Gotowa bibliografia na temat „Ocean field”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ocean field”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Ocean field"

1

O'Dor, Ron, i Víctor Ariel Gallardo. "How to Census Marine Life: ocean realm field projects". Scientia Marina 69, S1 (30.06.2005): 181–99. http://dx.doi.org/10.3989/scimar.2005.69s1181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Irrgang, C., J. Saynisch i M. Thomas. "Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model". Ocean Science 12, nr 1 (15.01.2016): 129–36. http://dx.doi.org/10.5194/os-12-129-2016.

Pełny tekst źródła
Streszczenie:
Abstract. Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.
Style APA, Harvard, Vancouver, ISO itp.
3

Shang, E. C., i Y. Y. Wang. "Ocean acoustic field simulations for monitoring large-scale ocean structures". Computer Physics Communications 65, nr 1-3 (kwiecień 1991): 238–45. http://dx.doi.org/10.1016/0010-4655(91)90177-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bo, Li, Zhong Yi Li i Yue Jin Zhang. "Ocean Surface Modeling in Vary Wind Field". Key Engineering Materials 480-481 (czerwiec 2011): 1452–56. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.1452.

Pełny tekst źródła
Streszczenie:
In ocean surface modeling a popular method of wave modeling is making use of ocean wave spectrum, which is a physical wave model and based on linear wave theories. The ocean waves produced in this way can reflect the statistical characteristics of the real ocean well. However, few investigations of ocean simulation have been focused on turbulent fluid under vary wind field in this way, while all ocean wave models are built with the same wind parameters. In order to resolve the problem of traditional method, we proposed a new method of dividing the ocean surface into regular grids and generating wave models with different parameters of wind in different location of view scope. The method not only preserves the fidelity of statistical characteristics, but also can be accelerated with the processing of GPU and widely used in VR applications.
Style APA, Harvard, Vancouver, ISO itp.
5

Small, J., L. Shackleford i G. Pavey. "Ocean feature models − their use and effectiveness in ocean acoustic forecasting". Annales Geophysicae 15, nr 1 (31.01.1997): 101–12. http://dx.doi.org/10.1007/s00585-997-0101-7.

Pełny tekst źródła
Streszczenie:
Abstract. The aim of this paper is to test the effectiveness of feature models in ocean acoustic forecasting. Feature models are simple mathematical representations of the horizontal and vertical structures of ocean features (such as fronts and eddies), and have been used primarily for assimilating new observations into forecasts and for compressing data. In this paper we describe the results of experiments in which the models have been tested in acoustic terms in eddy and frontal environments in the Iceland Faeroes region. Propagation-loss values were obtained with a 2D parabolic-equation (PE) model, for the observed fields, and compared to PE results from the corresponding feature models and horizontally uniform (range-independent) fields. The feature models were found to represent the smoothed observed propagation-loss field to within an rms error of 5 dB for the eddy and 7 dB for the front, compared to 10–15-dB rms errors obtained with the range-independent field. Some of the errors in the feature-model propagation loss were found to be due to high-amplitude 'oceanographic noise' in the field. The main conclusion is that the feature models represent the main acoustic properties of the ocean but do not show the significant effects of small-scale internal waves and fine-structure. It is recommended that feature models be used in conjunction with stochastic models of the internal waves, to represent the complete environmental variability.
Style APA, Harvard, Vancouver, ISO itp.
6

Timmermans, Mary-Louise, i Steven R. Jayne. "The Arctic Ocean Spices Up". Journal of Physical Oceanography 46, nr 4 (kwiecień 2016): 1277–84. http://dx.doi.org/10.1175/jpo-d-16-0027.1.

Pełny tekst źródła
Streszczenie:
AbstractThe contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.
Style APA, Harvard, Vancouver, ISO itp.
7

Marks, K. M. "Southern Ocean gravity field image available". Eos, Transactions American Geophysical Union 73, nr 12 (1992): 130. http://dx.doi.org/10.1029/91eo00108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tolstoy, A., i B. Sotirin. "Ocean tomography via matched‐field processing". Journal of the Acoustical Society of America 97, nr 5 (maj 1995): 3249. http://dx.doi.org/10.1121/1.411711.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Voosen, Paul. "Ocean geoengineering scheme aces field test". Science 378, nr 6626 (23.12.2022): 1266–67. http://dx.doi.org/10.1126/science.adg3935.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sushkevich, Tamara, Sergey Strelkov i Svetlana Maksakova. "“Future Earth”: Nigmatulin Hypothesis and Dynamic Model of Radiation Field of Ocean-Atmosphere System". EPJ Web of Conferences 248 (2021): 01014. http://dx.doi.org/10.1051/epjconf/202124801014.

Pełny tekst źródła
Streszczenie:
The United Nations has proclaimed a Decade of Ocean Science for Sustainable Development (2021-2030) to support efforts to reverse the cycle of decline in ocean health and gather ocean stakeholders worldwide behind a common framework that will ensure ocean science can fully support countries in creating improved conditions for sustainable development of the Ocean. The marine realm is the largest component of the Earth’s system that stabilizes climate and support life on Earth and human well-being. Scientific understanding of the ocean’s responses to pressures and management action is fundamental for sustainable development. Planet Earth is a natural example of a dynamic system with nonlinear processes that is in continuous change. The Earth’s radiation field is a single physical field (electromagnetic radiation) and the unifying factor of the Earth dynamical system. The Earth’s climate system is a natural environment that includes the atmosphere, the hydrosphere (oceans, seas, lakes, rivers), the cryosphere (land surface, snow, sea and mountain ice, etc.), and the biosphere that unites all living things. According to the hypothesis of R.I. Nigmatulin “Ocean is a dictator of climate”. H2O and CO2 are competing climate influences. In this article, we propose original author’s mathematical models for radiation blocks with hyperspectral data on absorption by atmospheric components. The new models are based on the development of the theory of the optical transfer operator and the method of influence functions in the theory of radiation transfer and Boltzmann equations, as well as the iterative method of characteristics with iteration convergence accelerations.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Ocean field"

1

Melo, Jose Luis Branco Seabra de. "Nonlinear parametric wave model compared with field data". Monterey, Calif. : Naval Postgraduate School, 1985. http://catalog.hathitrust.org/api/volumes/oclc/57738811.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Brown, Jennifer. "Field measurements and modeling of surfzone currents on inhomogeneous beaches". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 117 p, 2009. http://proquest.umi.com/pqdweb?did=1885467621&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lilly, Jonathan M. "Observations of the Labrador Sea eddy field /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/11041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Colbert, David B. "Field evaluation of ocean wave measurements with GPS buoys". Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5117.

Pełny tekst źródła
Streszczenie:
Approved for public release; distribution is unlimited
An intercomparison of Datawell accelerometer buoys, Datawell GPS buoys, and prototype GPS buoys was conducted to determine the viability of using off-the-shelf GPS receivers to measure ocean surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and prototype GPS buoys were deployed to collect ocean surface wave measurements. The first phase of the research was an intercomparison of wave measurements from a Datawell accelerometer sensor, the Magellan MMCX GPS receiver and the GlobalSat MR-350 GPS receiver. The Datawell accelerometer and the Magellan MMCX receiver measurements of both vertical and horizontal wave orbital excursions are in good agreement. The GlobalSat MR-350 receiver also accurately resolved horizontal wave orbital displacements but failed to reproduce the vertical wave excursion measurement by the accelerometer sensors. The second phase of the project was an independent intercomparison between the Datawell MK-II accelerometer buoys, Datawell Waverider GPS buoys, and the prototype GPS buoys built by the NPS team using the Magellan MMCX receiver. The intercomparison showed good agreement between the off-the-shelf GPS buoys, the newer Datawell GPS buoys as well as the traditional Datawell accelerometer buoys in the energetic part of the wave spectrum.
Style APA, Harvard, Vancouver, ISO itp.
5

Strohm, Frederic M. "Simulation of ocean acoustic tomography using matched field processing". Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Brown, Jeffrey W. "Lagrangian field observations of rip currents". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 133 p, 2008. http://proquest.umi.com/pqdweb?did=1633772921&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Henry, Legena Albertha. "A study of ocean wave statistical properties using nonlinear, directional, phase-resolved ocean wave-field simulations". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1912/3230.

Pełny tekst źródła
Streszczenie:
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), February 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 327-334).
In the present work, we study the statistics of wavefields obtained from non-linear phase-resolved simulations. The numerical model used to generate the waves models wave-wave interactions based on the fully non-linear Zakharov equations. We vary the simulated wavefield's input spectral properties: directional spreading function, Phillips parameter and peak shape parameter. We then investigate the relationships between a wavefield's input spectral properties and its output physical properties via statistical analysis. We investigate surface elevation distribution, wave definition methods in a nonlinear wavefield with a two-dimensional wavenumber, defined waves' distributions, and the occurrence and spacing of large wave events.
by Legena Albertha Henry.
S.M.
Style APA, Harvard, Vancouver, ISO itp.
8

Deffenbaugh, Max. "A matched field processing approach to long range acoustic navigation". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Stephens, Britton Bruce. "Field-based atmospheric oxygen measurements and the ocean carbon cycle /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p3035435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Grant, Justin Alexander. "Far-field noise from a rotor in a wind tunnel". Thesis, Florida Atlantic University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10154927.

Pełny tekst źródła
Streszczenie:

This project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an inhomogeneous flow, and compares them to measured noise radiated from the rotor at prescribed observer locations. Discrepancies between the measurements and predictions led to comprehensive study of the flow in the wind tunnel and the discovery of a vortex upstream of the rotor at low advance ratios. The study presents results of RANS simulations. The static pressure and velocity profile in the domain near the rotor’s tip gap region were compared to measurements obtained from a pressure port array and a PIV visualization of the rotor in the wind tunnel

Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Ocean field"

1

illustrator, Hall Roger, i Hobson Ryan illustrator, red. Field guide to ocean animals. San Diego: Silver DolphinBooks, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

M, Gorodnit͡s︡kiĭ A., red. Anomalous magnetic field of the World Ocean. Boca Raton: CRC Press, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

W, Leffler Michael, United States. Army. Corps of Engineers., Coastal Engineering Research Center (U.S.) i U.S. Army Engineer Waterways Experiment Station., red. Annual data summary for 1988 CERC Field Research Facility. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Miller, H. Carl. Annual data summary for 1986 CERC Field Research Facility. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Walker, Ronald E. Marine light field statistics. New York: Wiley, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Leffler, Michael W. Annual data summary for 1987 CERC Field Research Facility. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Carl, Miller H., U.S. Army Engineer Waterways Experiment Station., Coastal Engineering Research Center (U.S.) i United States. Army. Corps of Engineers., red. Annual data summary for 1986 CERC Field Research Facility. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Diachok, O., A. Caiti, P. Gerstoft i H. Schmidt, red. Full Field Inversion Methods in Ocean and Seismo-Acoustics. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mukhopadhyay, Ranadhir. The Indian Ocean nodule field: Geology and resource potential. Amsterdam: Elsevier, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Strohm, Frédéric M. Simulation of ocean acoustic tomography using matched field processing. Monterey, Calif: Naval Postgraduate School, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Ocean field"

1

Brantner, Gerald, i Oussama Khatib. "Controlling Ocean One". W Field and Service Robotics, 3–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67361-5_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Griffiths, Terry. "Field Development". W Encyclopedia of Ocean Engineering, 1–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6963-5_229-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dozier, L. B., i H. A. Freese. "Active Matched Field Processing for Clutter Rejection". W Ocean Reverberation, 313–18. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2078-4_43.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kistovich, Anatoly, Konstantin Pokazeev i Tatiana Chaplina. "Ray Description of the Sound Field in Inhomogeneous Media". W Ocean Acoustics, 71–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35884-6_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kistovich, Anatoly, Konstantin Pokazeev i Tatiana Chaplina. "Wave Description of the Sound Field in Inhomogeneous Media". W Ocean Acoustics, 87–103. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35884-6_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Baggeroer, Arthur B., i William A. Kuperman. "Matched Field Processing in Ocean Acoustics". W Acoustic Signal Processing for Ocean Exploration, 79–114. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1604-6_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Talwani, Manik, i Xavier Le Pichon. "Gravity Field Over the Atlantic Ocean". W The Earth's Crust and Upper Mantle, 341–51. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0341.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Forget, P. "The Wave Field Dynamics Inferred from HF Radar Sea-Echo". W The Ocean Surface, 257–62. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7717-5_34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ewart, T. E., i S. A. Reynolds. "Experimental Ocean Acoustic Field Moments Versus Predictions". W Ocean Variability & Acoustic Propagation, 23–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

McCoy, John J., Louis Fishman i L. Neil Frazer. "Range Dependent Propagation Codes Based on Wave Field Factorization and Invariant Imbedding". W Ocean Seismo-Acoustics, 39–46. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2201-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Ocean field"

1

Peipei, He, Shi Jie i Li Jikang. "Acoustic Scattering Characteristics of an Underwater Vortex Field". W 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

de Oliveira Júnior, Luciano, Orlando C. Rodríguez i Sérgio M. Jesus. "Ocean Noise Field-Calibration Constraints for Deep Sea Mining". W OCEANS 2024 - SINGAPORE, 01–05. IEEE, 2024. http://dx.doi.org/10.1109/oceans51537.2024.10682346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yuezhu, Cheng, Shi Jie i Fu Xiaoyue. "The Study of Backscattering Acoustic Field from inhomogeneous Distributed Bubbles". W 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723638.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Liu, Jiahui, Zuoshuai Wang, Wentie Yang, Lanyi Liu i Yidong Xu. "AUV Underwater Docking Guidance Method Based on Rotating Current Field". W 2024 OES China Ocean Acoustics (COA), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gao, Xiao, Haigang Zhang i Dejin Cao. "Wave Impedance Characteristics Based on Deep Sea Sound Vector Field". W 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wan, Xuanwei, Gang Zheng, Xiaofeng Li i Lizhang Zhou. "Reconstruction of Ocean Temperature Field Based on a Temperature Profile". W 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

wang, xi, Qiushi Hao i Mengdi Sun. "Ocean acoustic field model based on three-dimensional parabolic equation". W Fourth International Conference on Optics and Communication Technology (ICOCT 2024), redaktorzy Yang Zhao i Yongjun Xu, 40. SPIE, 2024. http://dx.doi.org/10.1117/12.3049843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gao, Yuxiang, Peng Xiao i Zhenglin Li. "Physics-Informed Neural Networks for Solving Underwater Two-dimensional Sound Field". W 2024 OES China Ocean Acoustics (COA), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lu, Xiaotian, i Zhixiong Gong. "Analytical Solution of Radiated Acoustic Field by Moving Monopolar and Dipolar Sources". W 2024 OES China Ocean Acoustics (COA), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723542.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Mingyu, Yan Wang, Rui Zhang, Minhui Wang, Hui Zhao i Hairong Shi. "Study on the Radiated Sound Field of Hydroacoustic Transducer Installed on Carrier". W 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Ocean field"

1

Sanford, Thomas B. Ocean Electric Field for Oceanography. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2012. http://dx.doi.org/10.21236/ada590673.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sanford, Thomas B. Ocean E-Field Measurements Using Gliders. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada542483.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wagner, Daniel. The Ocean Exploration Trust 2023 Field Season. Ocean Exploration Trust, kwiecień 2024. http://dx.doi.org/10.62878/vud148.

Pełny tekst źródła
Streszczenie:
This annual report marks the fifteenth year anniversary of Ocean Exploration Trust’s (OET) E/V Nautilus exploring poorly known parts of our global ocean in search of new discoveries. Since its first season in 2009, E/V Nautilus has conducted a total of 158 expeditions that explored our ocean throughout the Black Sea, Mediterranean, Atlantic, Caribbean, and Pacific for a total of 1,970 days at sea (~5.5 years). These scientific expeditions included a total of 1,017 successful ROV dives, as well as mapped over 1,053,000 km2 of seafloor. The results of these exploratory expeditions have been summarized in over 300 peer-reviewed scientific publications covering a wide range of scientific disciplines, including marine geology, biology, archaeology, chemistry, technology development, and the social sciences. Throughout its 15-year history, E/V Nautilus has been not only a platform for ocean exploration and discovery, but also an inclusive workspace that has provided pathways for more people, especially those early in their careers, to experience and enter ocean exploration professions. It has also catalyzed numerous technological innovations, multi-disciplinary collaborations, and inspired millions through OET’s extensive outreach initiatives. The 2023 field season was no exception, with E/V Nautilus undertaking 12 multi-disciplinary expeditions that explored some of the most remote and poorly surveyed areas in the Pacific, all of which included numerous activities to share expedition stories with diverse audiences across the globe.
Style APA, Harvard, Vancouver, ISO itp.
4

Sanford, Thomas B. Ocean Electric Field for Oceanography and Surveillance. Fort Belvoir, VA: Defense Technical Information Center, październik 2014. http://dx.doi.org/10.21236/ada610903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Marshall, John C. Modelling Studies in Support of Open-Ocean Convection Field Programs. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1992. http://dx.doi.org/10.21236/ada258324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yue, Dick K., i Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2006. http://dx.doi.org/10.21236/ada613064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yue, Dick K., i Yuming Liu. Direct Phase-Resolved Simulation Of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2009. http://dx.doi.org/10.21236/ada531792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Yue, Dick K., i Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada533983.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Keutsch, Frank N. Green Ocean Amazon 2014/15 Manaus Pollution Study Field Campaign Report. Office of Scientific and Technical Information (OSTI), styczeń 2017. http://dx.doi.org/10.2172/1343598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yue, Dick K., i Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada513669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii