Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Optical Biosensing.

Artykuły w czasopismach na temat „Optical Biosensing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Optical Biosensing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Scheggi, A. M., i A. G. Mignani. "Optical fiber biosensing". Optics News 15, nr 11 (1.11.1989): 28. http://dx.doi.org/10.1364/on.15.11.000028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Youngsun, John Gonzales i Yuebing Zheng. "Optical Biosensing: Sensitivity‐Enhancing Strategies in Optical Biosensing (Small 4/2021)". Small 17, nr 4 (styczeń 2021): 2170016. http://dx.doi.org/10.1002/smll.202170016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Banciu, Roberta Maria, Nimet Numan i Alina Vasilescu. "Optical biosensing of lysozyme". Journal of Molecular Structure 1250 (luty 2022): 131639. http://dx.doi.org/10.1016/j.molstruc.2021.131639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Melvin, Tracy. "Optical biosensing: future possibilities". Expert Review of Ophthalmology 2, nr 6 (grudzień 2007): 883–87. http://dx.doi.org/10.1586/17469899.2.6.883.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bally, Marta, Martin Halter, Janos Vörös i H. Michelle Grandin. "Optical microarray biosensing techniques". Surface and Interface Analysis 38, nr 11 (2006): 1442–58. http://dx.doi.org/10.1002/sia.2375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Barrios, Carlos, Víctor Canalejas-Tejero, Sonia Herranz, Javier Urraca, María Moreno-Bondi, Miquel Avella-Oliver, Ángel Maquieira i Rosa Puchades. "Aluminum Nanoholes for Optical Biosensing". Biosensors 5, nr 3 (9.07.2015): 417–31. http://dx.doi.org/10.3390/bios5030417.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chiavaioli, Francesco, Francesco Baldini, Sara Tombelli, Cosimo Trono i Ambra Giannetti. "Biosensing with optical fiber gratings". Nanophotonics 6, nr 4 (7.06.2017): 663–79. http://dx.doi.org/10.1515/nanoph-2016-0178.

Pełny tekst źródła
Streszczenie:
AbstractOptical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.
Style APA, Harvard, Vancouver, ISO itp.
8

Sharma, Shubhanshi, Rashmi Kumari, Shailendra K. Varshney i Basudev Lahiri. "Optical biosensing with electromagnetic nanostructures". Reviews in Physics 5 (listopad 2020): 100044. http://dx.doi.org/10.1016/j.revip.2020.100044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yang, Xiao, Congcong Li, Peifeng Li i Qinrui Fu. "Ratiometric optical probes for biosensing". Theranostics 13, nr 8 (2023): 2632–56. http://dx.doi.org/10.7150/thno.82323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Maniya, Nalin H. "Recent Advances in Porous Silicon Based Optical Biosensors". REVIEWS ON ADVANCED MATERIALS SCIENCE 53, nr 1 (1.01.2018): 49–73. http://dx.doi.org/10.1515/rams-2018-0004.

Pełny tekst źródła
Streszczenie:
Abstract PSi structures have unique physical and optical properties, which are being exploited for a numerous biomedical applications including biosensing, bioimaging, tissue engineering, and drug delivery. Different PSi optical structures can be fabricated to improve the sensitivity of the optical measurements. A very high surface area per volume of PSi can be used for the higher loading of target analytes in a small sensor area, which helps in increasing sensitivity and allows the miniaturization of biosensor. The specificity of PSi biosensor to the target analyte can be inferred by immobilizing the corresponding bioreceptor such as DNA, enzyme, or antibody via different conjugation chemistries. Finally, PSi is biocompatible material that offers additional advantage in comparison to other sensing platforms for in vivo implantable biosensing applications. This paper reviews fabrication, surface modification, biofunctionalization, and optical biosensing applications of PSi structures with special emphasis on in vivo and PSi photonic particles biosensing.
Style APA, Harvard, Vancouver, ISO itp.
11

Hu, Ning, i Hao Wan. "Electrical/Optical Biosensing and Regulating Technology". Biosensors 13, nr 6 (8.06.2023): 634. http://dx.doi.org/10.3390/bios13060634.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kumar, Santosh, Zhi Wang, Wen Zhang, Xuecheng Liu, Muyang Li, Guoru Li, Bingyuan Zhang i Ragini Singh. "Optically Active Nanomaterials and Its Biosensing Applications—A Review". Biosensors 13, nr 1 (4.01.2023): 85. http://dx.doi.org/10.3390/bios13010085.

Pełny tekst źródła
Streszczenie:
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader’s benefit.
Style APA, Harvard, Vancouver, ISO itp.
13

Gordon, Reuven. "[INVITED] Biosensing with nanoaperture optical tweezers". Optics & Laser Technology 109 (styczeń 2019): 328–35. http://dx.doi.org/10.1016/j.optlastec.2018.07.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Cassagneau, T., i F. Caruso. "Inverse Opals for Optical Affinity Biosensing". Advanced Materials 14, nr 22 (18.11.2002): 1629–33. http://dx.doi.org/10.1002/1521-4095(20021118)14:22<1629::aid-adma1629>3.0.co;2-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kocheril, Philip A., Kiersten D. Lenz, David D. L. Mascareñas, John E. Morales-Garcia, Aaron S. Anderson i Harshini Mukundan. "Portable Waveguide-Based Optical Biosensor". Biosensors 12, nr 4 (25.03.2022): 195. http://dx.doi.org/10.3390/bios12040195.

Pełny tekst źródła
Streszczenie:
Rapid, on-site diagnostics allow for timely intervention and response for warfighter support, environmental monitoring, and global health needs. Portable optical biosensors are being widely pursued as a means of achieving fieldable biosensing due to the potential speed and accuracy of optical detection. We recently developed the portable engineered analytic sensor with automated sampling (PEGASUS) with the goal of developing a fieldable, generalizable biosensing platform. Here, we detail the development of PEGASUS’s sensing hardware and use a test-bed system of identical sensing hardware and software to demonstrate detection of a fluorescent conjugate at 1 nM through biotin-streptavidin chemistry.
Style APA, Harvard, Vancouver, ISO itp.
16

Pasche, Stéphanie, Bastien Schyrr, Bernard Wenger, Emmanuel Scolan, Réal Ischer i Guy Voirin. "Smart Textiles with Biosensing Capabilities". Advances in Science and Technology 80 (wrzesień 2012): 129–35. http://dx.doi.org/10.4028/www.scientific.net/ast.80.129.

Pełny tekst źródła
Streszczenie:
Real-time, on-body measurement using minimally invasive biosensors opens up new perspectives for diagnosis and disease monitoring. Wearable sensors are placed in close contact with the body, performing analyses in accessible biological fluids (wound exudates, sweat). In this context, a network of biosensing optical fibers woven in textile enables the fabric to measure biological parameters in the surrounding medium. Optical fibers are attractive in view of their flexibility and easy integration for on-body monitoring. Biosensing fibers are obtained by modifying standard optical fibers with a sensitive layer specific to biomarkers. Detection is based on light absorption of the sensing fiber, placing a light source and a detector at both extremities of the fiber. Biosensing optical fibers have been developed for the in situ monitoring of wound healing, measuring pH and the activity of proteases in exudates. Other developments aim at the design of sensing patches based on functionalized, porous sol-gel layers, which can be deposited onto textiles and show optical changes in response to biomarkers. Biosensing textiles present interesting perspectives for innovative healthcare monitoring. Wearable sensors will provide access to new information from the body in real time, to support diagnosis and therapy.
Style APA, Harvard, Vancouver, ISO itp.
17

Si, Peng, Nasrin Razmi, Omer Nur, Shipra Solanki, Chandra Mouli Pandey, Rajinder K. Gupta, Bansi D. Malhotra, Magnus Willander i Adam de la Zerda. "Gold nanomaterials for optical biosensing and bioimaging". Nanoscale Advances 3, nr 10 (2021): 2679–98. http://dx.doi.org/10.1039/d0na00961j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Li, Muyang, Ragini Singh, Yiran Wang, Carlos Marques, Bingyuan Zhang i Santosh Kumar. "Advances in Novel Nanomaterial-Based Optical Fiber Biosensors—A Review". Biosensors 12, nr 10 (8.10.2022): 843. http://dx.doi.org/10.3390/bios12100843.

Pełny tekst źródła
Streszczenie:
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Style APA, Harvard, Vancouver, ISO itp.
19

Li, Baocheng, Ruochong Zhang, Renzhe Bi i Malini Olivo. "Applications of Optical Fiber in Label-Free Biosensors and Bioimaging: A Review". Biosensors 13, nr 1 (30.12.2022): 64. http://dx.doi.org/10.3390/bios13010064.

Pełny tekst źródła
Streszczenie:
Biosensing and bioimaging are essential in understanding biological and pathological processes in a living system, for example, in detecting and understanding certain diseases. Optical fiber has made remarkable contributions to the biosensing and bioimaging areas due to its unique advantages of compact size, immunity to electromagnetic interference, biocompatibility, fast response, etc. This review paper will present an overview of seven common types of optical fiber biosensors and optical fiber-based ultrasound detection in photoacoustic imaging (PAI) and the applications of these technologies in biosensing and bioimaging areas. Of course, there are many types of optical fiber biosensors. Still, this paper will review the most common ones: optical fiber grating, surface plasmon resonance, Sagnac interferometer, Mach–Zehnder interferometer, Michelson interferometer, Fabry–Perot Interferometer, lossy mode resonance, and surface-enhanced Raman scattering. Furthermore, different optical fiber techniques for detecting ultrasound in PAI are summarized. Finally, the main challenges and future development direction are briefly discussed.
Style APA, Harvard, Vancouver, ISO itp.
20

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite i in. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing". Sensors 9, nr 9 (15.09.2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Covarrubias-Zambrano, Obdulia, Massoud Motamedi, Bill T. Ameredes, Bing Tian, William J. Calhoun, Yingxin Zhao, Allan R. Brasier i in. "Optical biosensing of markers of mucosal inflammation". Nanomedicine: Nanotechnology, Biology and Medicine 40 (luty 2022): 102476. http://dx.doi.org/10.1016/j.nano.2021.102476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Rodríguez-Sevilla, P., L. Labrador-Páez, D. Jaque i P. Haro-González. "Optical trapping for biosensing: materials and applications". Journal of Materials Chemistry B 5, nr 46 (2017): 9085–101. http://dx.doi.org/10.1039/c7tb01921a.

Pełny tekst źródła
Streszczenie:
Optical trapping has been evidence as a very powerful tool for the manipulation and study of biological entities. This review explains the main concepts regarding the use of optical trapping for biosensing, focusing its attention to those applications involving the manipulation of particles which are used as handles, force transducers and sensors.
Style APA, Harvard, Vancouver, ISO itp.
23

Buiculescu, Raluca, Dimitrios Stefanakis, Maria Androulidaki, Demetrios Ghanotakis i Nikos A. Chaniotakis. "Controlling carbon nanodot fluorescence for optical biosensing". Analyst 141, nr 13 (2016): 4170–80. http://dx.doi.org/10.1039/c6an00783j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Zhang, Xi, Ying Guan i Yongjun Zhang. "Ultrathin Hydrogel Films for Rapid Optical Biosensing". Biomacromolecules 13, nr 1 (14.12.2011): 92–97. http://dx.doi.org/10.1021/bm2012696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Méjard, Régis, Hans J. Griesser i Benjamin Thierry. "Optical biosensing for label-free cellular studies". TrAC Trends in Analytical Chemistry 53 (styczeń 2014): 178–86. http://dx.doi.org/10.1016/j.trac.2013.08.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Arroyo-Hernández, M., R. J. Martín-Palma, V. Torres-Costa i J. M. Martínez Duart. "Porous silicon optical filters for biosensing applications". Journal of Non-Crystalline Solids 352, nr 23-25 (lipiec 2006): 2457–60. http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dorfner, D., T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter i J. Finley. "Photonic crystal nanostructures for optical biosensing applications". Biosensors and Bioelectronics 24, nr 12 (sierpień 2009): 3688–92. http://dx.doi.org/10.1016/j.bios.2009.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Nazmul Islam, Md, Sharda Yadav, Md Hakimul Haque, Ahmed Munaz, Farhadul Islam, Md Shahriar Al Hossain, Vinod Gopalan, Alfred K. Lam, Nam-Trung Nguyen i Muhammad J. A. Shiddiky. "Optical biosensing strategies for DNA methylation analysis". Biosensors and Bioelectronics 92 (czerwiec 2017): 668–78. http://dx.doi.org/10.1016/j.bios.2016.10.034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Barrios, Carlos A., María José Bañuls, Victoria González-Pedro, Kristinn B. Gylfason, Benito Sánchez, Amadeu Griol, A. Maquieira, H. Sohlström, M. Holgado i R. Casquel. "Label-free optical biosensing with slot-waveguides". Optics Letters 33, nr 7 (28.03.2008): 708. http://dx.doi.org/10.1364/ol.33.000708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Azeemuddin, Syed. "Radio frequency biosensing and all-optical devices". CSI Transactions on ICT 8, nr 2 (czerwiec 2020): 137–46. http://dx.doi.org/10.1007/s40012-020-00294-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Špringer, Tomáš, Xue Chadtová Song, Maria Laura Ermini, Josefína Lamačová i Jiří Homola. "Functional gold nanoparticles for optical affinity biosensing". Analytical and Bioanalytical Chemistry 409, nr 16 (17.04.2017): 4087–97. http://dx.doi.org/10.1007/s00216-017-0355-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Tian, Yuanyuan, Lei Zhang i Lianhui Wang. "DNA‐Functionalized Plasmonic Nanomaterials for Optical Biosensing". Biotechnology Journal 15, nr 1 (25.09.2019): 1800741. http://dx.doi.org/10.1002/biot.201800741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Morales-Narváez, Eden, i Arben Merkoçi. "Graphene Oxide as an Optical Biosensing Platform". Advanced Materials 24, nr 25 (25.05.2012): 3298–308. http://dx.doi.org/10.1002/adma.201200373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zhou Xue, 周雪, 闫欣 Yan Xin, 张学楠 Zhang Xuenan, 王方 Wang Fang, 李曙光 Li Shuguang, 郎雷 Lang Lei i 程同蕾 Cheng Tonglei. "软玻璃光纤在生物传感领域应用的研究进展". Laser & Optoelectronics Progress 58, nr 15 (2021): 1516019. http://dx.doi.org/10.3788/lop202158.1516019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Wu, Jiyun, i Qiuyao Wu. "The Review of Biosensor and its Application in the Diagnosis of COVID-19". E3S Web of Conferences 290 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202129003028.

Pełny tekst źródła
Streszczenie:
The objective of this article is to summarize the available technologies for biosensing applications in COVID-19. The article is divided into three parts, an introduction to biosensing technologies, applications of mainstream biosensing technologies and a review of biosensing applications in COVID-19. The introduction of biosensors presents the history of inventing the biosensing technology, which refers to the ISFET. The resonant biosensor with the example of MEMS. the principle of optical biosensor, and the thermal biosensor. In the second part, the main use of biosensing techniques, it was discussed the field of the food industry, environmental monitoring, and the medical industry. In the part of biosensor application in COVID-19, it was mentioned that the technique of POCT, the use of RT-LAMP-NBS in the early detection in China, and the use in gRT-PCR for the detection of the DNA code to determine the presence of pathogen of COVLD-19 in the human body.
Style APA, Harvard, Vancouver, ISO itp.
36

Lee, Sang-Nam, Jin-Ha Choi, Hyeon-Yeol Cho i Jeong-Woo Choi. "Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals". Pharmaceutics 12, nr 1 (7.01.2020): 50. http://dx.doi.org/10.3390/pharmaceutics12010050.

Pełny tekst źródła
Streszczenie:
The biosensing platform is noteworthy for high sensitivity and precise detection of target analytes, which are related to the status of cells or specific diseases. The modification of the transducers with metallic nanoparticles (MNPs) has attracted attention owing to excellent features such as improved sensitivity and selectivity. Moreover, the incorporation of MNPs into biosensing systems may increase the speed and the capability of the biosensors. In this review, we introduce the current progress of the developed cell-based biosensors, cell chip, based on the unique physiochemical features of MNPs. Mainly, we focus on optical intra/extracellular biosensing methods, including fluorescence, localized surface plasmon resonance (LSPR), and surface-enhanced Raman spectroscopy (SERS) based on the coupling of MNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of new MNP-based cell chip platforms for pharmaceutical applications such as drug screening and toxicological tests in the near future.
Style APA, Harvard, Vancouver, ISO itp.
37

Giannetti, Ambra, i Sara Tombelli. "Aptamer optical switches: From biosensing to intracellular sensing". Sensors and Actuators Reports 3 (listopad 2021): 100030. http://dx.doi.org/10.1016/j.snr.2021.100030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Han, Yong Duk, Ka Ram Kim, Kyung Won Lee i Hyun C. Yoon. "Retroreflection-based optical biosensing: From concept to applications". Biosensors and Bioelectronics 207 (lipiec 2022): 114202. http://dx.doi.org/10.1016/j.bios.2022.114202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Baikova, Tatiana V., Pavel A. Danilov, Sergey A. Gonchukov, Valery M. Yermachenko, Andrey A. Ionin, Roman A. Khmelnitskii, Sergey I. Kudryashov i in. "Diffraction microgratings as a novel optical biosensing platform". Laser Physics Letters 13, nr 7 (27.05.2016): 075602. http://dx.doi.org/10.1088/1612-2011/13/7/075602.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Wang, Yanan, Archana Kar, Andrew Paterson, Katerina Kourentzi, Han Le, Paul Ruchhoeft, Richard Willson i Jiming Bao. "Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing". ACS Photonics 1, nr 3 (12.02.2014): 241–45. http://dx.doi.org/10.1021/ph400111u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Emiliyanov, Grigoriy, Jesper B. Jensen, Ole Bang, Poul E. Hoiby, Lars H. Pedersen, Erik Michael Kjær i Lars Lindvold. "Localized Biosensing with Topas Microstructured Polymer Optical Fiber". Optics and Photonics News 18, nr 12 (1.12.2007): 19. http://dx.doi.org/10.1364/opn.18.12.000019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Gökay, U. S., M. Zakwan i A. Serpengüzel. "Spherical silicon optical resonators: Possible applications to biosensing". European Physical Journal Special Topics 223, nr 10 (wrzesień 2014): 2003–8. http://dx.doi.org/10.1140/epjst/e2014-02243-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Sansone, Lucia, Eleonora Macchia, Chiara Taddei, Luisa Torsi i Michele Giordano. "Label-free optical biosensing at femtomolar detection limit". Sensors and Actuators B: Chemical 255 (luty 2018): 1097–104. http://dx.doi.org/10.1016/j.snb.2017.08.059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Martı́n-Palma, R. J., V. Torres-Costa, M. Arroyo-Hernández, M. Manso, J. Pérez-Rigueiro i J. M. Martı́nez-Duart. "Porous silicon multilayer stacks for optical biosensing applications". Microelectronics Journal 35, nr 1 (styczeń 2004): 45–48. http://dx.doi.org/10.1016/s0026-2692(03)00216-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Emiliyanov, Grigoriy, Jesper B. Jensen, Ole Bang, Poul E. Hoiby, Lars H. Pedersen, Erik M. Kjær i Lars Lindvold. "Localized biosensing with Topas microstructured polymer optical fiber". Optics Letters 32, nr 5 (2.02.2007): 460. http://dx.doi.org/10.1364/ol.32.000460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ott, Johan R., Mikkel Heuck, Christian Agger, Per D. Rasmussen i Ole Bang. "Label-free and selective nonlinear fiber-optical biosensing". Optics Express 16, nr 25 (2.12.2008): 20834. http://dx.doi.org/10.1364/oe.16.020834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Gitsas, Antonis, Basit Yameen, Thomas Dominic Lazzara, Martin Steinhart, Hatice Duran i Wolfgang Knoll. "Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing". Nano Letters 10, nr 6 (9.06.2010): 2173–77. http://dx.doi.org/10.1021/nl1009102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sun, Yun-Lu, Si-Ming Sun, Pan Wang, Wen-Fei Dong, Lei Zhang, Bin-Bin Xu, Qi-Dai Chen, Li-Min Tong i Hong-Bo Sun. "Customization of Protein Single Nanowires for Optical Biosensing". Small 11, nr 24 (18.03.2015): 2869–76. http://dx.doi.org/10.1002/smll.201401737.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Karabag, Aliekber, Dilek Soyler, Yasemin Arslan Udum, Levent Toppare, Gorkem Gunbas i Saniye Soylemez. "Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform". Biosensors 13, nr 7 (25.06.2023): 677. http://dx.doi.org/10.3390/bios13070677.

Pełny tekst źródła
Streszczenie:
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure–property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), or both building blocks (Se-TPD, EDOT-TPD, and EDOT-Se-TPD), were synthesized using Stille cross-coupling and electrochemically polymerized, and their electrochromic properties and applications in a glucose biosensing platform were explored. The influence of structural modification on electrochemical, electronic, optical, and biosensing properties was systematically investigated. The results showed that the cyclic voltammograms of EDOT-containing materials displayed a high charge capacity over a wide range of scan rates representing a quick charge propagation, making them appropriate materials for high-performance supercapacitor devices. UV-Vis studies revealed that EDOT-based materials presented wide-range absorptions, and thus low optical band gaps. These two EDOT-modified materials also exhibited superior optical contrasts and fast switching times, and further displayed multi-color properties in their neutral and fully oxidized states, enabling them to be promising materials for constructing advanced electrochromic devices. In the context of biosensing applications, a selenophene-containing polymer showed markedly lower performance, specifically in signal intensity and stability, which was attributed to the improper localization of biomolecules on the polymer surface. Overall, we demonstrated that relatively small changes in the structure had a significant impact on both optoelectronic and biosensing properties for TPD-based donor–acceptor polymers.
Style APA, Harvard, Vancouver, ISO itp.
50

Portela, Alejandro, Olalla Calvo-Lozano, M. Carmen Estevez, Alfonso Medina Escuela i Laura M. Lechuga. "Optical nanogap antennas as plasmonic biosensors for the detection of miRNA biomarkers". Journal of Materials Chemistry B 8, nr 19 (2020): 4310–17. http://dx.doi.org/10.1039/d0tb00307g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii