Gotowa bibliografia na temat „Oil sardine”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Oil sardine”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Oil sardine"
Pérez-Granados, A. M., M. P. Vaquero i M. P. Navarro. "Comparative Effects of the Fat Extracted from Raw and Fried Sardines Upon Rat Growth and Zinc Bioavailability". Food Science and Technology International 9, nr 4 (sierpień 2003): 285–93. http://dx.doi.org/10.1177/108201303036046.
Pełny tekst źródłaAndriyani, Pitria, Tati Nurhayati i Sugeng Heri Suseno. "Effect of Oxidative Sardin Fish Oil for Food Utilization". Jurnal Pengolahan Hasil Perikanan Indonesia 20, nr 2 (15.08.2017): 275. http://dx.doi.org/10.17844/jphpi.v20i2.17908.
Pełny tekst źródłaMusbah, Muhamad, Sugeng Heri Suseno i Uju Uju. "Combination of Sardine and Shark Oil High Content of Omega-3 and Squalene". Jurnal Pengolahan Hasil Perikanan Indonesia 20, nr 1 (10.05.2017): 45. http://dx.doi.org/10.17844/jphpi.v20i1.16398.
Pełny tekst źródłaPérez-Granados, A. M., M. P. Vaquero i M. P. Navarro. "Calcium and phosphorus bioavailability in rats consuming oil from either raw sardines or sardines fried in olive oil Biodisponibilidad de calcio y fósforo en ratas alimentadas con grasa de sardina cruda o frita con aceite de oliva". Food Science and Technology International 6, nr 5 (październik 2000): 387–97. http://dx.doi.org/10.1177/108201320000600505.
Pełny tekst źródłaRiyanto, Joko. "Tampilan Kadar Asam Lemak Omega-3 dan Kolesterol Telur Ayam Konsumsi yang Diberi Ransum Mengandung Limbah Minyak Ikan Lemuru (Sardinella longiceps)". Caraka Tani: Journal of Sustainable Agriculture 21, nr 1 (21.04.2018): 9. http://dx.doi.org/10.20961/carakatani.v21i1.20568.
Pełny tekst źródłaHamza-Reguig, Sherazed, Nabila Boukhari Benahmed Daidj, Sabrine Louala, Ahmed Boualga i Myriem Lamri-Senhadji. "Effect of replacing sardine oil with margarine on dyslipidemia, dysglycemia and redox status of adipose tissue in high-fat diet-induced obesity in Wistar rats". Nutrition & Food Science 47, nr 1 (13.02.2017): 2–17. http://dx.doi.org/10.1108/nfs-04-2016-0041.
Pełny tekst źródłaBija, Stephanie, Sugeng Heri Suseno i Uju Uju. "Purification of Sardine Fish Oil Through Degumming and Neutralization". Jurnal Pengolahan Hasil Perikanan Indonesia 20, nr 1 (28.06.2017): 143. http://dx.doi.org/10.17844/jphpi.v20i1.16501.
Pełny tekst źródłaHeri Suseno, Sugeng, Erwanita Dyah Puri Sintoko, Agoes M. Jacoeb i Nadia Fitriana. "Sardine Oil Purification with Winterization". Oriental Journal of Chemistry 33, nr 6 (25.12.2017): 3150–59. http://dx.doi.org/10.13005/ojc/330658.
Pełny tekst źródłaGarcía-Moreno, Pedro J., Rocío Morales-Medina, Raúl Pérez-Gálvez, Narcisa M. Bandarra, Antonio Guadix i Emilia M. Guadix. "Optimisation of oil extraction from sardine (Sardina pilchardus) by hydraulic pressing". International Journal of Food Science & Technology 49, nr 10 (3.03.2014): 2167–75. http://dx.doi.org/10.1111/ijfs.12527.
Pełny tekst źródłaHimelda, Himelda, Eko Sri Wiyono, Ari Purbayanto i Mustaruddin Mustaruddin. "ANALISIS SUMBER DAYA PERIKANAN LEMURU (Sardinella lemuru Bleeker 1853) DI SELAT BALI (Analysis of the Sardine Oil (Sardinella lemuru Bleeker 1853) Resources in Bali Strait)". Marine Fisheries : Journal of Marine Fisheries Technology and Management 2, nr 2 (23.01.2013): 165. http://dx.doi.org/10.29244/jmf.2.2.165-176.
Pełny tekst źródłaRozprawy doktorskie na temat "Oil sardine"
Fellat-Zarrouck, Khadija. "Etude de corps gras d'origine marocaine : huile d'olive, adultérationsHuile de sardine, Sardina PilchardusHuile d'argan, Argania Spinosa". Aix-Marseille 1, 1987. http://www.theses.fr/1987AIX11102.
Pełny tekst źródłaRodrigues, Ana Sofia de Figueiredo. "Industrial production of omega-3 polyunsaturated fatty acids from fish oil and microalgae". Master's thesis, ISA/UTL, 2012. http://hdl.handle.net/10400.5/5257.
Pełny tekst źródłaω-3 polyunsaturated fatty acids (PUFAs) ingredients, especially eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) are known for its vital and unique role in human health and well-being by an extensive scientific research. These facts are widely spread by media. At present, the major source of ω-3 PUFAs is fish oil from oily fish like sardine (Sardina pilchardus). This work proposes the use of heterotrophic microalgae such as Crypthecodinium cohnii as an alternative source of interest for the commercial production of ω-3 EPA and DHA. It is also suggested the use of a common process suitable for both feedstock. EPA and/or DHA production are accomplished through oil saponification and PUFAs concentration winterization and urea concentration. PUFAs purification by chromatography is only necessary when oil is extracted from fish since fractions obtained from C. cohnii have high proportions in DHA and they do not require further purification steps for food applications. The combination of traditional (seasonal) and alternative sources (year-round) using a common production process shows an economic advange with increasing earnings for market development.
Oliveira, Isabel Andreia Carreira de. "Development of bioactive sardine oil based formulations". Master's thesis, 2012. http://hdl.handle.net/1822/23426.
Pełny tekst źródłaThe frontier that separates all health and disease status results from the interface of genetics and environment, nature, and nutrition. Nowadays, the nutritional background that constitutes human diet differs from that for which our genetic structure was selected, including in the type and amount of essential fatty acids and in the antioxidant levels of foods. A component generally present in several acute and chronic human diseases is inflammation. Regulation of inflammation is greatly influenced by eicosanoids (associated to cytokine production), which are potent lipid mediators derived from polyunsaturated fatty acids (PUFAs). The beneficial effects of fish oils, intrinsically associated to their contents in PUFAs, has been the subject of intense investigation. In this work, PUFAs enriched oil (sardine oil, SO) and derived ω-3 concentrates were obtained from sardines, one of the fish caught in Portuguese water with the highest content in PUFAs, and their bioactivity was evaluated. In transdermal delivery experiments, SO showed the ability to permeate full thickness pig skin samples and, in parallel, was also easily encapsulated in zein nanoparticles. The anti-inflammatory activity of SO was assessed in normal human skin fibroblasts (BJ5ta cell line) stimulated by a pro-inflammatory cytokine (IL-1β). Incubation with SO lead to a decrease in the inflammatory process in stimulated BJ5ta , determined by a decrease in other pro-inflammatory cytokine, IL-6, quantified by ELISA. Moreover, SO revealed more efficacy than a well known non-steroidal anti-inflammatory compound, piroxicam. As fibroblasts have been implicated as active participants in the immune system, they can be new targets in immunotherapies. In the future, SO incorporation can be associated to a topical formulation, either alone, as their chemical properties facilitate diffusion through skin, or encapsulated. Also, encapsulated SO could be included in an oral delivery system for gradual delivery. SO offers a tremendous number of potential therapeutic applications, with the obvious advantage of being obtained from nature.
A fronteira que separa um estado de saúde de um estado de doença resulta da interface entre a genética, ambiente, natureza e nutrição. Hoje em dia a base nutricional da dieta humana difere daquela para a qual a nossa estrutura genética foi sendo selecionada, principalmente no tipo e quantidade de ácidos gordos essenciais e nos níveis antioxidantes presentes nos alimentos. Uma característica comum de muitas doenças humanas, crónicas ou agudas, é a inflamação. A regulação da inflamação é em grande parte associada aos eicosanóides (envolvidos na produção de citocinas), que são potentes mediadores lipídicos derivados de ácidos gordos polinsaturados. Os efeitos benéficos dos óleos de peixe, intrinsecamente associados ao seu conteúdo em ácidos gordos polinsaturados, têm sido alvo de intensa investigação. Neste trabalho, foram isolados óleo de sardinha, um dos peixes pescados em Portugal mais rico em ácidos gordos polinsaturados, assim como concentrados ω-3 PUFAs, para avaliar a sua bioatividade . Através de experiências transdérmicas com amostras de pele de porco, verificou-se que este óleo foi capaz de atravessar todas as camadas da pele, tendo sido também facilmente encapsulado em nanopartículas de zeína. A atividade anti-inflamatória do óleo de sardinha foi avaliada em fibroblastos humanos isolados de pele normal (linha celular BJ5ta) estimulados por uma citocina pro-inflamatória (IL- 1β). O óleo de sardinha foi capaz de causar uma diminuição do processo inflamatório, determinada pela diminuição de outra citocina pro-inflamatória, IL-6, produzida por fibroblastos de pele em contexto inflamatório. Além do mais, este óleo revelou ser mais eficaz do que o piroxicano, um anti-inflamatório não esteróidal comum. Dado que os fibroblastos têm demonstrado um papel ativo no sistema imunitário, podem vir a tornar-se novos alvos em terapias anti-inflamatórias. No futuro, a incorporação deste óleo pode estar associada a uma formulação tópica, quer contendo o óleo isolado, uma vez que as suas propriedades químicas facilitam a sua difusão através da pele, quer estando encapsulado. Para além disso, este óleo encapsulado poderia também ser adicionado a um sistema de entrega oral para uma libertação gradual do mesmo. O óleo de sardinha oferece um vasto leque de aplicações terapêuticas, com a vantagem de poder ser obtido da natureza.
Mohandas, N. N. "Population genetic studies on the oil sardine (Sardinella longiceps)". Thesis, 1997. http://eprints.cmfri.org.in/7078/1/TH-76_Moh.pdf.
Pełny tekst źródłaSousa, Filipa Manuela Lopes de. "Nano-system based on sardine oil formulations for pharmaceutical application". Master's thesis, 2013. http://hdl.handle.net/1822/27916.
Pełny tekst źródłaThe sardine, one of the most common fish in the Portuguese coast, has important nutritional characteristics, making it an excellent source of proteins, lipids, vitamins and minerals. Besides their nutritional value, it is a food, in general, of easy digestibility with low cholesterol levels. So sardine oil is also an important source of nutrients with a high nutritional value and with proven benefits to health. It is rich in polyunsaturated fatty acids, especially the ω 3 that aids in the reduction of cardiovascular diseases, lowers the levels of cholesterol and has an anti-inflammatory effect. In this project, we used sardine oil, as it is rich in polyunsaturated fatty acids (PUFAs), to evaluate its biological activity through cytotoxicity assays, cellular proliferation, oxidative stress and to encapsulate in zein nanoparticles. For studies of encapsulation of the sardine oil, different formulations were used. The solvents used were two - 75% ethanol and isopropanol 90% - and in some cases a surfactant (SDS) was used to determine what effect this would have. It was found that the nanoparticles could be used for the encapsulation of sardine oil, and these remained stable over six months. Different cell lines were used for this work, namely: human fibroblasts (cell line BJ - 5ta), murine fibroblasts (L929 cell line) and human keratinocytes (NCTC 2455). The cytotoxicity studies showed that the oil from sardines and PUFAs may be toxic to cells from the concentration of 8mg/mL and 0,1mg/mL, respectively. In assays of cellular proliferation within the tested concentrations, the lower concentrations (0.5 and 4mg/mL to SO and 0.025 and 0.1mg/mL for PUFAs) help to increase proliferation, therefore with increasing concentration proliferation is reduced. Oxidative stress assays were conducted to evaluate the protective effect of SO and PUFAs in animal cells after they have been incubated with H2O2. In this case, the behaviour of the compounds is the opposite of the tests of toxicity and proliferation, because the protective effect of oil increases with increasing concentration. The Sardine Oil and the Polyunsaturated Fatty Acids extracted from the Sardine Oil can be used in several topical therapeutics as vitamin supplements through the capsule, through topical applications of creams to help fight infection, among others.
A sardinha, um dos peixes mais comuns na costa Portuguesa, apresenta importantes características nutricionais, constituindo uma excelente fonte de proteínas, lípidos, vitaminas e sais minerais. Além do seu valor nutricional, trata-se de um alimento que é de fácil digestibilidade e com baixos níveis de colesterol. Desta forma, o óleo de sardinha é também uma importante fonte de nutrientes e tem um grande valor nutricional e com benefícios comprovados para a saúde. É rico em ácidos gordos polinsaturados, p.e. ω 3, que auxilia na redução de doenças cardiovasculares, reduz os níveis de colesterol e tem um efeito anti-inflamatório. Neste projeto, foi utilizado o óleo de sardinha, rico em ácidos gordos polinsaturados, (PUFAS), para avaliar a sua atividade biológica, através de ensaios de citotoxicidade, de proliferação celular, de stress oxidativo e para encapsular em nanopartículas de zeína. Para os estudos de encapsulamento do óleo de sardinha, diferentes formulações foram utilizadas. Foram utilizados dois solventes o etanol a 75% e o isopropanol a 90% e em alguns casos foi utilizado um surfactante (SDS) para ver qual o efeito que este iria ter. Verificou-se que o óleo de sardinha foi encapsulado nas nanopartículas e estas mantiveram-se estáveis ao longo de seis meses. Foram utilizadas diferentes linhas celulares para a realização deste trabalho, sendo elas: fibroblastos humanos (linha celular BJ-5ta), fibroblastos de ratinho (linha celular L929) e queratinócitos humanos (NCTC 2455). Através dos estudos de citotoxicidade verificou-se que o óleo de sardinha e PUFAs podem ser tóxicos para as células a partir das concentrações de 8mg/mL e 0.1mg/mL, respetivamente. Nos ensaios de proliferação celular, dentro das concentrações testadas, as concentrações mais baixas (0.5 e 4mg/mL para os SO e 0.025 e 0.1mg/mL para os PUFAs) ajudam no aumento da proliferação, pois com o aumento da concentração há redução da proliferação celular. Ensaios de stress oxidativo foram realizados para avaliar o efeito protetor dos SO e PUFAs em células animais após estas serem incubadas com H2O2. Neste caso, o comportamento dos compostos é o oposto dos ensaios de toxicidade e proliferação, pois o efeito protetor dos óleos aumenta com o aumento da concentração. Os Óleos de Sardinha e os Ácidos Gordos Polinsaturados extraídos do Óleo de Sardinha podem ser usados em várias aplicações terapêuticas, como suplementos vitamínicos através de capsulas, através de cremes para aplicações tópicas para ajudar no combate a infeções, entre outros.
Venkita, Krishnan P. "Biochemical genetic studies on the oil sardine, Sardinella longiceps (cuvier and valenciennes, 1847) from selected centres of the west coast of India". Thesis, 1993. http://eprints.cmfri.org.in/7019/1/TH-67_Ven.pdf.
Pełny tekst źródłaBorges, C. "Study of sardine oil antioxidant anti-inflammatory properties for the development of topical therapeutic and cosmetic formulations". Master's thesis, 2015. http://hdl.handle.net/1822/35703.
Pełny tekst źródłaIn Portugal sardine fishery is one of the oldest and the most important pelagic resource from Portuguese mainland, both economically and socially. The sardines have important nutritional characteristics, being an excellent source of vitamins, proteins, lipids and minerals with proven benefits for human health, being rich in ω-3-PUFAs, namely, EPA and DHA. Studies reported that there is a direct link between a diet enriched in ω-3-PUFAs and the prevention of many diseases such as cardiovascular disease, inflammatory conditions, mental disorders and prevention of various types of cancer. The aim of this work was to characterize the antioxidant and anti-inflammatory role of sardine oil for the development of formulations for topical application. To evaluate the antioxidant and anti-inflammatory effects of sardine oil in skin, human fibroblasts (BJ-5ta), human melanocytes (A375 and B), human keratinocytes (NCTC2544) and human monocytes (THP-1) were used. The cytotoxicity studies showed that for higher concentrations of SO and SO+αT cell viability decreased. However the effect of SO+αT in keratinocytes was the opposite of melanocytes. Regarding PUFAs, concentrations higher than 0.025 mg/ml exhibited toxicity to both cell lines. In proliferation assays, melanocytes suffer an inhibition of cell proliferation at concentrations above 4 mg/ml in SO. However, for the SO+αT cell proliferation increases with increasing concentration. In keratinocytes, the negative effect on cell proliferation when cells were incubated under same conditions was more marked. The cell proliferation profiles with PUFAs and PUFAs+αT were marked by inhibition in both cells lines, with more impact in melanocytes. The lowest concentrations, 0.5 and 4 mg/ml, were tested to evaluate the protective role of sardine oil in the context of induced oxidative stress. Both concentrations were able to protect cells from damage with a more pronounced effect in keratinocytes. Moreover the incubation of cells with the sardine oil was able to induce expression of several cytoprotective enzymes and also the transcription factor Nuclear factor-erythroid-2-related factor 2 (Nrf2) – which plays a crucial role in the coordinated induction of many stress-responsive genes. The lowest concentrations of sardine oil were tested on human fibroblasts and monocytes to evaluate their effect on inflammation and sardine oil showed to have anti-inflammatory potential as it can reduce production of pro-inflammatory cytokine in cells stimulated with LPS. The effect of sardine oil using three different assays (NaOH/DMSO, fluorescence and tyrosinase activity) on melanin synthesis was not clear. Only using the fluorescence based method for melanin assessment, the sardine oil showed to have some positive effect over melanin synthesis in human melanoma cells. The results opened the opportunity to develop new therapeutic and cosmetic applications based on sardine-derived compounds. Their incorporation in topical creams may contribute to a better, more natural treatment of inflammation and in the prevention of skin aging.
Em Portugal continental, a pesca da sardinha é um dos recursos pelágicos mais antigos e importantes, tanto a nível económico como social. As sardinhas têm características nutricionais importantes, sendo uma excelente fonte de vitaminas, proteínas, lipídios e minerais com benefícios comprovados para a saúde humana. A sardinha é rica em ω-3-PUFAs, ou seja, EPA e DHA. Estudos relataram que há uma relação direta entre uma dieta enriquecida em ω-3-PUFAs e a prevenção de muitas doenças, tais como doenças cardiovasculares, doenças inflamatórias, distúrbios mentais e prevenção de vários tipos de cancro. O objetivo principal deste trabalho foi caracterizar o papel antioxidante e anti- inflamatório do óleo de sardinha para futuro desenvolvimento de formulações com aplicação tópica. Para avaliar os efeitos antioxidantes e anti-inflamatórios do óleo de sardinha na pele, foram usadas diversas linhas celulares de origem humana: fibroblastos (BJ-5ta), melanócitos (A375 e B) queratinócitos (NCTC2544) e monócitos (THP-1). Os estudos de citotoxicidade mostraram que, para as concentrações maiores de SO e SO+αT a viabilidade celular diminui. No entanto, o efeito do SO+αT em queratinócitos foi contrário ao que aconteceu nos melanócitos. Em relação às PUFAs concentrações acima de 0,025 mg/ml induziram toxicidade em ambas as linhas celulares. Em ensaios de proliferação, os melanócitos exibiram uma inibição da proliferação celular com óleo de sardinha em concentrações acima de 4mg/ml. Contudo, para SO+αT a proliferação aumentou com o aumento da concentração. Nos queratinócitos, o efeito negativo foi mais acentuado, quando as células foram incubadas sob as mesmas condições. Os perfis da proliferação celular em PUFAs e PUFAs+αT foram marcados pela inibição em ambas as linhas celulares, com mais impacto nos melanócitos. As concentrações mais baixas, 0,5 e 4 mg/ml, foram testadas para avaliar o papel protetor do óleo de sardinha em situação de stress oxidativo. Estas duas concentrações foram capazes de proteger as células contra danos oxidativos, com um efeito mais evidente em queratinócitos. Além disso, a incubação de células com o óleo de sardinha foi capaz de induzir a expressão de várias enzimas citoprotectoras e também o fator de transcrição Nrf2, que desempenha um papel crucial na indução coordenada de genes envolvidos em muitas respostas ao stress oxidativo. As menores concentrações de óleo de sardinha foram testadas em fibroblastos e monócitos humanos em ensaios de inflamação. O óleo de sardinha mostrou ter um potencial efeito anti-inflamatório, uma vez que foi capaz de reduzir a inflamação em células estimuladas com LPS. O efeito do óleo de sardinha estudado com três metodologias diferentes (NaOH/DMSO, fluorescência e atividade de tirosinase), sobre a síntese de melanina não foi claro. Somente usando uma abordagem baseada na fluorescência nos melanócitos humanos (B), o óleo de sardinha mostrou algum efeito positivo sobre a síntese da melanina. Estes resultados criam a possibilidade de desenvolver novas aplicações terapêuticas e cosméticas à base de compostos derivados de sardinha. A sua incorporação em cremes tópicos podem contribuir para um melhor tratamento de inflamação e na prevenção do envelhecimento da pele.
Remya, R. "Fisheries and Biology of Oil sardine, Sardinella longiceps (Valenciennes) and Indian mackerel, Rastrelliger kanagurta (Cuvier) from Kochi and Chennai coasts". Thesis, 2016. http://eprints.cmfri.org.in/12836/1/Remya%20R_Thesis.pdf.
Pełny tekst źródłaKalajian, Tyler Arek. "Comparative analysis of vitamin D content in sardines canned in olive oil and water". Thesis, 2016. https://hdl.handle.net/2144/16849.
Pełny tekst źródłaOkada, Tomoko. "Extraction and production of n-3 polyunsaturated fatty acid concentrate from Pacific sardines (Sardinops sagax)". Thesis, 2006. http://hdl.handle.net/1957/27326.
Pełny tekst źródłaKsiążki na temat "Oil sardine"
Girijakumari, S. The Indian oil sardine, Sardinella longiceps valenciennes: An annotated bibliography. Cochin: Central Marine Fisheries Research Institute, 1990.
Znajdź pełny tekst źródłaZuxinber, Alex. Omega 3 Rich Foods: Flaxseed Oil - Mackerel - Walnuts - Chia Seeds - Salmon - Canola Oil - Fish/Krill Oil - Caviar - Sardines - Roasted Soybeans. Independently Published, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Oil sardine"
Vaisali, Chandrasekar, Belur D. Prasanna i I. Regupathi. "Screening of Solvents for Deacidification of Sardine Oil". W Recent Advances in Chemical Engineering, 75–80. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1633-2_9.
Pełny tekst źródłaSampath, Charanyaa, N. Anita, B. D. Prasanna i Iyyaswami Regupathi. "Enzymatic Concentration of n−3 Polyunsaturated Fatty Acids from Indian Sardine Oil". W Biotechnology and Biochemical Engineering, 137–43. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1920-3_15.
Pełny tekst źródłaGooch, Jan W. "Sardine Oils". W Encyclopedic Dictionary of Polymers, 645. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10286.
Pełny tekst źródłaZaki, Shama, Nachiappan Jayabalan, Abdulaziz Al-Marzouqi, Fatma Al-Kiyumi i Ibrahim Al-Anboori. "Reproduction and Feeding of the Indian Oil Sardine Sardinella longiceps Val. from Mahout along the Arabian Sea Coast of Oman". W The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures, 499–518. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51506-5_20.
Pełny tekst źródła"Sardine oils". W Encyclopedic Dictionary of Polymers, 858. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_10094.
Pełny tekst źródłaHilborn, Ray, i Ulrike Hilborn. "The Forage Fish Rollercoaster". W Ocean Recovery, 119–28. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198839767.003.0011.
Pełny tekst źródłaMussi, Margherita. "Palaeolithic Art in Isolation: The Case of Sicily and Sardinia". W Palaeolithic Cave Art at Creswell Crags in European Context. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780199299171.003.0015.
Pełny tekst źródłaFant, Clyde E., i Mitchell G. Reddish. "Thyatira". W A Guide to Biblical Sites in Greece and Turkey. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195139174.003.0048.
Pełny tekst źródłaStreszczenia konferencji na temat "Oil sardine"
Bailore, Niveditha Nagappa, Balladka Kunhanna Sarojini, Pushparekha i Bello Kabiru. "Customized eco-friendly UV-B filtering films from vital collagen isolated from Arabian Sea fish Indian oil sardine (Sardinellalongiceps)". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICS OF MATERIALS AND NANOTECHNOLOGY ICPN 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0009427.
Pełny tekst źródłaSathyamurthy, Ravishankar, S. CHANDRA SEKHAR i M. Venkatesan PhD. "Prediction of Biodiesel Production from Sardine Fish Oil Methyl Ester Using Microwave Assisted Transesterification Method Using Response Surface Methodology". W SAE Powertrains, Fuels & Lubricants Digital Summit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-01-1202.
Pełny tekst źródłaMathew, Bruce, i P. Sumathi. "A generic predictive knowledge management model for fisheries with special emphasis to the catch of oil-sardine along the south-west coast of India". W 2015 International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2015. http://dx.doi.org/10.1109/icaccs.2015.7324068.
Pełny tekst źródłaLozano, Olga M., Michele Salis, Alan A. Ager, Fermin Alcasena Urdiroz, Bachisio Arca, Mark A. Finney, Valentina Bacciu i Donatella Spano. "Spatiotemporal variations in wildfire regime and exposure for Sardinia, Italy". W Secondo Congresso Internazionale di Selvicoltura = Second International Congress of Silviculture. Accademia Italiana di Scienze Forestali, 2015. http://dx.doi.org/10.4129/2cis-ol-var.
Pełny tekst źródła