Artykuły w czasopismach na temat „Optical communications”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Optical communications.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Optical communications”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Okoshi, Takanori, i Akira Hirose. "Optical communication techniques; A prospect of optical communications." Journal of the Institute of Television Engineers of Japan 42, nr 5 (1988): 460–67. http://dx.doi.org/10.3169/itej1978.42.460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kuwahara, Hideo, i Jim Theodoras. "Optical communications". IEEE Communications Magazine 47, nr 11 (listopad 2009): 42. http://dx.doi.org/10.1109/mcom.2009.5307464.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Agrell, Erik, Magnus Karlsson, Francesco Poletti, Shu Namiki, Xi (Vivian) Chen, Leslie A. Rusch, Benjamin Puttnam i in. "Roadmap on optical communications". Journal of Optics 26, nr 9 (17.07.2024): 093001. http://dx.doi.org/10.1088/2040-8986/ad261f.

Pełny tekst źródła
Streszczenie:
Abstract The Covid-19 pandemic showed forcefully the fundamental importance broadband data communication and the internet has in our society. Optical communications forms the undisputable backbone of this critical infrastructure, and it is supported by an interdisciplinary research community striving to improve and develop it further. Since the first ‘Roadmap of optical communications’ was published in 2016, the field has seen significant progress in all areas, and time is ripe for an update of the research status. The optical communications area has become increasingly diverse, covering research in fundamental physics and materials science, high-speed electronics and photonics, signal processing and coding, and communication systems and networks. This roadmap describes state-of-the-art and future outlooks in the optical communications field. The article is divided into 20 sections on selected areas, each written by a leading expert in that area. The sections are thematically grouped into four parts with 4–6 sections each, covering, respectively, hardware, algorithms, networks and systems. Each section describes the current status, the future challenges, and development needed to meet said challenges in their area. As a whole, this roadmap provides a comprehensive and unprecedented overview of the contemporary optical communications research, and should be essential reading for researchers at any level active in this field.
Style APA, Harvard, Vancouver, ISO itp.
4

Jukan, Admela, i Xiang Liu. "Optical communications networks". IEEE Communications Magazine 54, nr 8 (sierpień 2016): 108–9. http://dx.doi.org/10.1109/mcom.2016.7537184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sunak, H. R. D. "Optical fiber communications". Proceedings of the IEEE 73, nr 10 (1985): 1533–34. http://dx.doi.org/10.1109/proc.1985.13332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chan, V. W. S. "Optical space communications". IEEE Journal of Selected Topics in Quantum Electronics 6, nr 6 (listopad 2000): 959–75. http://dx.doi.org/10.1109/2944.902144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

KIKUCHI, Kazuo. "Coherent Optical Communications". Review of Laser Engineering 13, nr 6 (1985): 460–66. http://dx.doi.org/10.2184/lsj.13.460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Elmirghani, J. M. H. "Optical wireless communications". IEEE Communications Magazine 41, nr 3 (marzec 2003): 48. http://dx.doi.org/10.1109/mcom.2003.1186544.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kuwahara, Hideo, i Jim Theodoras. "Optical Communications: Optical Equinox [Guest Editorial]". IEEE Communications Magazine 45, nr 8 (sierpień 2007): 24. http://dx.doi.org/10.1109/mcom.2007.4290310.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wang, Jun-Bo, Yuan Jiao, Xiaoyu Song i Ming Chen. "Optimal training sequences for indoor wireless optical communications". Journal of Optics 14, nr 1 (8.12.2011): 015401. http://dx.doi.org/10.1088/2040-8978/14/1/015401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Roudas, Ioannis, Athanasios Vgenis, Constantinos S. Petrou, Dimitris Toumpakaris, Jason Hurley, Michael Sauer, John Downie, Yihong Mauro i Srikanth Raghavan. "Optimal Polarization Demultiplexing for Coherent Optical Communications Systems". Journal of Lightwave Technology 28, nr 7 (kwiecień 2010): 1121–34. http://dx.doi.org/10.1109/jlt.2009.2035526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Fernández de la Vega, Constanza S., Richard Moore, Mariana Inés Prieto i Diego Rial. "Optimal control problem for nonlinear optical communications systems". Journal of Differential Equations 346 (luty 2023): 347–75. http://dx.doi.org/10.1016/j.jde.2022.11.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Le, Nam-Tuan, Trang Nguyen i Yeong Min Jang. "Optical Camera Communications: Future Approach of Visible Light Communication". Journal of Korean Institute of Communications and Information Sciences 40, nr 2 (28.02.2015): 380–84. http://dx.doi.org/10.7840/kics.2015.40.2.380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Fang, Zhou, Li Jia Zhang, Bo Liu i Yong Jun Wang. "Optimal Design of High-Speed Optical Fiber Communication System Spectral Efficiency of New Modulation Formats". Applied Mechanics and Materials 687-691 (listopad 2014): 3666–70. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3666.

Pełny tekst źródła
Streszczenie:
As human society to the information in the process of moving and growing demand for bandwidth communications capacity, the optical of new modulation formats increasingly attention and quickly play an important role in optical communications. How can the system bit error rate within a certain degree of stability while still maintaining high-speed long-distance dispersal system, has been a popular issue is the optical communications industry. Starting from the optical modulation format herein, the generation process of the system introduced various optical signal modulation format, the optical signal through the optical fiber was studied and the performance of the simulation, on the basis of the design of advanced optical modulation formats in an optical fiber communication system .
Style APA, Harvard, Vancouver, ISO itp.
15

Andarawis, Emad, Cheng-Po (Paul) Chen i Baokai Cheng. "300°C Optical Communications". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2021, HiTEC (1.04.2021): 000013–17. http://dx.doi.org/10.4071/2380-4491.2021.hitec.000013.

Pełny tekst źródła
Streszczenie:
Abstract A high temperature optical link capable of multi-megabits per second data rates at 300°C is presented. The system utilizes wide bandgap optical sources and detectors to achieve extreme temperature operation. Testing was conducted at multiple temperatures between room temperature and 325°C and at multiple light source currents. Light coupling into and out of a UV capable optical fiber was evaluated, and a model was created utilizing the test data of the photodiode dark current and the fiber optic cable insertion loss and attenuation and assess optical communications capability to 325°C and beyond.
Style APA, Harvard, Vancouver, ISO itp.
16

Miki, Tetsuya. "Multimedia and Optical Communications". Review of Laser Engineering 24, Supplement (1996): 273–76. http://dx.doi.org/10.2184/lsj.24.supplement_273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Brewer, S. "Undersea optical communications series". IEEE Communications Magazine 23, nr 9 (wrzesień 1985): 52. http://dx.doi.org/10.1109/mcom.1985.1092651.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Haus, Hermann A., i William S. Wong. "Solitons in optical communications". Reviews of Modern Physics 68, nr 2 (1.04.1996): 423–44. http://dx.doi.org/10.1103/revmodphys.68.423.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Agrell, Erik, Magnus Karlsson, A. R. Chraplyvy, David J. Richardson, Peter M. Krummrich, Peter Winzer, Kim Roberts i in. "Roadmap of optical communications". Journal of Optics 18, nr 6 (4.05.2016): 063002. http://dx.doi.org/10.1088/2040-8978/18/6/063002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Wilson, B., i Z. Ghassemlooy. "Analogue optical fibre communications". IEE Proceedings J Optoelectronics 140, nr 6 (1993): 345. http://dx.doi.org/10.1049/ip-j.1993.0054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Boucouvalas, A. C., i Z. Ghassemlooy. "Editorial: Optical Wireless Communications". IEE Proceedings - Optoelectronics 147, nr 4 (1.08.2000): 279. http://dx.doi.org/10.1049/ip-opt:20000682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Boucouvalas, A. "Editorial: Optical wireless communications". IEE Proceedings - Optoelectronics 150, nr 5 (1.10.2003): 425–26. http://dx.doi.org/10.1049/ip-opt:20031118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Alouini, Mohamed-Slim, Xiang Liu i Zuqing Zhu. "Optical Communications and Networks". IEEE Communications Magazine 58, nr 2 (luty 2020): 12. http://dx.doi.org/10.1109/mcom.2020.8999420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Zhu, Zuqing, Mohamed-Slim Alouini i Xiang Liu. "OPTICAL COMMUNICATIONS AND NETWORKS". IEEE Communications Magazine 58, nr 5 (maj 2020): 18. http://dx.doi.org/10.1109/mcom.2020.9112735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Alouini, Mohamed-Slim, Xiang Liu i Zuqing Zhu. "Optical Communications and Networks". IEEE Communications Magazine 58, nr 9 (wrzesień 2020): 46. http://dx.doi.org/10.1109/mcom.2020.9214386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

