-Photon Isolation". W Single Photon Manipulation. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90354.
Pełny tekst źródłaRoychoudhuri, ChandraSekhar. "Do We Manipulate Photons or Diffractive EM Waves to Generate Structured Light?" W Single Photon Manipulation. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88849.
Pełny tekst źródłaStreszczenia konferencji na temat "Optical field manipulation"
Zhao, Chenglong, Geonsoo Jin i Tony Jun Huang. "Acoustofluidic Scanning Nanoscope for Large Field-of-view Imaging". W Optical Manipulation and Its Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/oma.2023.atu1d.4.
Pełny tekst źródłaSadgrove, M., A. Suda, R. Matsuyama, M. Komiya, T. Yoshino, D. Yamaura, M. Sugawara i in. "Liposome manipulation using the evanescent field of an optical nanofiber". W Optical Manipulation and Its Applications. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oma.2021.aw4d.4.
Pełny tekst źródłaReece, Peter J., Veneranda Garcés-Chávez i Kishan Dholakia. "Near-field optical manipulation with cavity enhanced evanescent fields". W Integrated Optoelectronic Devices 2006, redaktor David L. Andrews. SPIE, 2006. http://dx.doi.org/10.1117/12.660814.
Pełny tekst źródłaRui, Guanghao, Bing Gu i Yiping Cui. "Manipulation of nanoparticles with tailored optical focal field". W Optical Manipulation and Structured Materials Conference, redaktor Takashige Omatsu. SPIE, 2018. http://dx.doi.org/10.1117/12.2319002.
Pełny tekst źródłaMansuripur, Masud. "Self-field, radiated energy, and radiated linear momentum of an accelerated point charge". W Optical Manipulation and Its Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oma.2019.am3e.1.
Pełny tekst źródłaDeng, Zi-Lan. "Vectorial metagrating for multidimensional optical field manipulation". W Plasmonics VI, redaktorzy Zheyu Fang i Takuo Tanaka. SPIE, 2021. http://dx.doi.org/10.1117/12.2602471.
Pełny tekst źródłaYamanishi, Junsuke, Hyo-yong Ahn i Hiromi Okamoto. "Nanoscopic visualization of chiro-optical field in photoinduced force microscopy". W Optical Manipulation and Structured Materials Conference, redaktorzy Takashige Omatsu, Síle N. Chormaic i Kishan Dholakia. SPIE, 2023. http://dx.doi.org/10.1117/12.3008343.
Pełny tekst źródłaSchmieder, Felix, Rouhollah Habibey, Volker Busskamp, Lars Büttner i Jürgen W. Czarske. "Correlation analysis of human iPSC-derived neuronal networks using holographic single cell and full field stimulation". W Optogenetics and Optical Manipulation 2021, redaktorzy Samarendra K. Mohanty, Anna W. Roe i Shy Shoham. SPIE, 2021. http://dx.doi.org/10.1117/12.2583240.
Pełny tekst źródłaIto, Haruhiko, K. Otake i Motoichi Ohtsu. "Near-field optical guidance and manipulation of atoms". W SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, redaktorzy Suganda Jutamulia i Toshimitsu Asakura. SPIE, 1998. http://dx.doi.org/10.1117/12.326826.
Pełny tekst źródłaAwfi, Khalid Al, Vassilis E. Lembessis i Omar M. Aldosssary. "On optical tweezers forces exerted by tightly focused optical vortices". W Optical Manipulation and Its Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/oma.2023.atu3d.2.
Pełny tekst źródłaRaporty organizacyjne na temat "Optical field manipulation"
Bukosky, S. Manipulation of Colloidal Aggregation Behavior and Optical PropertiesUsing Applied Electric Fields. Office of Scientific and Technical Information (OSTI), październik 2018. http://dx.doi.org/10.2172/1524724.
Pełny tekst źródła