Gotowa bibliografia na temat „ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE"
Hai-Jun Rong, Guang-Bin Huang, N. Sundararajan i P. Saratchandran. "Online Sequential Fuzzy Extreme Learning Machine for Function Approximation and Classification Problems". IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, nr 4 (sierpień 2009): 1067–72. http://dx.doi.org/10.1109/tsmcb.2008.2010506.
Pełny tekst źródłaWang, Hai, Gang Qian i Xiang-Qian Feng. "Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets". Neural Computing and Applications 22, nr 3-4 (5.02.2012): 479–89. http://dx.doi.org/10.1007/s00521-012-0853-1.
Pełny tekst źródłaRONG, HAI-JUN, GUANG-BIN HUANG i YONG-QI LIANG. "FUZZY EXTREME LEARNING MACHINE FOR A CLASS OF FUZZY INFERENCE SYSTEMS". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 21, supp02 (31.10.2013): 51–61. http://dx.doi.org/10.1142/s0218488513400151.
Pełny tekst źródłaYin, Jianchuan, i Nini Wang. "An online sequential extreme learning machine for tidal prediction based on improved Gath–Geva fuzzy segmentation". Neurocomputing 174 (styczeń 2016): 85–98. http://dx.doi.org/10.1016/j.neucom.2015.02.094.
Pełny tekst źródłaZhu, Shuai, Hui Wang, Hui Lv i Huisheng Zhang. "Augmented Online Sequential Quaternion Extreme Learning Machine". Neural Processing Letters 53, nr 2 (5.02.2021): 1161–86. http://dx.doi.org/10.1007/s11063-021-10435-8.
Pełny tekst źródłaDeng, Wan-Yu, Yew-Soon Ong, Puay Siew Tan i Qing-Hua Zheng. "Online sequential reduced kernel extreme learning machine". Neurocomputing 174 (styczeń 2016): 72–84. http://dx.doi.org/10.1016/j.neucom.2015.06.087.
Pełny tekst źródłaLan, Yuan, Yeng Chai Soh i Guang-Bin Huang. "Ensemble of online sequential extreme learning machine". Neurocomputing 72, nr 13-15 (sierpień 2009): 3391–95. http://dx.doi.org/10.1016/j.neucom.2009.02.013.
Pełny tekst źródłaGu, Yang, Junfa Liu, Yiqiang Chen, Xinlong Jiang i Hanchao Yu. "TOSELM: Timeliness Online Sequential Extreme Learning Machine". Neurocomputing 128 (marzec 2014): 119–27. http://dx.doi.org/10.1016/j.neucom.2013.02.047.
Pełny tekst źródłaScardapane, Simone, Danilo Comminiello, Michele Scarpiniti i Aurelio Uncini. "Online Sequential Extreme Learning Machine With Kernels". IEEE Transactions on Neural Networks and Learning Systems 26, nr 9 (wrzesień 2015): 2214–20. http://dx.doi.org/10.1109/tnnls.2014.2382094.
Pełny tekst źródłaDai, Bo, Chongshi Gu, Erfeng Zhao, Kai Zhu, Wenhan Cao i Xiangnan Qin. "Improved online sequential extreme learning machine for identifying crack behavior in concrete dam". Advances in Structural Engineering 22, nr 2 (25.07.2018): 402–12. http://dx.doi.org/10.1177/1369433218788635.
Pełny tekst źródłaRozprawy doktorskie na temat "ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE"
BHATNAGAR, AKHILESH CHANDRA. "MODIFIED ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE". Thesis, 2011. http://dspace.dtu.ac.in:8080/jspui/handle/repository/13869.
Pełny tekst źródłaThis report addresses modification for recently developed sequential learning algorithm (OS-Fuzzy ELM ) and its performance evaluation is done using multi-category classification Data Sets of VC, GI and IS and Binary classification data sets like liver disorder from UCI. There are two main sections to the report. The first of these is the presentation of research gathered on fuzzy neural networks and the possible purpose they could serve in communications, as well as giving background information on the individual disciplines. The second half of the report is concerned with Modified OS-Fuzzy ELM algorithm and its performance evaluation and comparison of results with recently developed sequential learning algorithm for Self-adaptive Re- source Allocation Network classifier ( SRAN).
Cheng, Yu-Yuan, i 鄭育淵. "Online Fuzzy Extreme Learning Machine Based on Recursive Singular Value Decomposition". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/957pjj.
Pełny tekst źródła義守大學
資訊工程學系
105
In this study, we propose an online fuzzy extreme learning machine based on the recursive singular value decomposition for improving the fuzzy extreme learning machine, and therefore making it applicable for solving online learning problems in classification or regression modeling. Like the original fuzzy extreme learning machine, our approach randomly assigns values to weights of fuzzy membership functions in the hidden layer. However, the Moore-Penrose pseudoinverse is replaced with the recursive singular value decomposition for calculating the optimal weights corresponding to the output layer. Compared with the original fuzzy extreme learning machine, our approach is applicable for the online learning of classification or regression modeling and produces the same modeling accuracy. Moreover, our approach possesses the better modeling accuracy and stability than the other approach, namely, online sequential learning algorithm.
Części książek na temat "ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE"
Yin, Jianchuan, i Nini Wang. "An Online Sequential Extreme Learning Machine for Tidal Prediction Based on Improved Gath-Geva Fuzzy Segmentation". W Proceedings in Adaptation, Learning and Optimization, 243–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14066-7_24.
Pełny tekst źródłaHoang, Minh-Tuan T., Hieu T. Huynh, Nguyen H. Vo i Yonggwan Won. "A Robust Online Sequential Extreme Learning Machine". W Advances in Neural Networks – ISNN 2007, 1077–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72383-7_126.
Pełny tekst źródłaSingh, Ram Pal, Neelam Dabas, Vikash Chaudhary i Nagendra. "Online Sequential Extreme Learning Machine for Watermarking". W Proceedings in Adaptation, Learning and Optimization, 115–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14066-7_12.
Pełny tekst źródłaZhao, Zhongtang, Li Liu, Lingling Li i Qian Ma. "SLOSELM: Self Labeling Online Sequential Extreme Learning Machine". W Internet and Distributed Computing Systems, 179–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45940-0_16.
Pełny tekst źródłaJia, Xibin, Runyuan Wang, Junfa Liu i David M. W. Powers. "A Semi-supervised Online Sequential Extreme Learning Machine Method". W Proceedings of ELM-2014 Volume 1, 301–10. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14063-6_26.
Pełny tekst źródłaMirza, Bilal, Stanley Kok i Fei Dong. "Multi-layer Online Sequential Extreme Learning Machine for Image Classification". W Proceedings of ELM-2015 Volume 1, 39–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28397-5_4.
Pełny tekst źródłaHuang, Shan, Botao Wang, Junhao Qiu, Jitao Yao, Guoren Wang i Ge Yu. "Parallel Ensemble of Online Sequential Extreme Learning Machine Based on MapReduce". W Proceedings of ELM-2014 Volume 1, 31–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14063-6_3.
Pełny tekst źródłaYin, Jianchuan, Lianbo Li, Yuchi Cao i Jian Zhao. "An Adaptive Online Sequential Extreme Learning Machine for Real-Time Tidal Level Prediction". W Proceedings in Adaptation, Learning and Optimization, 55–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28373-9_5.
Pełny tekst źródłaHuang, Shan, Botao Wang, Yuemei Chen, Guoren Wang i Ge Yu. "Efficient Batch Parallel Online Sequential Extreme Learning Machine Algorithm Based on MapReduce". W Proceedings of ELM-2015 Volume 1, 13–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28397-5_2.
Pełny tekst źródłaXu, Xiaoming, Chenglin Wen, Weijie Chen i Siyu Ji. "The Parameter Updating Method Based on Kalman Filter for Online Sequential Extreme Learning Machine". W Proceedings in Adaptation, Learning and Optimization, 80–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01520-6_8.
Pełny tekst źródłaStreszczenia konferencji na temat "ONLINE SEQUENTIAL FUZZY EXTREME LEARNING MACHINE"
Yu Jun i Meng Joo Er. "An Enhanced Online Sequential Extreme Learning Machine algorithm". W 2008 Chinese Control and Decision Conference (CCDC). IEEE, 2008. http://dx.doi.org/10.1109/ccdc.2008.4597855.
Pełny tekst źródłaZhang, Senyue, Wenan Tan i Yibo Li. "A Survey of Online Sequential Extreme Learning Machine". W 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2018. http://dx.doi.org/10.1109/codit.2018.8394791.
Pełny tekst źródłaChacko, B. P., i A. P. Babu. "Online sequential extreme learning machine based handwritten character recognition". W 2011 IEEE Students' Technology Symposium (TechSym). IEEE, 2011. http://dx.doi.org/10.1109/techsym.2011.5783843.
Pełny tekst źródłaYuan Lan, Yeng Chai Soh i Guang-Bin Huang. "A constructive enhancement for Online Sequential Extreme Learning Machine". W 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5178608.
Pełny tekst źródłaRau, Francisco, Ismael Soto, Pablo Adasme, David Zabala-Blanco i Cesar A. Azurdia-Meza. "Network Traffic Prediction Using Online-Sequential Extreme Learning Machine". W 2021 Third South American Colloquium on Visible Light Communications (SACVLC). IEEE, 2021. http://dx.doi.org/10.1109/sacvlc53127.2021.9652247.
Pełny tekst źródłaChen, Yi-Ta, Yu-Chuan Chuang i An-Yeu Andy Wu. "AdaBoost-assisted Extreme Learning Machine for Efficient Online Sequential Classification". W 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2019. http://dx.doi.org/10.1109/sips47522.2019.9020609.
Pełny tekst źródłaLu, Siyuan, Hainan Wang, Xueyan Wu i Shuihua Wang. "Pathological brain detection based on online sequential extreme learning machine". W 2016 International Conference on Progress in Informatics and Computing (PIC). IEEE, 2016. http://dx.doi.org/10.1109/pic.2016.7949498.
Pełny tekst źródłaLiu, Ye, Weipeng Cao, Yiwen Liu, Dachuan Li i Qiang Wang. "Ensemble Online Sequential Extreme Learning Machine for Air Quality Prediction". W 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, 2021. http://dx.doi.org/10.1109/iccsse52761.2021.9545089.
Pełny tekst źródłaLiu, Zongying, i Kitsuchart Pasupa. "Online Sequential Extreme Learning Machine based Instinct Plasticity for Classification". W 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2020. http://dx.doi.org/10.1109/icitee49829.2020.9271686.
Pełny tekst źródłaMaliha, Ayman, Rubiyah Yusof i Ahmed Madani. "Online sequential-extreme learning machine based detector on training-learning-detection framework". W 2015 10th Asian Control Conference (ASCC). IEEE, 2015. http://dx.doi.org/10.1109/ascc.2015.7244867.
Pełny tekst źródła