Rozprawy doktorskie na temat „Omique à résolution cellulaire”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 26 najlepszych rozpraw doktorskich naukowych na temat „Omique à résolution cellulaire”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Blampey, Quentin. "Deep learning and computational methods on single-cell and spatial data for precision medicine in oncology". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL116.
Pełny tekst źródłaPrecision medicine in oncology customizes treatments based on the unique genetic and molecular profiles of patients' tumors, which is crucial for enhancing therapeutic efficacy and minimizing adverse effects. As technological advancements yield increasingly precise data about the tumor microenvironment (TME), the complexity of this data also grows. Notably, spatial data — a recent and promising type of omics data — provides molecular information at the single-cell level while maintaining the spatial context of cells within tissues. To fully exploit this rich and complex data, deep learning is emerging as a powerful approach that overcomes multiple limitations of traditional approaches. This manuscript details the development of new deep learning and computational methods to enhance our analysis of intricate systems like single-cell and spatial data. Three tools are introduced: (i) Scyan, for cell type annotation in cytometry, (ii) Sopa, a general pipeline for spatial omics, and (iii) Novae, a foundation model for spatial omics. These methods are applied to multiple precision medicine projects, exemplifying how they deepen our understanding of cancer biology, facilitating the discovery of new biomarkers and identifying potentially actionable targets for precision medicine
Caillat, Ludovic. "Nano-sondes optiques à forte non-linéarite pour l'imagerie cellulaire à haute résolution". Paris 6, 2013. http://www.theses.fr/2013PA066059.
Pełny tekst źródłaMajor bottleneck in microscopic imaging is the limited lateral resolution due to the diffraction of light. To overcome this limit, here we demonstrate the up-conversion process in the rare earth doped nanoparticles, which may serve as an original fluorescence source mechanism. Rare earth doped nanoparticles, have been reported to serve as efficient bio-labels for cellular and small animal imaging. In this work, we demonstrate that non-linearity of up-conversion allows achieving high lateral resolution in the images using multiphoton microscopy, demonstrating significant improvement in lateral resolution, using low pumping laser power. This new technique may serve as another approach for high-resolution optical imaging
Duconseil, Pauline. "Le décryptage omique de l'hétérogénéité de l'adénocarcinome pancréatique : de la paillasse au lit du patient". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0108/document.
Pełny tekst źródłaHeterogeneity of Pancreatic Ductal AdenoCarcinoma (PDAC) has become the majorimpediment to the effective treatment of patients. Clinical outcome and sensitivity to treatments are associated with a given phenotype and associated at a transcriptomic level. Recent data indicate that studying the expressionof a selected gene set could inform selection of the most appropriate treatments.We areoptimizing this approach by analysing transcriptome of Patient-Derived Xenografts (PDX)from surgical as well as endoscopic ultrasound-guided fine needle aspiration (EUS-FNA)biopsies of tumors, as a source of RNA. We have found a molecularsignature capable of dividing patients into two groups, function of theirsurvival.Independently, we have shown that treatment response pattern can also be foundat a transcriptomic level. We thenanalysed tumors and their stromas, and have found two sub-types of stromas and two sub-types of tumors. These wereindinstinctly defined by RNAseq-based transcriptomics, or DNA methylation. We also studied response to treatments administered alone or incombination to routine chemotherapies. All these results are encouraging, but not yetapplicable in clinical pratice. We are now developing the PDAC Biopsy DerivedPancreatic Cancer Organoids (BDPCO): BDPCO culture represents an excellent source of “exvivo” material. Unlike PDX, which take many months to grow, BDPCO allow us to obtainexploitable material rapidly useful for clinical application. We are convinced that in the near future, the treatment ofpancreatic cancers will be preceded by an extensive molecular characterization of cancercells in order to select the most appropriate treatments
Devès, Guillaume. "Analyse chimique quantitative à haute résolution spatiale par microsonde et nanosonde nucléaires". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14084/document.
Pełny tekst źródłaThe study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (µg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng.The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment.Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation
Piché, Alain. "Résolution d'une molécule d'ADN hybride virale-cellulaire dans des cellules de mammifères : rôle de la protéine virale grand T". Thèse, Université de Sherbrooke, 1987. http://hdl.handle.net/11143/11748.
Pełny tekst źródłaFerrieres, Xavier. "Résolution numérique d'un problème inverse en biologie cellulaire : estimation du coefficient de diffusion et de dimérisation via une équation parabolique non linéaire". Toulouse, INPT, 1987. http://www.theses.fr/1987INPT086H.
Pełny tekst źródłaLaguillaumie, Marie-Océane. "Exploration multi-omique de la maladie résiduelle minimale dans deux modèles syngéniques murins de dormance tumorale de leucémie myéloïde et de mélanome". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS031.
Pełny tekst źródłaBackground : Tumor dormancy, a resistance strategy used by cancer cells, is a major impediment in cancer therapy, leading to minimal residual disease (MRD) and increasing the risk of relapse. Although clinically significant, the mechanisms behind tumor dormancy and MRD are not well understood. In this research, we employed two syngeneic murine models of myeloid leukemia and melanoma to explore the genetic,epigenetic, transcriptomic, and proteomic profiles linked to tumor dormancy. By applying a multiomics approach, we aimed to uncover the molecular processes driving MRD and identify possible therapeutic targets. Results : We performed a comprehensive omics analysis that included whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and investigations of the transcriptome and proteome. The WES analysis identified a limited overlap of gene mutations between the melanoma and leukemia dormancy models, with many mutations found exclusively in dormant cells. These unique genetic signatures suggest that selective pressures during MRD may provide resistance to the surrounding microenvironment or treatments. Combining CNV data, histone marks, and transcriptomic gene expression signatures with Gene Ontology enrichment analysis,we identified the potential functional roles of these mutated genes and gained insights into the pathways involved in MRD. Furthermore, by comparing "murine MRD genes"with corresponding human disease data from public databases, we identified common features related to disease progression. Proteomic analysis, integrated with multi-omics genetic investigations, revealed a distinct protein signature in dormant cells with minimal involvement of genetic mechanisms. Pathway enrichment analysis pointed to the metabolic, differentiation, and cytoskeletal remodeling processes involved in MRD. Ultimately, we identified 11 proteins that were differentially expressed in dormant cells across both types of pathology. Conclusions : Our research highlights the intricate nature of tumor dormancy, involving both genetic and non-genetic elements. Through the comparison of genomic,transcriptomic, proteomic, and epigenomic data, we deliver an extensive overview of the molecular landscape associated with minimal residual disease. These findings laya solid groundwork for future studies and suggest promising directions for developing targeted therapies for MRD in leukemia and melanoma patients. This underscores the necessity of incorporating both genetic and non-genetic factors into treatment strategies
Lévêque, Manuella. "Résolution de l'inflammation - infection dans les macrophages de patients atteints de mucoviscidose : impact de la membrane". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1B041/document.
Pełny tekst źródłaMacrophages play a significant role in the initiating stages of immune responses regulating inflammation and clearance of the pathogens. In cystic fibrosis, inability of the macrophage to act as a suppressor cell leading to chronic inflammation/infection cannot be resolved. The aims of this work was to find new targets responsible for alterations in cystic fibrosis macrophages. Regarding inflammation, the soluble form of CD14 (sCD14), find overproduced by cystic fibrosis macrophages, is characterized to be a DAMP as it contributes for maintenance of inflammation in tissues. Regarding infection, the activity of TRPV2, involved in phagocytic capacity of macrophage, is impaired. In cystic fibrosis, inflammation and infection were closely linked to the alteration of the plasma membrane microstructures involved in the production of sCD14 and in the phagocytosis process. In conclusion, the alterations of macrophage weaken innate defense of cystic fibrosis patients and may be involved in cystic fibrosis disease progression and lung damage. Consequently, interventions aimed to reduce ongoing infection and destructive inflammatory response may be beneficial in order to preserve their lung function. In this way, therapeutic approaches aimed to correct cystic fibrosis macrophages dysfunctions might provide improved resolution of infection and inflammation
Sivankutty, Siddharth. "Imaging beyond the diffraction limit STED and SAF microscopy". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112108.
Pełny tekst źródłaUnderstanding cellular processes on membranes has been a key area of biomedical research. Circumventing the diffraction limit in fluorescence microscopy has now become possible by exploiting the molecular transitions of the fluorophore. In this context, this work presents the instrumental development of two complementary techniques for realizing nanometric all-optical resolution and axial sectioning, namely STimulated Emission Depletion (STED) and Supercritical Angle Fluorescence (SAF) microscopy. STED microscopy is an elegant method that has allowed us to break the diffraction barrier with light microscopes and has achieved resolutions of the order of 40 nm (transverse) in biological samples. In this technique, we exploit the molecular transitions of the fluorescent marker to overcome the resolution limit due to diffraction. Resolution enhancement is achieved by efficient depletion of the excited state of the marker in the peripheral spatial regions of the focal volume by using depletion beams in addition to the excitation beam. Despite the major resolution improvement demonstrated, the technique is not well spread out, mainly due to its apparent complexity; and the cost and limited tunability of the commercial system. In this context, the instrumental realization and the imaging performance of a cost-effective home-built STED microscope is presented in this manuscript. While conventional STED microscopes offer improved lateral resolution, an isotropic gain in resolution usually comes at the cost of complex instrumentation. In this regard, we demonstrate SAF microscopy as a powerful tool that achieves an axial sectioning of the order of 150 nm. This is done by exploiting the property of a molecule to emit into the supercritical anglesonly when near the glass-water interface. Axial sectioning is obtained in a simple configuration by detecting solely the supercritical components of radiation. A combination of these imaging techniques offer a powerful tool to study molecular phenomena on the biological membranes
Banville, Frédéric. "Nanostructuration de surface pour l'imagerie à résonance de plasmons de surface de haute résolution". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO005/document.
Pełny tekst źródłaIn pharmacological research, living cells are widely used as the sensing medium for biological studies, such as cell apoptosis and cellular reorganization. Different characterization systems are developed to analyze and quantify biological information. Surface plasmon resonance (SPR) imaging is sensitive to minute refractive index variations occurring in a medium at the proximity of a metal layer. It has found many applications in pharmacological research since it allows the real-time image acquisition and does not require biological labeling like for fluorescence. However, the propagative nature of surface plasmons (PSPs) limits the spatial resolution by spreading the information in the direction of propagation of the PSPs. This means that it is difficult to spatially resolve details smaller than the attenuation length of the PSPs, generally of the order of tens of micrometers. Several research groups have worked on this limitation in order to improve the spatial resolution in SPR imaging. However, although spatial resolutions lower than that of the propagation have been obtained, those techniques require compromises, such as loss in temporal resolution or in refractive index.In this thesis project, plasmonic devices were designed and characterized in order to improve spatial resolution in SPR imaging, while minimizing compromises with other imaging parameters. These SPR chips are composed of nanostructured metal surfaces where the guided mode combines the properties of propagative plasmons and localized plasmons. An in-house numerical modeling software has demonstrated how the geometry of nanostructured surfaces can be optimized to reduce the attenuation length of the plasmonic mode, while maintaining a high imaging contrast. An optimum geometry was identified, and micron-sized structures have been observed using the optimized nanostructured SPR chips. Experimental results showed a reduction in propagation by a factor of 6.3 compared to uniform metal surfaces.The imaging performances of nanostructured SPR chips were assessed by studying cellular responses following pharmacological stimulation. The chips were used in real-time monitoring of integrity changes in confluent endothelial cell layer following stimulation. Quantification of intercellular gaps in the monolayers showed a significant increase in the number of small holes detected (~ 1μm2) when using nanostructured SPR chips. This increase in sensitivity to cellular activity is the result of improved spatial resolution. Finally, the study of morphology in highly linear cytoskeleton cell enabled the observation of subcellular structures and the monitoring of cytoskeleton reorganization in individual cells. The nanostructured SPR chips designed and realized during this thesis show a strong potential label-free live cell imaging
Zhang, Tao. "Imagerie multi-résolution par tomographie aux rayons X : application à la tomographie locale en science des matériaux". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00876871.
Pełny tekst źródłaKheir, Saadé. "Etude d'une thérapie cellulaire par transplantation intrapulmonaire de macrophages dans le traitement d'une infection aigue à pseudomonas aeruginosa". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7085.
Pełny tekst źródłaPseudomonas aeruginosa (P.a) is a Gram-negative bacillus responsible for chronic infections associated with high mortality due to the bacterium's predilection for developing antibiotic resistance and the inefficacy of current therapies. Our group showed in a model of acute infection in mice that Elastase B (LasB), a virulence factor of Pa, degrades the cytokine IL-6 and the antimicrobial molecule Elafine and that the overexpression of these two mediators provides protection to mice by decreasing inflammation and increasing repair. Alveolar macrophages represent the most abundant myeloid population in the alveolar space and play a key role in maintaining homeostasis, initiation and resolution of inflammation. Given their importance, they are very much studied in the development of new approaches to cell therapy. We therefore hypothesized that the alveolar macrophage which is also targeted by P.a and LasB more particularly, may be an adequate tool for the transfer of IL-6- and Elafine-mediated protection. The main objective of this work is to modify the macrophage with adenoviral vectors allowing the overexpression of IL-6 and Elafine, and to use it as a therapeutic tool in an intrapulmonary transplantation model followed by a Pa infection We show that the transfer of genetically modified macrophages with IL-6 and Elafine is protective. Elafine induces in the macrophage an IL6 / IL10 / antimicrobial peptide signature which, in synergy with IL-6, confers a regulatory phenotype to the alveolar unit
Joly, Jérémy. "Dynamique de la protéine Nox2 lors de la phagocytose". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS446.
Pełny tekst źródłaNeutrophils are the most numerous leukocytes and the first cells to arrive at the site of infection where they internalize pathogens by phagocytosis. From the beginning of the process, the NADPH oxidase is assembled at the phagosome, where it allows the production of reactive oxygen species (ROS), thus contributing to the destruction of the pathogen. The membrane bound catalytic subunit of the NADPH oxidase, Nox2, is therefore recruited at the phagocytic cup and then at the phagosome. The purpose of this study was to determine, which are the subcellular sources of the Nox2 protein, whether the protein accumulates at the phagosome and if so, according to which kinetics. In order to modify the dynamics of the Nox2 protein, the scaffold protein IQGAP1 that is associated with the cytoskeleton was also studied. Finally, the spatial organization of the Nox2 protein in the phagocytic synapse was also investigated.Using neutrophil-like cells (PLB-985) as well as human neutrophils, our study showed by immunofluorescence the presence of the Nox2 protein in recycled or early endosomes. During phagocytosis, they are close to the phagosome, suggesting their involvement in the contribution of the Nox2 protein to the phagosome membrane. The use of PLB-985 for which Nox2 expression has been suppressed and then reintroduced with a transgene encoding the GFP-Nox2 protein shows that the Nox2 subunit accumulates at the phagosome during the first twenty minutes after its closure. In our study, the protein IQGAP1 does not appear to have any effect on phagocytosis or on the production of ROS by NADPH oxidase. Finally, using super resolution microscopy (dSTORM) the evolution of the Nox2 pattern in the membrane has been evaluated over time in frustrated phagocytosis. Within ten minutes, the number of Nox2 protein clusters increases but their size remains unchanged
Breton, Victor. "Elucider le rôle de VAMP7 dans les remodelages membranaires au cours des phénomènes d'apprentissages et de la mémoire". Electronic Thesis or Diss., Université Paris Cité, 2023. http://www.theses.fr/2023UNIP7048.
Pełny tekst źródłaTo transmit information from one neuron to another, neuronal cells use specialized communicating junctions called synapses. In the hippocampus, a large proportion of excitatory synapses are located in tiny membrane protrusions called dendritic spines. The dynamics and morphology of the spines change over time, depending on the activity to which the synapse is subjected. The pre- and post-synaptic zones are subject to a dense and active intracellular traffic. Among the proteins that regulate this traffic, we can find SNAREs (Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor) which are mediating membrane fusion. This process allows vesicles to fuse with targeted membrane and enable the release of: neurotransmitters (pre-synaptic) or synaptic receptors (post-synaptic). SNARE proteins are classified into two main categories: v-SNAREs, found on the vesicle membrane, and t-SNAREs, found on targeted membrane. v- and t-SNAREs interact with each other to bring the two membranes together and trigger membrane fusion. The aim of my thesis was to determinate the role of intracellular trafficking in the membrane remodeling during learning and memory. My work focused on the v-SNARE VAMP7, which is expressed in neurons from developmental to mature stages, although little is known about its role in dendrites. Previously in the laboratory, it has been shown that VAMP7 KO mice show improved memory performance in behavioral tests involving learning and memory. First, I showed that VAMP7 is localized preferentially in dendrites. Then, I quantified on electron microscopy that VAMP7 KO mice show an increase in mature dendritic spines, confirming a role for VAMP7 in learning and memory processes. Using microscopy, I showed that VAMP7 is localized in close proximity to synapses and that VAMP7 is found in a large majority of dendritic spines, particularly in the head of these. To determinate its function, I assessed the distribution of VAMP7 and classical intracellular compartments (early and recycling endosomes, endolysosomes, etc.) in dendrites. My results indicate that VAMP7 is not predominantly localized in these compartments, suggesting the existence of an uncharacterized dendritic compartment. Using live imaging and super-resolution imaging, STED and STORM, I show that VAMP7 is localized in dendritic golgi extensions (Golgi sattelite). Finally, my results show that VAMP7 and some type of NMDA receptors are in the same compartments in both dendritic shaft and spines. In addition to studying the role of VAMP7 in membrane remodeling processes, I have, in collaboration with chemists specializing in the synthesis of fluorescent probes, discovered and developed the use of photoconvertible organic probes in conventional and super-resolution microscopy. More specifically, we discovered the physico-chemical properties of photoconvertible fluorescent probes, which I used to reconstruct the plasma membrane in STORM imaging on living cells. In the future, this will make it possible to follow the dynamics of spines during synaptic plasticity in STORM imaging. My results suggest the existence of an uncharacterized VAMP7-positive dendritic compartments, whose function would be to act as a storage station for synaptic proteins and receptors. It would be interesting to investigate whether the activity and trafficking of synaptic receptors would then be under the control of VAMP7 which could also be dependent on the level of synaptic activity. In this way, we could study VAMP7 exocytosis and how its activity is modulated during synaptic plasticity (LTP - LTD)
Orré, Thomas. "Mécanismes moléculaires d’activation des intégrines par la kindline-2 lors de l’adhésion cellulaire". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0824/document.
Pełny tekst źródłaFocal adhesions (FAs) are adhesive structures linking the cell to the extracellular matrix (ECM) and constitute molecular platforms for biochemical and mechanical signals controlling cell adhesion, migration, differentiation and survival. Integrin transmembrane receptors are core components of FAs, connecting the ECM to the actin cytoskeleton. During the early 2000s, the intracellular protein talin, which directly binds to the cytoplasmic tail of β-integrins, was considered as the main integrin activator. Nevertheless, it has been shown that kindlin, another intracellular protein that bind to β-integrin, is also a critical integrin activator. In fact, several studies have shown that kindlin and talin play complementary and synergistic roles during integrin activation. The molecular basis of these phenomena remains to determine. Moreover, most studies focusing on the role of kindlin during integrin activation and cell adhesion have been performed with suspended cells and/or with the platelet integrin αIIbβ3. Here we combined PALM microscopy with single protein tracking to decipher the role and behavior of kindlin during key molecular events occurring outside and inside FAs at the plasma membrane and leading to integrin activation, as we have done previously for talin (Rossier et al., 2012). We found that beta1 and beta3-integrins with a point mutation inhibiting binding to kindlin show reduced immobilization inside FAs. We also found that kindlin-2, which is enriched inside FAs, displayed free diffusion at the plasma membrane outside and inside FAs. This constitutes a major difference with talin, which, at the plasma membrane level, is observed almost exclusively in FAs, where it is immobile, which shows that talin is recruited into FAs directly from the cytosol without lateral diffusion along the plasma membrane (Rossier et al. 2012). To determine the molecular basis of kindlin membrane recruitment and diffusion, we used a kindlin variant known to decrease binding to integrins (kindlin-2- QW614/615AA). This mutant displayed increased membrane diffusion, suggesting that kindlin-2 can freely diffuse at the plasma membrane without interacting with integrins. Moreover, the kindlin-2-QW mutant showed decreased immobilization inside FA, showing that part of kindlin immobilization depends on interaction with integrins. This suggests that kindlin can form an immobile complex with integrins inside focal adhesions. Deletion of the kindlin pleckstrin homology (PH) domain strongly reduced the membrane recruitment and diffusion of kindlin. We assessed the functional role of kindlin membrane recruitment and diffusion by re-expressing different kindlin-2 mutants in kindlin-1/kindlin-2 double KO cells. Those experiments demonstrated that kindlin-2 membrane recruitment and diffusion are crucial for integrin activation during cell spreading and favor adhesion formation. This suggests that kindlin uses a different route from talin to reach integrins and trigger their activation, providing a possible molecular basis for their complementarity during integrin activation
Adam, Marie-Pierre. "Développements de microscopies optiques pour l’imagerie super-résolue de nanocristaux de diamant fluorescents comme rapporteurs d’anomalies fonctionnelles du neurone". Thesis, Cachan, Ecole normale supérieure, 2013. http://www.theses.fr/2013DENS0040/document.
Pełny tekst źródłaSuper resolution microscopy techniques are a useful tool to understand some biomolecular mechanisms, particularly in neurons. We have built such a STED (STimulated Emission Depletion) microscope for observing Nitrogen-Vacancy (NV) fluorescent defect in diamond, and have reached a resolution of 50 nm. In the longer term, this instrument will study the macromolecular organization of proteins involved in synaptic plasticity and marked with fluorescent nanodiamonds (ND). In this context, we studied the resolution limit of STED for ND of subwavelength size. Our experiments, conducted with the team of Stefan Hell (Max Planck Institute for Biophysical Chemistry) showed that the STED spot size of an NV in ND could reach 10 nm, which is similar to performances obtained in a macroscopic diamond. We can also resolve several NV centers, which are separated from only ~15 nm in the same ND. These results are in agreement with numerical simulations carried out by the team of Jean-Jacques Greffet (Laboratoire Charles Fabry). In parallel, we have demonstrated the spontaneous internalization of fluorescent ND in primary culture of cortical neurons from mouse embryos, and studied their colocalization with vesicles of the trans-Golgi network. Finally, we started the study of trafficking vesicles containing ND and showed that it depends on the microtubule network. The motion parameters are compatible with those of molecular motors, but we expect them to be different in the case of overexpression of proteins involved in traffic (work in progress)
Adam, Marie-Pierre. "Développements de microscopies optiques pour l'imagerie super-résolue de nanocristaux de diamant fluorescents comme rapporteurs d'anomalies fonctionnelles du neurone". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00975895.
Pełny tekst źródłaJuillot, Dimitri. "Etude du mécanisme de l'arrêt de division pendant la transformation génétique naturelle chez streptococcus pneumoniae". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASL153.
Pełny tekst źródłaStreptococcus pneumoniae (the pneumococcus) is a commensal bacterium that can cause pneumonia, meningitis or septicemia under certain conditions. Control of pneumococcal infections is based on the use of antibiotics or vaccines. However, both of these approaches come up against the pneumococcus remarkable potential for genetic plasticity, which depends on its ability to uptake exogenous DNA through transformation. Transformation is a highly conserved DNA exchange mechanism in bacteria that contributes to their diversification, evolution and adaptation. The ability of bacteria to transform requires the development of a specific physiological state called 'competence'. In the pneumococcus, competence develops transiently in all cells of the population during their multiplication phase. It is accompanied by an arrest of the division process, which allows the cells to complete the final stages of transformation without compromising the integrity of their genome. ComM, a protein of unknown function synthesized during competence, appears necessary and sufficient to induce this inhibition of cell division. The goal of this PhD project was to decipher the mechanism of action of ComM. To measure the impact of ComM, and more generally the development of competence, on the dynamics of cell division proteins, I used total internal reflection fluorescence (TIRF) microscopy. Another strategy was to identify potential interactions between transformation and division proteins, using a yeast two-hybrid approach. My results show that the development of competence interferes with the mobility of the two key proteins of the septal peptidoglycan synthesizing machinery FtsW and PBP2x. Furthermore, two-hybrid experiments revealed several interactions between ComM and division proteins, in particular the MurA1 protein, involved in the synthesis of the precursor of the PG. On the basis of my results, I propose a model in which ComM could modulate MurA1 activity to decrease the septal PG synthesis. Ultimately, this project could inspire new strategies to block the growth of the pneumococcus and thus fight against this major human pathogen
Danylchuk, Dmytro. "Environment-sensitive targeted fluorescent probes for live-cell imaging". Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAF012.
Pełny tekst źródłaSpecific targeting, imaging and probing of cell plasma membranes and intracellular organelles can be addressed by rationally designed polarity-sensitive fluorescent probes. Here, a new efficient plasma membrane-targeting moiety was developed and tested in five cyanine dyes, showing excellent performance in cellular and in vivo microscopy. Next, the targeting moiety was grafted to a solvatochromic dye Prodan, yielding a plasma membrane probe with high lipid order sensitivity. Modifying a Nile Red using the moieties with varied alkyl chain lengths resulted in two solvatochromic plasma membrane probes: NR12A with high affinity to membranes for conventional microscopy, and NR4A, a low-affinity probe for PAINT super-resolution microscopy. Tethering Nile Red with organelle-targeted groups yielded an array of probes, able to sense polarity and lipid order in organelle membranes. The synthesized probes will find applications in bioimaging, cell biology, biophysics or mechanobiology
Danné, Noémie. "Etude de la structure nanométrique et de la viscosité locale de l’espace extracellulaire du cerveau par microscopie de fluorescence de nanotubes de carbone uniques". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0199/document.
Pełny tekst źródłaThe brain is mainly composed of neurons which ensure neuronal communication and glialcells which play a role in supporting and protecting the neural network. The extracellular space corresponds to the space that exists between all these cells and represents around 20 %of the whole brain volume. In this space, neurotransmitters and other molecules circulate into ensure optimal neuronal functioning and communication. Its complex organization whichis important to ensure proper functioning of the brain changes during aging, learning or neurodegenerative diseases. However, its local dimensions and viscosity are still poorly known.To understand these key parameters, in this thesis, we developed a strategy based on the tracking of single luminescent carbon nanotubes. We applied this strategy to measure the structural and viscous properties of the extracellular space of living rodent brains slices at the nanoscale. The organization of the manuscript is as follows. After an introduction of the photoluminescence properties of carbon nanotubes, we present the study that allowed us to select the optimal nanotube encapsulation protocol to achieve our biological applications. We also present a quantitative study describing the temperature increase of the sample when laser irradiations at different wavelengths are used to detect single nanotubes in a brain slice.Thanks to a fine analysis of the singular diffusion properties of carbon nanotubes in complex environments, we then present the strategy set up to reconstruct super-resolved maps (i.e. with resolution below the diffraction limit) of the brain extracellular space morphology.We also show that two local properties of this space can be extracted : a structural complexity parameter (tortuosity) and the fluid’s in situ viscosity seen by the nanotubes. This led us to propose a methodology allowing to model the viscosity in situ that would be seen, not by the nanotubes,but by any molecule of arbitrary sizes to simulate those intrinsically present or administered in the brain for pharmacological treatments. Finally, we present a strategy to make luminescent ultra-short carbon nanotubes that are not intrinsically luminescent and whose use could be a complementary approach to measure the local viscosity of the extracellular space of the brain
Ahmed, Haitham Ahmed Shaban. "Quantitative molecular orientation imaging of biological structures by polarized super-resolution fluorescence microscopy". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4323.
Pełny tekst źródła.In this thesis we built and optimized quantitative polarized stochastic super-resolution fluorescence microscopy techniques that enabled us to image molecular orientation behaviors in static and dynamic environments at single molecule level and with nano-scale resolution. Using a scheme of stochastic read-out super resolution microscopy in combination with polarized detection, we can reconstruct fluorescence anisotropy images at a spatial resolution of 40 nm. In particular, we have been able to use the techniques to quantify the molecular orientationalorder in cellular and bio-molecular assemblies. For cellular imaging, we could quantify the ability of fluorophore labels to report molecular orientation of actin and microtubules in fixed cells. Furthermore, we used the improvements of resolution and polarization detection to study molecular order of amyloid aggregates at a nanoscopic scale. Also, we studied repair protein RAD51` s interaction with DNA by using dual color polarized fluorescence microscopy, to quantify the orientational order of DNA and RAD51 to understand the homologous recombination of DNA repair mechanism
Tardivel-Safi, Meryem. "Les nanotubes comme nouvelle voie de transfert et de propagation de la protéine Tau pathologique". Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S045/document.
Pełny tekst źródłaOver the past few years, the monofunctional concept of Tau protein as a microtubule-associated stabilizing protein has been challenged. These new functions are linked to new localizations: nucleus, membrane, synapse or vesicles. The extracellular localization is particularly interesting as it could play a role in the secretion of Tau and explain the hierarchical evolution of some sporadic tauopathies such as Alzheimer's disease. The Tau pathology can be induced in animals by intracranial injection of pathological species and seems to be transferred from one neuron to another and from one region to another. This phenomenon follows neuroanatomic pathways and suggests an active propagation of the toxic assemblies of Tau proteins. In vitro studies have shown that proteins are able to move from one cell to another and induce the same abnormal conformation of endogenous Tau proteins initiating a self-amplifying cascade. The existence of a hierarchical progression of the Tau pathology combined with its extracellular localization enables to express a new hypothesis. The Tau protein would be a prion-like protein and would behave like that to propagate the pathology.This characteristic implies the existence of cellular active transport mechanisms to transfer pathological proteins. Several studies have shown that the Tau protein, during transport between cells, is released in the extracellular medium or enclosed in extracellular vesicles. Simultaneously with secretion / capture mechanisms, membrane bridges, establishing direct contact between two cells, could be involved in Tau propagation. TNTs are a serious candidate with their already established role in the transfer of pathogens and misfolding proteins involved in various neurodegenerative diseases. Thus, our objective was to study the involvement of these structures in the interneuronal transfer of Tau protein assemblies.In this thesis, we demonstrate that Tau pathological species use TNTs for their interneuronal transfer. We bring evidences, by videomicroscopy, that pathological Tau proteins are transferred from a primary to a secondary neuron and that TNTs could be involved in the spreading of Tau pathology and the disease transmission. Furthermore, the presence of extracellular Tau fibers can activate the formation of TNTs and facilitate their transfer. This result places TNTs in a central place for propagation pathological process and its vicious cycle (transfer of Tau in naive cells by TNTs - seeding - neuronal death – release of Tau in the extracellular environment - increase in the number of TNTs…). We also made a characterization of the TNTs in primary neurons. This result is really important as it is really complex to identify TNTs in neurons. And in this context, we made a surprising discovery: the endogenous Tau protein is physiologically present in TNTs in primary neurons. These results reveal, for the first time, that the Tau protein, like actin, can be considered as a constitutive component of TNTs in neurons. Thus, it could be used as a marker for TNTs. All these results also highlight a new Tau function and reinforce the multifunctional characteristic of this protein.To confirm the importance of this new pathway in the pathological process, further studies should be considered by analyzing if the transfer of pathological Tau species induces a pathological phenotype in the recipient cell and by looking for the cellular mechanisms involved in the transfer of toxic Tau assemblies by TNTs. In vivo studies on integrated systems such as Caenorhabditis elegans would confirm the involvement of these dynamic structures in the pathological process and identify a new therapeutic target
Blankenburg, Christoph. "Estimation of Curvature and Torsion of Discrete Mammalian Cell Paths through Porous Media". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0026/document.
Pełny tekst źródłaThe extraction of cancerous cells from body uids is an important procedure in clinical diagnostics and therapy. Notably, when the separation technique is based on cell chromatography, it is important to have precise knowledge about binding capacities of target cells in porous media. Therefore, experiments using time-resolved micro-computed tomography were designed and carried out at the European Synchrotron Radiation Facility. The curvature and torsion distributions of cell paths in a two-phase ow through a porous medium are valuable information to characterize the efficiency of chromatographic processes. However, the computation of torsion is very challenging, since it is based on higher order derivatives which are very sensitive towards discretization noise. In this thesis, two new curvature and torsion estimation methods of particle paths are presented. The first method is based on a Fourier approximation. Case studies showed a decrease of the torsion estimation error of at least 65% compared to the commonly used spline approximation. Moreover, the smoothing parameter of the Fourier approximation can remain unchanged for both a wide range of lateral resolutions and curvatures and torsion values. Since this Fourier approximation approach cannot be applied at non-equidistant points, a second method based on the discretization of the differential-geometric formulas (DDGF) was developed. The spline approximation and the DDGF led to similar mean torsion errors. However, the filter mask remains unchanged for the DDGF, whereas the smoothing parameter of the spline approximation must be adapted to the curve shape and discretization
Blankenburg, Christoph. "Estimation of Curvature and Torsion of Discrete Mammalian Cell Paths through Porous Media". Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0026.
Pełny tekst źródłaThe extraction of cancerous cells from body uids is an important procedure in clinical diagnostics and therapy. Notably, when the separation technique is based on cell chromatography, it is important to have precise knowledge about binding capacities of target cells in porous media. Therefore, experiments using time-resolved micro-computed tomography were designed and carried out at the European Synchrotron Radiation Facility. The curvature and torsion distributions of cell paths in a two-phase ow through a porous medium are valuable information to characterize the efficiency of chromatographic processes. However, the computation of torsion is very challenging, since it is based on higher order derivatives which are very sensitive towards discretization noise. In this thesis, two new curvature and torsion estimation methods of particle paths are presented. The first method is based on a Fourier approximation. Case studies showed a decrease of the torsion estimation error of at least 65% compared to the commonly used spline approximation. Moreover, the smoothing parameter of the Fourier approximation can remain unchanged for both a wide range of lateral resolutions and curvatures and torsion values. Since this Fourier approximation approach cannot be applied at non-equidistant points, a second method based on the discretization of the differential-geometric formulas (DDGF) was developed. The spline approximation and the DDGF led to similar mean torsion errors. However, the filter mask remains unchanged for the DDGF, whereas the smoothing parameter of the spline approximation must be adapted to the curve shape and discretization
Jabaudon, Gandet Matthieu. "Approche translationnelle de la voie RAGE au cours du syndrôme de détresse respiratoire aiguë : implications diagnostiques, physiopathologiques et thérapeutiques". Thesis, Clermont-Ferrand 1, 2016. http://www.theses.fr/2016CLF1MM09.
Pełny tekst źródłaThe acute respiratory distress syndrome (ARDS) is associated with diffuse alveolarinjury leading to increased permeability pulmonary edema and hypoxemic respiratory failure. Despite recent improvements in intensive care, ARDS is still frequent and associated with high mortality and morbidity. Two major features of ARDS may contribute to mortality and response to treatment: impaired alveolar fluid clearance (AFC), i.e. altered capacity of the alveolar epithelium to remove edema fluid from distal lung airspaces, and phenotypes of severe inflammation. Pharmacological approaches of ARDS treatment are limited and further mechanistic explorations are needed to develop innovative diagnostic and therapeutic approaches. The receptor for advanced glycation endproducts (RAGE) is a multiligand pattern recognition receptor that is abundantly expressed by lung alveolar epithelial cells andmodulates several cellular signaling pathways. There is growing evidence supporting sRAGE (the main soluble isoform of RAGE) as a marker of epithelial cell injury, and RAGE may be pivotal in ARDS pathophysiology through the initiation and perpetuation of inflammatory responses. Our objectives were to characterize the roles of RAGE in ARDS through a translational approach combining preclinical and clinical studies. First, observational and interventional clinical studies were conducted to test sRAGE as a biomarker during ARDS.Then, cultures of epithelial cells, macrophages and a mouse model of acidinduced lung injury were used to describe the effects of RAGE pathway on AFC and inflammation, with special emphasis on a macrophage activation through NodLikeReceptor family, Pyrindomain containing 3 (NLRP3) inflammasome. Acidinjured mice were treated with an antiRAGE monoclonal antibody or recombinant sRAGE to test the impact of RAGE inhibition on criteria of experimental ARDS. Results from clinical studies support a role of sRAGE as a biomarker of ARDS, withdiagnostic, prognostic and predictive values. In addition, plasma sRAGE is correlated with a lung imaging phenotype of nonfocal ARDS and could inform on therapeutic response. Herein, we also describe in vivo and in vitro effects of RAGE activation on transepithelial fluid transport and expression levels of epithelial channels (aquaporin 5, αNa,KATPaseandαENaC) and on macrophage activation through NLRP3 inflammasome. Finally, RAGE inhibition improves AFC and decreases lung injury in vivo. Taken together, our findings support a role of RAGE pathway in the regulation of lung injury, AFC and macrophage activation during ARDS, albeit precise regulatory mechanisms remain uncertain. sRAGE has most features of a validated biomarker that could be used in clinical medicine, but whether it may help to identify subgroups (or phenotypes) of patients that would benefit from tailored therapy remains underinvestigated. Modulation ofRAGE pathway may be a promising therapeutic target, and though validation studies are warranted, such findings may ultimately open novel diagnostic and therapeutic perspectivesin patients with ARDS
Fradj, Narimane. "Analyse transcriptomique de deux souches fongiques québécoises Inonotus obliquus et Armillaria sinapina". Thèse, 2019. http://depot-e.uqtr.ca/id/eprint/9414/1/eprint9414.pdf.
Pełny tekst źródła