OFC/NFOEC Organizers. "Optical Communications in 2012". Optics and Photonics News 23, nr 1 (1.01.2012): 42. http://dx.doi.org/10.1364/opn.23.1.000042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Kuwahara, Hideo, i Jim Theodoras. "Optical communications [Series Editorial". IEEE Communications Magazine 48, nr 2 (luty 2010): 38. http://dx.doi.org/10.1109/mcom.2010.5402661.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gebizlioglu, Osman, Hideo Kuwahara, Vijay Jain i John Spencer. "Optical communications [Series Editorial". IEEE Communications Magazine 48, nr 5 (maj 2010): 48–50. http://dx.doi.org/10.1109/mcom.2010.5458362.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gebizlioglu, Osman S., Hideo Kuwahara, Vijay Jain i John Spencer. "Optical communications [Series Editorial]". IEEE Communications Magazine 48, nr 8 (sierpień 2010): 136–37. http://dx.doi.org/10.1109/mcom.2010.5534598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Green, R. J., i M. S. Leeson. "Editorial: Optical wireless communications". IET Communications 2, nr 1 (2008): 1. http://dx.doi.org/10.1049/iet-com:20089033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Lu, Jian-yu, i Shiping He. "Optical X wave communications". Optics Communications 161, nr 4-6 (marzec 1999): 187–92. http://dx.doi.org/10.1016/s0030-4018(99)00041-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Maskara, S. L. "Progress in Optical Communications". IETE Technical Review 3, nr 8 (sierpień 1986): 434–44. http://dx.doi.org/10.1080/02564602.1986.11438010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Armstrong, Jean. "OFDM for Optical Communications". Journal of Lightwave Technology 27, nr 3 (luty 2009): 189–204. http://dx.doi.org/10.1109/jlt.2008.2010061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Henderson, R. "Understanding optical fiber communications". Optics and Lasers in Engineering 38, nr 6 (grudzień 2002): 606–7. http://dx.doi.org/10.1016/s0143-8166(01)00181-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Brain, M. "Coherent Optical Fiber Communications". Journal of Modern Optics 36, nr 4 (kwiecień 1989): 552. http://dx.doi.org/10.1080/09500348914550641.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Chan, Vincent W. S. "Free-Space Optical Communications". Journal of Lightwave Technology 24, nr 12 (grudzień 2006): 4750–62. http://dx.doi.org/10.1109/jlt.2006.885252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Izawa, Tatsuo. "Introduction to optical communications." Journal of the Institute of Television Engineers of Japan 41, nr 6 (1987): 580–87. http://dx.doi.org/10.3169/itej1978.41.580.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Linke, R. A. "Optical heterodyne communications systems". IEEE Communications Magazine 27, nr 10 (październik 1989): 36–41. http://dx.doi.org/10.1109/35.35920.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Hasegawa, Akira. "Ultrahigh-speed optical communications". Physics of Plasmas 8, nr 5 (maj 2001): 1763–73. http://dx.doi.org/10.1063/1.1344559.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Olson, T., D. Healy i U. Osterberg. "Wavelets in optical communications". Computing in Science & Engineering 1, nr 1 (1999): 51–57. http://dx.doi.org/10.1109/5992.743622.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Takahashi, Shiro. "Fibers for Optical Communications". Advanced Materials 5, nr 3 (marzec 1993): 187–91. http://dx.doi.org/10.1002/adma.19930050306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Chagnon, Mathieu, Cedric F. Lam i Itsuro Morita. "Optical Communications and Networks". IEEE Communications Magazine 61, nr 8 (sierpień 2023): 168. http://dx.doi.org/10.1109/mcom.2023.10230035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Chagnon, Mathieu, Cedric F. Lam i Itsuro Morita. "Optical Communications and Networks". IEEE Communications Magazine 61, nr 12 (grudzień 2023): 126. http://dx.doi.org/10.1109/mcom.2023.10375690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chagnon, Mathieu, Cedric F. Lam i Itsuro Morita. "Optical Communications and Networks". IEEE Communications Magazine 62, nr 3 (marzec 2024): 68. http://dx.doi.org/10.1109/mcom.2024.10462051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

S. André, P., L. Nero, Vânia T. Freitas, M. S. Relvas i R. A. S. Ferreira. "Printable Optical Filters for Visible Optical Communications". Optics and Photonics Journal 03, nr 02 (2013): 136–38. http://dx.doi.org/10.4236/opj.2013.32b033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Baek, Yongsoon. "Optical Components for High Speed Optical Communications". Korean Journal of Optics and Photonics 24, nr 6 (25.12.2013): 297–310. http://dx.doi.org/10.3807/kjop.2013.24.6.297.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Madhag, Aqeel, i Haidar Zaeer Dhaam. "Satellite vibration effects on communication quality of OISN system". Open Engineering 12, nr 1 (1.01.2022): 1113–25. http://dx.doi.org/10.1515/eng-2022-0355.

Pełny tekst źródła
Streszczenie:
Abstract Over space optical communications are considered as the critical technology for high-bandwidth, high-speed, and large-capacity communications. Indeed, the laser wavelength’s narrow beam divergence requires a precise beam pointing at both ends of the optical link. The precise beam pointing makes the laser beam pointing to or from a moving object is one of the most challenging processes for optical space communications. In this work, the effect of the pointing error due to satellite platform vibration over the performance of the laser communication link of the optical inter satellite network (OISN) system in terms of the quality factor is investigated. Indeed, an optical communication system has been built using the OptiSystem program to simulate the link between satellites in space for the OISN system. In addition, the proposed system shows by simulation the optimal parameters’ values required for the design of the optical communication link between satellites of the OISN system. Moreover, the effect of pointing error due to the platform vibration on the performance of the OISN system is investigated for different scenarios of the pointing error (i.e., no pointing error; one side of the link with pointing error, and two sides of the link with pointing error). The simulation shows that, first, the optimal parameters that can be used for the optical communication link between satellites of the OISN system in terms of the laser wavelength; laser power; optical modulation scheme; optical telescope aperture diameter; and telescope optical efficiency. In addition, the simulation shows that existing pointing error due to vibration at one side of the optical link leads to degradation of the performance of the OISN system in terms of the quality factor for different laser beam power; distances between satellites; telescope diameters; and telescope efficiencies. Moreover, existing pointing errors at the two sides of the optical link lead to rapid degradation of the considered OISN system performance even with the increase of the laser power or telescope diameter, which tend to compensate for its effect initially and then quit.
Style APA, Harvard, Vancouver, ISO itp.
48

Jung, Sung-Yoon, Ji-Hwan Lee, Wonwoo Nam i Byung Wook Kim. "Complementary Color Barcode-Based Optical Camera Communications". Wireless Communications and Mobile Computing 2020 (10.02.2020): 1–8. http://dx.doi.org/10.1155/2020/3898427.

Pełny tekst źródła
Streszczenie:
Electronic displays and cameras can provide an intuitive, simple communications interface without dependence on additional wireless interfaces or the Internet infrastructure. In this paper, we design a complementary color barcode-based optical camera communication (CCB-OCC) system to provide an easy-to-use communication capability from an electronic display-to-camera (D2C) link. The proposed method encodes information into specially designed color barcodes and transmits it in a format perceptually invisible to humans but detectable by camera-equipped devices. In addition, we propose a new transmission packet design that contains pilot symbols to synchronize symbol packets and estimate the D2C channel link for calibrating captured images caused by irregular differences between the sending color and the receiving color in the D2C link. Experimental results verify the feasibility of the CCB-OCC scheme for short-range communications to offer additional information which shows a new possibility in designing a D2C communication system with robust to environmental change, easy-to-use, and simple implementation.
Style APA, Harvard, Vancouver, ISO itp.
49

Frutuoso Barroso, Alberto Rui, i Julia Johnson. "Optical wireless communications omnidirectional receivers for vehicular communications". AEU - International Journal of Electronics and Communications 79 (wrzesień 2017): 102–9. http://dx.doi.org/10.1016/j.aeue.2017.05.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Li, Te-yu, Xue-fen Chi, Han-yang Shi, Hong-liang Sun i Shuang Wang. "Rolling shutter aided optical camera communications with increasing communication distance". Optoelectronics Letters 15, nr 5 (wrzesień 2019): 363–67. http://dx.doi.org/10.1007/s11801-019-8194-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii