Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Ocean circulation Mathematical models.

Rozprawy doktorskie na temat „Ocean circulation Mathematical models”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Ocean circulation Mathematical models”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bermejo-Bermejo, Rodolfo. "A finite element model of ocean circulation". Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26166.

Pełny tekst źródła
Streszczenie:
Preliminary results of a two-layer quasi-geostrophic box model of a wind-driven ocean are presented. The new aspects of this work in relation with conventional eddy models are a finite element formulation of the quasi-geostrophic equations and the use of no-slip boundary condition on the horizontal solid boundaries. In contrast to eddy resolving models that utilize free-slip boundary conditions our results suggest that the obtention of ocean eddies with the no-slip constraints requires a more restricted range of parameters, in particular much lower horizontal eddy viscosity eddy coefficients AH and higher Froude numbers F₁ and F₂. We show explicitly that a given range of parameters, which is eddy generating when the free-slip boundary condition is used, leads to a quasi-laminar flow in both, upper and lower, layers. An analytical model to interpret the numerical results is put forth. It is an extension of an earlier model of Ierley and Young (1983) in that the relative vorticity terms are of primary importance for the dynamics. Thus, it is shown that the boundary layer dynamics is active in the interior of the second layer, and it can be concluded from our method that for given F₁ and F₂ such that the lower layer geostrophic contours are closed, to the existence of the western boundary layer will prevent the homogenization of the potential vorticity so long as AH is large enough to stabilize the northwestern undulations of the flow.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
2

Kiss, Andrew Elek. "Dynamics of laboratory models of the wind-driven ocean circulation". View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20011018.115707/index.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Villanoy, Cesar Laurel. "Modification of the throughflow water properties in the Indonesian seas". Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26591.

Pełny tekst źródła
Streszczenie:
Vertical mixing in the Indonesian Seas has been considered to be responsible for the apparent freshness of the throughflow when 'it enters the Indian Down. A three-dimensional primitive equation numerical model of the Indonesian Seas forced with a prescribed throughflow, transport consisting of North Pacific waters, is used to determine local dynamic processes which may modify the characteristics of the throughflow properties. The lack of long-term current measurements in the Indonesian Seas presents some difficulties in determining the certainty of the derived velocity fields. As an alternative, the model temperature and salinity fields are compared to observed hydrographic data which has a relatively better coverage throughout the Indonesian Seas. A 15 Sv net transport through the Indonesian Seas is suggested based on the model’s more realistic reproduction of the hydrographic structure compared to a throughflow with a smaller magnitude. A pure North Pacific source for the throughflow is also not capable of producing the salinity structure in the Banda Sea as suggested by previous studies and the required amount of salt to fit the model salinity structure with observations in the Banda Sea is estimated to be 3.3x10‘3 kg. Most of the throughflow transport occurs in western boundary flows and is largely topographically controlled. The separation of an upper and lower layer circulation pattern is controlled by the depth of the sill in Makassar Strait. Vertical excursions in the vicinity of this sill seen level of the in model results coincide upper salinity maximum with regions where are found. Seasonal large horizontal gradients at the upwelling and longer residence times due to weaker flows in the Banda Sea results in a more effective mixing of the already weakened salinity structure of the waters from Makassar Strait/Flores Sea. Net heat and freshwater flux estimates also reveal significant departures at 200 up to 100 m between the Pacific inflow and Indian outflow, suggesting the considerable redistribution of heat and salt in the Indonesian Seas.
Style APA, Harvard, Vancouver, ISO itp.
4

Jung, Kyung Tae. "On three-dimensional hydrodynamic numerical modelling of wind induced flows in stably stratified waters : a Galerkin-finite difference approach". Title page, contents and summary only, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phj95.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Weaver, Anthony T. "On assimilating sea surface temperature data into an ocean general circulation model". Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29204.

Pełny tekst źródła
Streszczenie:
The feasibility of sea surface temperature (SST) data improving the performance of an ocean general circulation model (OGCM) is investigated through a series of idealized numerical experiments. The GFDL Bryan-Cox-Semtner primitive equation model is set-up as an eddy resolving, unforced, flat bottomed channel of uniform depth. 'Observed' SST data taken from a reference ocean established in a control run are continuously assimilated into an 'imperfect' model using a simple 'nudging' scheme based on a surface relaxation condition of the form Q = C(SST — T₁) where Q is the heat flux and T₁ is the temperature at the top level of the model. The rate of assimilation is controlled by adjusting the constant inverse relaxation time parameter C. Numerical experiments indicate that the greatest improvement in the model fields is achieved in the extreme case of infinite assimilation (i.e., C = ᅇ) in which the 'observed' SST is directly inserted into the model. This improvement is quantified by monitoring the reduction in the root mean square (RMS) errors relative to the simulated reference ocean. Assimilation with longer relaxation time-scales (i.e., smaller C's) proves quite ineffective in reducing the RMS errors. The improvement in the direct insertion numerical experiment stems from the model's ability to transfer assimilated SST into subsurface information through strong advective processes. The assimilation of cool surface data induces convective overturning which transfers the 'cool' information downward rapidly but adversely affects the vertical thermal structure by an unrealistic deepening of the mixed layer. By contrast, warm surface data do not penetrate downward readily. Thus, the systematically biased downward flux of coolness gradually produces unrealistically cool subsurface waters.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
6

BRIKOWSKI, TOM HARRY. "A QUANTITATIVE ANALYSIS OF HYDROTHERMAL CIRCULATION AROUND MID-OCEAN RIDGE MAGMA CHAMBERS". Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184128.

Pełny tekst źródła
Streszczenie:
Hydrothermal activity is one of the dominant processes affecting the chemical and thermal evolution of oceanic crust at the mid-ocean ridge (MOR), but little is known about the sub-surface portions of ridge hydrothermal systems. These systems can be investigated using numerical modeling techniques, and models of two-dimensional cross-sections are utilized in this study to investigate the behavior of MOR hydrothermal systems. The influence of magma chamber geometry is explored by modeling two extremes of proposed geometry. Seismological evidence supports a dike-like 2 km half-width chamber, and models of this chamber indicate that: (1) complete crystallization of the magma requires 30,000 years, (2) hydrothermal upflow and hot springs are concentrated in a narrow band within 1.5 km of the ridge axis for the lifetime of the system, (3) a large hydrothermal cell forms and remains centered above the distal tip of the intrusion for the lifetime of the system, (4) effective hydrothermal activity ends by 70,000 yrs. Petrological evidence supports a wide sill-like chamber 15 km in half-width, and models of this chamber indicate that: (1) complete crystallization of the magma requires 100,000 yrs, (2) hydrothermal vents are present at the ridge axis, but most of the vents are located 5-10 km away from the axis, (3) a large hydrothermal cell develops at the distal tip of the magma chamber, while a series of small but vigorous cells develops directly above the intrusion, both features migrate toward the ridge axis as the magma solidifies, (4) effective hydrothermal activity ends by 170,000 yrs. Substantially different hydrothermal systems develop around these two chamber geometries and comparison of the models shows this is because different patterns of near-critical P-T conditions developed around them. The fundamental influence on the nature and pattern of hydrothermal circulation at MOR is the distribution of near-critical conditions.
Style APA, Harvard, Vancouver, ISO itp.
7

Cirano, Mauro School of Mathematics UNSW. "Wintertime Circulation within the Southeast Indian Ocean: a Numerical Study". Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17820.

Pełny tekst źródła
Streszczenie:
A numerical study is made of the wintertime circulation within the Southeast Indian Ocean (SEIO). The downwelling favourable winds result in a continuous eastward Coastal Current (CC) extending from Cape Leeuwin to the eastern coast of Tasmania, where it forms a confluence with the south branch of the East Australian Current. An additional forcing mechanism for the CC is the Leeuwin Current in the western part of the domain. The study here is divided in two parts: (1) available data and the wintertime averaged results from the Ocean Circulation and Climate Advanced Model (OCCAM) are analysed to provide a first order description of the large-scale circulation; (2) a high resolution model (Princeton Ocean Model) is nested within OCCAM to examine the shelf-slope circulation within the eastern SEIO. The nested model is forced with climatological monthly average winds and several experiments were run to simulate the effects of surface fluxes of density, enhanced bottom friction and stronger winds. In summary, the shelf-slope circulation is governed by a surface south-eastward CC that carries around 2 Sv and reaches velocities of up to 50 cm/s, where the shelf is narrowest. The core of the current is generally constrained to the shelf-break region. Zonal winds and geostrophic control of the CC lead to a transport of 1 Sv through Bass Strait and a north-eastward jet that is directed into the strait between King Is. and Tasmania. Further south, the CC is poleward and known as the Zeehan Current (ZC). Between Cape Leeuwin and Tasmania and over the slope region, a westward current (the Flinders Current) is found at depths of 500-1000 m and has an associated transport of 5-7 Sv. The current is shown to result from a northward Sverdrup transport in the deep ocean. Meso-scale eddies are shown to result from baroclinic instability and have wavelengths of around 250 km and transports of 3-4 Sv, and can dominate the slope circulation. A comparison of the numerical results is also made with two current meter data sets and results show an interannual variability in the ZC strength, that is probably related to ENSO.
Style APA, Harvard, Vancouver, ISO itp.
8

Duhaut, Thomas H. A. "Wind-driven circulation : impact of a surface velocity dependent wind stress". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101117.

Pełny tekst źródła
Streszczenie:
The use of an ocean surface velocity dependent wind stress is examined in the context of a 3-layer double-gyre quasigeostrophic wind-driven ocean circulation model. The new wind stress formulation results in a large reduction of the power input by the wind into the oceanic circulation. This wind stress is proportional to a quadratic function of Ua--u o, where Ua is the wind at 10m above the ocean surface and uo is the ocean surface current. Because the winds are typically faster than the ocean currents, the impact of the ocean surface velocity on the wind stress itself is relatively small. However, the power input is found to be greatly reduced with the new formulation. This is shown by simple scaling argument and numerical simulations in a square basin. Our results suggest that the wind power input may be as much as 35% smaller than is typically assumed.
The ocean current signature is clearly visible in the scatterometer-derived wind stress fields. We argue that because the actual ocean velocity differs from the modeled ocean velocities, care must be taken in directly applying scatterometer-derived wind stress products to the ocean circulation models. This is not to say that the scatterometer-derived wind stress is not useful. Clearly the great spatial and temporal coverage make these data sets invaluable. Our point is that it is better to separate the atmospheric and oceanic contribution to the stresses.
Finally, the new wind stress decreases the sensitivity of the solution to the (poorly known) bottom friction coefficient. The dependence of the circulation strength on different values of bottom friction is examined under the standard and the new wind stress forcing for two topographic configurations. A flat bottom and a meridional ridge case are studied. In the flat bottom case, the new wind stress leads to a significant reduction of the sensitivity to the bottom friction parameter, implying that inertial runaway occurs for smaller values of bottom friction coefficient. The ridge case also gives similar results. In the case of the ridge and the new wind stress formulation, no real inertial runaway regime has been found over the range of parameters explored.
Style APA, Harvard, Vancouver, ISO itp.
9

Dail, Holly Janine. "Atlantic Ocean circulation at the last glacial maximum : inferences from data and models". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
10

Mazloff, Matthew R. "Production and analysis of a Southern Ocean state estimate". Thesis, Online version, 2006. http://hdl.handle.net/1912/1282.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--Joint Program in Oceanography/ Applied Ocean Science and Engineering, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, 2006.
"September 2006." Bibliography: p. 97-106.
Style APA, Harvard, Vancouver, ISO itp.
11

Ramondenc, Pierre. "Effect of seismicity and diking on hydrothermal circulation at mid-ocean ridges". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22619.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Germanovich, Leonid; Committee Co-Chair: Lowell, Robert; Committee Member: Di Iorio, Daniela; Committee Member: Huang, Haiying; Committee Member: Rix, Glenn; Committee Member: Xu, Wenyue.
Style APA, Harvard, Vancouver, ISO itp.
12

Zhai, Ping Ph D. Massachusetts Institute of Technology. "Buoyancy-driven circulation in the Red Sea". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95561.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 175-180).
This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism and spreading of Red Sea Overflow Water (RSOW) in the Red Sea. The preconditions required for open-ocean convection, which is suggested to be the formation mechanism of RSOW, are examined. The RSOW is identified and tracked as a layer with minimum potential vorticity and maximum chlorofluorocarbon-12. The pathway of the RSOW is also explored using numerical simulation. If diffusivity is not considered, the production rate of the RSOW is estimated to be 0.63 Sv using Walin's method. By comparing this 0.63 Sv to the actual RSOW transport at the Strait of Bab el Mandeb, it is implied that the vertical diffusivity is about 3.4 x10-5 m 2 s-1. The second part of the thesis studies buoyancy-forced circulation in an idealized Red Sea. Buoyancy-loss driven circulation in marginal seas is usually dominated by cyclonic boundary currents on f-plane, as suggested by previous observations and numerical modeling. This thesis suggests that by including [beta]-effect and buoyancy loss that increases linearly with latitude, the resultant mean Red Sea circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In mid-basin, the northward surface flow crosses from the western boundary to the eastern boundary. The observational support is also reviewed. The mechanism that controls the crossover of boundary currents is further explored using an ad hoc analytical model based on PV dynamics. This ad hoc analytical model successfully predicts the crossover latitude of boundary currents. It suggests that the competition between advection of planetary vorticity and buoyancy-loss related term determines the crossover latitude. The third part of the thesis investigates three mechanisms that might account for eddy generation in the Red Sea, by conducting a series of numerical experiments. The three mechanisms are: i) baroclinic instability; ii) meridional structure of surface buoyancy losses; iii) cross-basin wind fields.
by Ping Zhai.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
13

Brown, Jaclyn Nicole School of Mathematics UNSW. "The kinematics and dynamics of cross-hemispheric flow in the Central and Eastern Equatorial Pacific". Awarded by:University of New South Wales. School of Mathematics, 2005. http://handle.unsw.edu.au/1959.4/20831.

Pełny tekst źródła
Streszczenie:
This thesis concerns two topics: the kinematics of Pacific cross-equatorial flow ??? the location, timing and magnitude of the flow; and their dynamics???what are the driving forces controlling the flow? Despite extensive observations in the central and eastern Pacific, observations of these flows remain contradictory. We use output from an Ocean General Circulation Model (OGCM) viewed from a Lagrangian framework on density layers. This addresses the problem of high variability due to features such as Tropical Instability Waves. The annual mean flow is found to be southward nearly everywhere, east of 140??W. Flow becomes stronger in the second half of the year due to a bolus transport of very light surface water, introduced by Tropical Instability Waves. A Tropical Cell pattern occurs along the equator that does not require diapycnal downwelling. From 160??E to 160??W the annual mean flow is northward, occurring mostly in the mixed layer, appearing to originate partly from the Equatorial Undercurrent surfacing in the east. The northward flow is strongest in March and becomes southward in September. The wind stress and nonlinear terms are shown to be the key driving features, with a prescribed biharmonic Smagorinsky horizontal friction scheme having negligible impact. From 160??E to 160??W, the flow is partly accounted for by an Ekman forcing, with the curl of the nonlinear term providing a crucial additional torque, more than doubling the magnitude in some instances. From 160??W to 120??W the wind stress curl provides a weak southward flow of about 1 Sv, which increases by the nonlinear addition to around 5 Sv. The curl of the steady component of the nonlinear term, derived from annual mean currents, is similar in structure to the total nonlinear term, but higher in magnitude. The structure of the variable term, which was mostly of opposite sign to the steady term, suggests damping occurs in place of friction. While our study is limited to an examination of the model's characteristics, our results provide important clues to the observed flow patterns not resolved by present-day measurements. This study also highlights the importance of time-space variability and both horizontal and vertical density structure in controlling the flow and its feedback on the system.
Style APA, Harvard, Vancouver, ISO itp.
14

Hsu, Wei-Ching. "The variability and seasonal cycle of the Southern Ocean carbon flux". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49079.

Pełny tekst źródła
Streszczenie:
Both physical circulation and biogeochemical characteristics are unique in the Southern Ocean (SO) region, and are fundamentally different from those of the northern hemisphere. Moreover, according to previous research, the oceanic response to the trend of the Southern Annual Mode (SAM) has profound impacts on the future oceanic uptake of carbon dioxide in the SO. In other words, the climate and circulation of the SO are strongly coupled to the overlying atmospheric variability. However, while we have understanding on the SO physical circulation and have the ability to predict the future changes of the SO climate and physical processes, the link between the SO physical processes, the air-sea carbon flux, and correlated climate variability remains unknown. Even though scientists have been studying the spatial and temporal variability of the SO carbon flux and the associated biogeochemical processes, the spatial patterns and the magnitudes of the air-sea carbon flux do not agree between models and observations. Therefore, in this study, we utilized a modified version of a general circulation model (GCM) to performed realistic simulations of the SO carbon on seasonal to interannual timescales, and focused on the crucial physical and biogeochemical processes that control the carbon flux. The spatial pattern and the seasonal cycle of the air-sea carbon dioxide flux is calculated, and is broadly consistent with the climatological observations. The variability of air-sea carbon flux is mainly controlled by the gas exchange rate and the partial pressure of carbon dioxide, which is in turn controlled by the compensating changes in temperature and dissolved inorganic carbon. We investigated the seasonal variability of dissolved inorganic carbon based on different regional processes. Furthermore, we also investigated the dynamical adjustment of the surface carbon flux in response to the different gas exchange parameterizations, and conclude that parameterization has little impact on spatially integrated carbon flux. Our simulation well captured the SO carbon cycle variability on seasonal to interannual timescales, and we will improve our model by employ a better scheme of nutrient cycle, and consider more nutrients as well as ecological processes in our future study.
Style APA, Harvard, Vancouver, ISO itp.
15

Craft, Kathleen L. "Boundary layer models of hydrothermal circulation on Earth and Mars". Thesis, Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26574.

Pełny tekst źródła
Streszczenie:
Continental and submarine hydrothermal systems are commonly found around the world. Similar systems that sustain water or other fluids are also likely to exist in planetary bodies throughout the solar system. Also, terrestrial submarine systems have been suggested as the locations of the first life on Earth and may, therefore, provide indications of where to find life on other planetary bodies. The study of these systems is vital to the understanding of planetary heat transfer, chemical cycling, and biological processes; hence hydrothermal processes play a fundamental role in planetary evolution. In this thesis, three particular types of hydrothermal systems are investigated through the development of mathematical models: (1) terrestrial low-temperature diffuse flows at mid-oceanic ridges (MORs), (2) submarine near-axis convection on Earth, and (3) convection driven by magmatic intrusives on Mars. Model set-ups for all systems include a two-dimensional space with a vertical, hot wall, maintained at constant temperature, located adjacent to a water-saturated porous medium at a lower temperature. By assuming that convection occurs vigorously and within a thin layer next to the hot wall, boundary layer theory is applicable. The models provide steady-state, single-phase estimates of the total heat and mass transfer rates in each scenario over permeability ranges of 10-14 m2 to 10-10 m2 for the submarine systems and 10-14 m2 to 10-8 m2 for the Martian systems. Heat output results derived from the boundary layer model suggest that diffuse flow on MORs contributes 50% or less of heat output to the ridge system, which falls at the low end of observations. For the near-axis model, results found that heat transfer in the hydrothermal boundary layer was greater than the input from steady state generation of the oceanic crust by seafloor spreading. This suggests that the size of the mushy zone evolves with time. Heat output and fluid flux calculations for Martian systems show that fluid outflow adjacent to a single intrusion is too small to generate observed Martian surface features in a reasonable length of time.
Style APA, Harvard, Vancouver, ISO itp.
16

Zhang, Fan. "Changing seasonality of convective events in the Labrador Sea". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51896.

Pełny tekst źródła
Streszczenie:
The representation of deep convection in ocean models is a fundamental challenge for climate science. Here a regional simulation of the Labrador Sea circulation and convective activity obtained with the Regional Oceanic Modeling System (ROMS) over the period 1980-2009 is used to characterize the response of convection to atmospheric forcing and the variability in its seasonal cycle. This integration compares well with the sparse in time and space hydrographic surveys and ARGO data (Luo et al. 2012). It is found that convection in the convective region of the Labrador Sea has experienced variability in three key aspects over the 30 years considered. First, the magnitude of convection varies greatly at decadal scales. This aspect is supported by the in-situ observations. Second, the initiation and peak of convection (i.e. initiation and maximum) shift by two to three weeks between strong and weak convective years. Third, the duration of convection varies by approximately one month between strong and weak years. The last two changes are associated to the variability of winter and spring time heat fluxes in the Labrador Sea, while the first results from changes in both atmospheric heat fluxes and oceanic conditions through the inflow of warm Irminger Water from the boundary current system to the basin interior. Changes in heat fluxes over the Labrador Sea convective region are strongly linked to large scale modes of variability, the North Atlantic Oscillation and Arctic Oscillation. Correlations between the mode indices and the local heat fluxes in the convective area are largest in winter during strong, deep events and in spring whenever convection is shallow.
Style APA, Harvard, Vancouver, ISO itp.
17

Horwitz, Rachel Mandy. "The effect of stratification on wind-driven, cross-shelf circulation and transport on the inner continental shelf". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77779.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 209-215).
Observations from a three-year field program on the inner shelf south of Martha's Vineyard, MA and a numerical model are used to describe the effect of stratification on inner shelf circulation, transport, and sediment resuspension height. Thermal stratification above the bottom mixed layer is shown to cap the height to which sediment is resuspended. Stratification increases the transport driven by cross-shelf wind stresses, and this effect is larger in the response to offshore winds than onshore winds. However, a one-dimensional view of the dynamics is not sufficient to explain the relationship between circulation and stratification. An idealized, cross-shelf transect in a numerical model (ROMS) is used to isolate the effects of stratification, wind stress magnitude, surface heat flux, cross-shelf density gradient, and wind direction on the inner shelf response to the cross-shelf component of the wind stress. In well mixed and weakly stratified conditions, the cross-shelf density gradient can be used to predict the transport efficiency of the cross-shelf wind stress. In stratified conditions, the presence of an along-shelf wind stress component makes the inner shelf response to cross-shelf wind stress strongly asymmetric.
by Rachel Mandy Horwitz.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
18

Verdy, Ariane. "Variability of zooplankton and sea surface temperature in the Southern Ocean". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39197.

Pełny tekst źródła
Streszczenie:
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006.
Includes bibliographical references (p. 69-74).
Interactions between physical and biological processes in the Southern Ocean have significant impacts on local ecosystems as well as on global climate. In this thesis, I present evidence that the Southern Ocean circulation affects the variability of zooplankton and sea surface temperature, both of which are involved in air-sea exchanges of carbon dioxide. First, I examine the formation of spatial patterns in the distribution of Antarctic krill (Euphausia superba) resulting from social behavior. Turbulence of the flow is found to provide favorable conditions for the evolution social behavior in an idealized biological-physical model. Second, I analyze observations of sea surface temperature variability in the region of the Antarctic circumpolar current. Results suggest that propagating anomalies can be explained as a linear response to local atmospheric forcing by the Southern Annular Mode and remote forcing by El-Nifio southern oscillation, in the presence of advection by a mean flow.
by Ariane Verdy.
S.M.
Style APA, Harvard, Vancouver, ISO itp.
19

Wortham, Cimarron James Lemuel IV. "A multi-dimensional spectral description of ocean variability with applications". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79296.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2013.
"February 2013." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 175-184).
Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200-10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal [omega] -² power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies.
by Cimarron James Lemuel Wortham, IV.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
20

Verdy, Ariane. "Dynamics of marine zooplankton : social behavior, ecological interactions, and physically-induced variability". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43158.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008.
Includes bibliographical references (p. [221]-232).
Marine ecosystems reflect the physical structure of their environment and the biological processes they carry out. This leads to spatial heterogeneity and temporal variability, some of which is imposed externally and some of which emerges from the ecological mechanisms themselves. The main focus of this thesis is on the formation of spatial patterns in the distribution of zooplankton arising from social interactions between individuals. In the Southern Ocean, krill often assemble in swarms and schools, the dynamics of which have important ecological consequences. Mathematical and numerical models are employed to study the interplay of biological and physical processes that contribute to the observed patchiness. The evolution of social behavior is simulated in a theoretical framework that includes zooplankton population dynamics, swimming behavior, and some aspects of the variability inherent to fluid environments. First, I formulate a model of resource utilization by a stage-structured predator population with density-dependent reproduction. Second, I incorporate the predator-prey dynamics into a spatially-explicit model, in which aggregations develop spontaneously as a result of linear instability of the uniform distribution. In this idealized ecosystem, benefits related to the local abundance of mates are offset by the cost of having to share resources with other group members. Third, I derive a weakly nonlinear approximation for the steady-state distributions of predator and prey biomass that captures the spatial patterns driven by social tendencies. Fourth, I simulate the schooling behavior of zooplankton in a variable environment; when turbulent flows generate patchiness in the resource field, schools can forage more efficiently than individuals.
(cont.) Taken together, these chapters demonstrate that aggregation/ schooling can indeed be the favored behavior when (i) reproduction (or other survival measures) increases with density in part of the range and (ii) mixing of prey into patches is rapid enough to offset the depletion. In the final two chapters, I consider sources of temporal variability in marine ecosystems. External perturbations amplified by nonlinear ecological interactions induce transient ex-cursions away from equilibrium; in predator-prey dynamics the amplitude and duration of these transients are controlled by biological processes such as growth and mortality. In the Southern Ocean, large-scale winds associated with ENSO and the Southern Annular Mode cause convective mixing, which in turn drives air-sea fluxes of carbon dioxide and oxygen. Whether driven by stochastic fluctuations or by climatic phenomena, variability of the biogeochemical/physical environment has implications for ecosystem dynamics.
by Ariane Verdy.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
21

Kolandaivelu, Kannikha Parameswari. "Hydrothermal Transport in the Panama Basin and in Brothers Volcano using Heat Flow, Scientific Deep Sea Drilling and Mathematical Models". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/99631.

Pełny tekst źródła
Streszczenie:
Two-thirds of submarine volcanism in the Earth's ocean basins is manifested along mid-ocean ridges and the remaining one-third is revealed along intraoceanic arcs and seamounts. Hydrothermal systems and the circulation patterns associated with these volcanic settings remove heat from the solid Earth into the deep ocean. Hydrothermal circulation continues to remove and redistribute heat in the crust as it ages. The heat and mass fluxes added to the deep ocean influence mixing in the abyssal ocean thereby affecting global thermohaline circulation. In addition to removing heat, hydrothermal processes extract chemical components from the oceanic and carry it to the surface of the ocean floor, while also removing certain elements from seawater. The resulting geochemical cycling has ramifications on the localized mineral deposits and also the biota that utilize these chemical fluxes as nutrients. In this dissertation, I analyze observed conductive heat flow measurements in the Panama Basin and borehole thermal measurements in Brothers Volcano and use mathematical models to estimate advective heat and mass fluxes, and crustal permeability. In the first manuscript, I use a well-mixed aquifer model to explain the heat transport in a sediment pond in the inactive part of the Ecuador Fracture Zone. This model yields mass fluxes and permeabilities similar to estimates at young upper oceanic crust suggesting vigorous convection beneath the sediment layer. In the second manuscript, I analyze the conductive heat flow measurements made in oceanic between 1.5 and 5.7 Ma on the southern flank of the Costa Rica Rift. These data show a mean conductive heat deficit of 70%, and this deficit is explained by various hydrothermal advective transport mechanisms, including outcrop to outcrop circulation, transport through faults, and redistribution of heat by flow of hydrothermal fluids in the basement. In the third manuscript, I analyze the borehole temperature logs for two sites representative of recharge and discharge areas of hydrothermal systems in the Brothers Volcano. I develop upflow and downflow models for fluids in the borehole and formation resulting in estimated of flow rates and permeabilities. All three independent research works are connected by the common thread of utilizing relatively simple mathematical concepts to get new insights into hydrothermal processes in oceanic crust.
PHD
Style APA, Harvard, Vancouver, ISO itp.
22

Schanze, Julian J. (Julian Johannes). "The production of temperature and salinity variance and covariance : implications for mixing". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79294.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 187-195).
Large-scale thermal forcing and freshwater fluxes play an essential role in setting temperature and salinity in the ocean. A number of recent estimates of the global oceanic freshwater balance as well as the global oceanic surface net heat flux are used to investigate the effects of heat- and freshwater forcing at the ocean surface. Such forcing induces changes in both density and density-compensated temperature and salinity changes ('spice'). The ratio of the relative contributions of haline and thermal forcing in the mixed layer is maintained by large-scale surface fluxes, leading to important consequences for mixing in the ocean interior. In a stratified ocean, mixing processes can be either along lines of constant density (isopycnal) or across those lines (diapycnal). The contribution of these processes to the total mixing rate in the ocean can be estimated from the large-scale forcing by evaluating the production of thermal variance, salinity variance and temperature-salinity covariance. Here, I use new estimates of surface fluxes to evaluate these terms and combine them to generate estimates of the production of density and spice variance under the assumption of a linear equation of state. As a consequence, it is possible to estimate the relative importance of isopycnal and diapycnal mixing in the ocean. While isopycnal and diapycnal processes occur on very different length scales, I find that the surface-driven production of density and spice variance requires an approximate equipartition between isopycnal and diapycnal mixing in the ocean interior. In addition, consideration of the full nonlinear equation of state reveals that surface fluxes require an apparent buoyancy gain (expansion) of the ocean, which allows an estimate of the amount of contraction on mixing due to cabbeling in the ocean interior.
by Julian J. Schanze.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
23

He, Yanping. "Representations of boundary layer cloudiness and surface wind probability distributions in subtropical marine stratus and stratocumulus regions". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22585.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2007.
Committee Chair: Dr. Robert E. Dickinson; Committee Member: Dr. Irina Sokolik; Committee Member: Dr. Judth Curry; Committee Member: Dr. Peter Webster; Committee Member: Dr. Rong Fu.
Style APA, Harvard, Vancouver, ISO itp.
24

Chen, Chia-Jeng. "Hydro-climatic forecasting using sea surface temperatures". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48974.

Pełny tekst źródła
Streszczenie:
A key determinant of atmospheric circulation patterns and regional climatic conditions is sea surface temperature (SST). This has been the motivation for the development of various teleconnection methods aiming to forecast hydro-climatic variables. Among such methods are linear projections based on teleconnection gross indices (such as the ENSO, IOD, and NAO) or leading empirical orthogonal functions (EOFs). However, these methods deteriorate drastically if the predefined indices or EOFs cannot account for climatic variability in the region of interest. This study introduces a new hydro-climatic forecasting method that identifies SST predictors in the form of dipole structures. An SST dipole that mimics major teleconnection patterns is defined as a function of average SST anomalies over two oceanic areas of appropriate sizes and geographic locations. The screening process of SST-dipole predictors is based on an optimization algorithm that sifts through all possible dipole configurations (with progressively refined data resolutions) and identifies dipoles with the strongest teleconnection to the external hydro-climatic series. The strength of the teleconnection is measured by the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate ensemble hydro-climatic forecasts. The dipole teleconnection method is applied to the forecasting of seasonal precipitation over the southeastern US and East Africa, and the forecasting of streamflow-related variables in the Yangtze and Congo Rivers. These studies show that the new method is indeed able to identify dipoles related to well-known patterns (e.g., ENSO and IOD) as well as to quantify more prominent predictor-predictand relationships at different lead times. Furthermore, the dipole method compares favorably with existing statistical forecasting schemes. An operational forecasting framework to support better water resources management through coupling with detailed hydrologic and water resources models is also demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
25

Moore, A. M. "Data assimilation in ocean models". Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Martin, Matthew J. "Data assimilation in ocean circulation models with systematic errors". Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Chechelnitsky, Michael Y. (Michael Yurievich) 1972. "Adaptive error estimation in linearized ocean general circulation models". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/58516.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999.
Includes bibliographical references (p. 206-211).
Data assimilation methods, such as the Kalman filter, are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. In this study we address the problem of estimating model and measurement error statistics from observations. We start by testing the Myers and Tapley (1976, MT) method of adaptive error estimation with low-dimensional models. We then apply the MT method in the North Pacific (5°-60° N, 132°-252° E) to TOPEX/POSEIDON sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The MT method, closely related to the maximum likelihood methods of Belanger (1974) and Dee (1995), is shown to be sensitive to the initial guess for the error statistics and the type of observations. It does not provide information about the uncertainty of the estimates nor does it provide information about which structures of the error statistics can be estimated and which cannot. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). The CMA is both a powerful diagnostic tool for addressing theoretical questions and an efficient estimator for real data assimilation studies. It can be extended to estimate other statistics of the errors, trends, annual cycles, etc. Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. After removal of trends and annual cycles, the low frequency /wavenumber (periods> 2 months, wavelengths> 16°) TOPEX/POSEIDON sea level anomaly is of the order 6 cm2. The GCM explains about 40% of that variance. By covariance matching, it is estimated that 60% of the GCM-TOPEX/POSEIDON residual variance is consistent with the reduced state linear model. The CMA is then applied to TOPEX/POSEIDON sea level anomaly data and a linearization of a global GFDL GCM. The linearization, done in Fukumori et al.(1999), uses two vertical mode, the barotropic and the first baroclinic modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCMTOPEX/ POSEIDON residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the TIP signal, which are not part of the 20 by 10 GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simultaneous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
by Michael Y. Chechelnitsky.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
28

Vimont, Daniel J. "The seasonal footprinting mechanism in the CSIRO coupled general circulation models and in observations /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Springer, Scott R. "Dynamics of western boundary currents in simple models of low-latitude circulations /". Thesis, Connect to this title online; UW restricted, 1994. http://hdl.handle.net/1773/11010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kiss, Andrew Elek, i Andrew Kiss@anu edu au. "Dynamics of laboratory models of the wind-driven ocean circulation". The Australian National University. Research School of Earth Sciences, 2001. http://thesis.anu.edu.au./public/adt-ANU20011018.115707.

Pełny tekst źródła
Streszczenie:
This thesis presents a numerical exploration of the dynamics governing rotating flow driven by a surface stress in the " sliced cylinder " model of Pedlosky & Greenspan (1967) and Beardsley (1969), and its close relative, the " sliced cone " model introduced by Griffiths & Veronis (1997). The sliced cylinder model simulates the barotropic wind-driven circulation in a circular basin with vertical sidewalls, using a depth gradient to mimic the effects of a gradient in Coriolis parameter. In the sliced cone the vertical sidewalls are replaced by an azimuthally uniform slope around the perimeter of the basin to simulate a continental slope. Since these models can be implemented in the laboratory, their dynamics can be explored by a complementary interplay of analysis and numerical and laboratory experiments. ¶ In this thesis a derivation is presented of a generalised quasigeostrophic formulation which is valid for linear and moderately nonlinear barotropic flows over large-amplitude topography on an f-plane, yet retains the simplicity and conservation properties of the standard quasigeostrophic vorticity equation (which is valid only for small depth variations). This formulation is implemented in a numerical model based on a code developed by Page (1982) and Becker & Page (1990). ¶ The accuracy of the formulation and its implementation are confirmed by detailed comparisons with the laboratory sliced cylinder and sliced cone results of Griffiths (Griffiths & Kiss, 1999) and Griffiths & Veronis (1997), respectively. The numerical model is then used to provide insight into the dynamics responsible for the observed laboratory flows. In the linear limit the numerical model reveals shortcomings in the sliced cone analysis by Griffiths & Veronis (1998) in the region where the slope and interior join, and shows that the potential vorticity is dissipated in an extended region at the bottom of the slope rather than a localised region at the east as suggested by Griffiths & Veronis (1997, 1998). Welander's thermal analogy (Welander, 1968) is used to explain the linear circulation pattern, and demonstrates that the broadly distributed potential vorticity dissipation is due to the closure of geostrophic contours in this geometry. ¶ The numerical results also provide insight into features of the flow at finite Rossby number. It is demonstrated that separation of the western boundary current in the sliced cylinder is closely associated with a " crisis " due to excessive potential vorticity dissipation in the viscous sublayer, rather than insufficient dissipation in the outer western boundary current as suggested by Holland & Lin (1975) and Pedlosky (1987). The stability boundaries in both models are refined using the numerical results, clarifying in particular the way in which the western boundary current instability in the sliced cone disappears at large Rossby and/or Ekman number. A flow regime is also revealed in the sliced cylinder in which the boundary current separates without reversed flow, consistent with the potential vorticity " crisis " mechanism. In addition the location of the stability boundary is determined as a function of the aspect ratio of the sliced cylinder, which demonstrates that the flow is stabilised in narrow basins such as those used by Beardsley (1969, 1972, 1973) and Becker & Page (1990) relative to the much wider basin used by Griffiths & Kiss (1999). ¶ Laboratory studies of the sliced cone by Griffiths & Veronis (1997) showed that the flow became unstable only under anticyclonic forcing. It is shown in this thesis that the contrast between flow under cyclonic and anticyclonic forcing is due to the combined effects of the relative vorticity and topography in determining the shape of the potential vorticity contours. The vorticity at the bottom of the sidewall smooths out the potential vorticity contours under cyclonic forcing, but distorts them into highly contorted shapes under anticyclonic forcing. In addition, the flow is dominated by inertial boundary layers under cyclonic forcing and by standing Rossby waves under anticyclonic forcing due to the differing flow direction relative to the direction of Rossby wave phase propagation. The changes to the potential vorticity structure under strong cyclonic forcing reduce the potential vorticity changes experienced by fluid columns, and the flow approaches a steady free inertial circulation. In contrast, the complexity of the flow structure under anticyclonic forcing results in strong potential vorticity changes and also leads to barotropic instability under strong forcing. ¶ The numerical results indicate that the instabilities in both models arise through supercritical Hopf bifurcations. The two types of instability observed by Griffiths & Veronis (1997) in the sliced cone are shown to be related to the western boundary current instability and " interior instability " identified by Meacham & Berloff (1997). The western boundary current instability is trapped at the western side of the interior because its northward phase speed exceeds that of the fastest interior Rossby wave with the same meridional wavenumber, as discussed by Ierley & Young (1991). ¶ Numerical experiments with different lateral boundary conditions are also undertaken. These show that the flow in the sliced cylinder is dramatically altered when the free-slip boundary condition is used instead of the no-slip condition, as expected from the work of Blandford (1971). There is no separated jet, because the flow cannot experience a potential vorticity " crisis " with this boundary condition, so the western boundary current overshoots and enters the interior from the east. In contrast, the flow in the sliced cone is identical whether no-slip, free-slip or super-slip boundary conditions are applied to the horizontal flow at the top of the sloping sidewall, except in the immediate vicinity of this region. This insensitivity results from the extremely strong topographic steering near the edge of the basin due to the vanishing depth, which demands a balance between wind forcing and Ekman pumping on the upper slope, regardless of the lateral boundary condition. The sensitivity to the lateral boundary condition is related to the importance of lateral friction in the global vorticity balance. The integrated vorticity must vanish under the no-slip condition, so in the sliced cylinder the overall vorticity budget is dominated by lateral viscosity and Ekman friction is negligible. Under the free-slip condition the Ekman friction assumes a dominant role in the dissipation, leading to a dramatic change in the flow structure. In contrast, the much larger depth variation in the sliced cone leads to a global vorticity balance in which Ekman friction is always dominant, regardless of the boundary condition.
Style APA, Harvard, Vancouver, ISO itp.
31

Hines, Adrian. "Models of large-scale wind and buoyancy driven ocean circulation". Thesis, Keele University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Button, Peter. "Models for ocean waves". Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/14299.

Pełny tekst źródła
Streszczenie:
Includes bibliography.
Ocean waves represent an important design factor in many coastal engineering applications. Although extreme wave height is usually considered the single most important of these factors there are other important aspects that require consideration. These include the probability distribution of wave heights, the seasonal variation and the persistence, or duration, of calm and storm periods. If one is primarily interested in extreme wave height then it is possible to restrict one's attention to events which are sufficiently separated in time to be effectively independently (and possibly even identically) distributed. However the independence assumption is not tenable for the description of many other aspects of wave height behaviour, such as the persistence of calm periods. For this one has to take account of the serial correlation structure of observed wave heights, the seasonal behaviour of the important statistics, such as mean and standard deviation, and in fact the entire seasonal probability distribution of wave heights. In other words the observations have to be regarded as a time series.
Style APA, Harvard, Vancouver, ISO itp.
33

Warrior, Hari V. "Parameterization of the light models in various general ocean circulation models for shallow waters". [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Warrior, Hari. "Parameterization of the Light Models in Various General Ocean Circulation Models for shallow waters". Scholar Commons, 2004. https://scholarcommons.usf.edu/etd/1292.

Pełny tekst źródła
Streszczenie:
Solar energy is incident on the earth's surface in both short-wave and long-wave parts of the spectrum. The short-wave part of the spectrum is of special interest to oceanographers since the vertical distribution of temperature in the top layer of the ocean is mostly determined by the vertical attenuation of short-wave radiation. There are numerous studies regarding the temperature evolution as a function of time (see Chapter 2 for details). The diurnal and seasonal variation of the heat content (and hence temperature) of the ocean is explored in this thesis. The basis for such heat budget simulation lies in the fact that the heat budget is the primary driver of ocean currents (maybe secondary to wind effects) and these circulation features affect the biological and chemical effects of that region. The vertical attenuation of light (classified to be in the 300-700 nm range) in the top layer of the ocean has been parameterized by several authors. Simpson and Dickey (1981) in their paper have listed the various attenuation schemes in use till then. This includes a single-exponential form, a bimodal exponential form, and a spectral decomposition into nine spectral bands, each with their specific exponential functions with depth. The effects of vertical light attenuation have been investigated by integrating the light models into a 1D and a 3D turbulence closure model. The main part of the thesis is the inclusion of a bottom effect in the shallow waters. Bottom serves two purposes, it reflects some light based on its albedo and it radiates the rest of the light as heat. 1-D simulation including bottom effects clearly indicates the effect of light on the temperature profile and also the corresponding effect on salinity profiles. An extension of the study includes a 3D simulation of the heat budget and the associated circulation and hydrodynamics. Intense heating due to the bottom leads to the formation of hyper-saline waters that percolate down to depths of 50 m in the summer. Such plumes have been simulated by using a 3D numerical ocean model and it is consistent with observations from the Bahamas banks.
Style APA, Harvard, Vancouver, ISO itp.
35

Dubois, Clotilde. "The role of diapycnal mixing in coupled atmosphere-ocean general circulation models". Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/63133/.

Pełny tekst źródła
Streszczenie:
The value of ocean diapycnal diffusivity (v) sets the rate at which dense bottom water can be mixed up through the stratified water column and thus plays an important role in the meridional overturning circulation (MOC). Previous idealised experiments and simplified theory suggest that the strength of the MOC and the ocean heat transport scale with the v. This study investigates the dependence of the MOC and other parameters on v using atmosphere-ocean general circulation models (AOGCM). Firstly, the dependence of the MOC strength on v is studied using a low resolution AOGCM with realistic geometry, FORTE, with spatially constant v values ranging from 0.1 cm2/s to an unrealistic high value of 5 cm2/s. At the cyclostationary state, global MOC strength is found to scale with v (in agreement with previous studies) according to a power law of 0.5. No power law is found for the MOC in the individual basins. The increase in MOC strength in the Atlantic and Pacific Oceans is associated with an increase in the ocean heat transport. The atmosphere responds to the change in the ocean state by a decrease of its energy transport and surface winds. Only a partial compensation is found between the ocean and atmosphere energy transport. The strength of v is found to have a strong impact on coupled phenomena, such as a cessation of El Niño at high v. Secondly, similar experiments are conducted with a state-of-the-art AOGCM, ECHAM5/ MPIOM. In this model, v is derived from a constant background diapycnal diffusion (b), wind induced mixing, the Richardson number and the convective adjustment. A set of 3 coupled experiments is conducted, with b = 0.1, 0.25 and 1 cm2/s. The scaling law from simple theory and the previous experiments with FORTE is not observed with this coupled model. At the cyclostationary state, the MOC strength weakens by 16% as b increases from 0.1 to 1 cm2/s. This behavior is not found when the experiments are repeated with an ocean-only model. The reduction in MOC in the coupled model is linked to a strong reduction in the convective mixing at high latitudes. The convective mixing is reduced by a continuous strong freshening in the Arctic region due to an increase in surface air temperature and melting of the sea-ice in the coupled experiments, which is not observed in the ocean-only experiments. The responses of the two coupled models show many similarities as b increases. Both models show convection in the Pacific for high values of b. The main difference is the response of the MOC in the Atlantic is linked to the different locations of the deep convection and their relative changes in the models. I conclude that the diapycnal mixing and the ocean-atmosphere interactions both control the strength of the MOC, and their influences cannot be considered separately.
Style APA, Harvard, Vancouver, ISO itp.
36

Anderson, Laurence Anthony. "The determination of Redfield ratios for use in global oceanic nutrient cycle models". [Princeton, N.J.] : Princeton University, Dept. of Geological and Geophysical Sciences, Program in Atmospheric and Oceanic Sciences, 1993. http://catalog.hathitrust.org/api/volumes/oclc/75401374.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Osborn, Timothy J. "Internally-generated variability in some ocean models on decadal to millennial timescales". Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

De, Neeve Eileen O'Brien. "Bernard Lonergan's "Circulation analysis" and macrodynamics". Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74336.

Pełny tekst źródła
Streszczenie:
Bernard Lonergan's economic writings have not been fully evaluated by economists although two recent papers by Burley (1989a, 1989b) show that work has begun. The purpose of this dissertation, therefore, is to situate Lonergan's (1944) economics essay, Circulation Analysis, in the history of economic thought of the period as well as to present a Lonerganian cycle model.
Circulation Analysis examines fundamental macrodynamic processes to explain fluctuations. It was written in the early 1940s following a period of controversy and debate that led to the current paradigms of economic dynamics. The two sides of the debate are exemplified by Harrod (1936) and Hayek (1933 (1928), 1939), in particular. The controversy ended with World War II and the emerging hegemony of the Anglo-American approach, which separated macrodynamics into growth theory (long-run supply problems), and stabilization theory (short-run demand problems).
This dissertation argues that this dichotomy is unsatisfactory and proposes Lonergan's pure cycle as an alternative paradigm. Lonergan's pure cycle restores the importance of supply-side dynamics in the short-run, without denying the primacy of demand issues in the analysis of deviations. A Lonerganian approach views demand shocks as essentially monetary, but also contends that the distribution of nominal income can cause shocks, if it is not synchronized with changes in real variables.
In this thesis a Lonerganian model is presented that uses a Kydland-Prescott (1982) type of "time-to-build" technology. The model is subjected to permanent productivity shocks to investment, which explain, with a lag, equilibrium output. The monetary and distributional shocks to demand, which are temporary, can then explain the deviation of actual output from its equilibrium value. The model uses a Beveridge and Nelson (1981) approach, which specifies changes in growth rates of variables as a function of permanent and temporary shocks. The shocks are identified because the model is recursive: first, the productivity shock determines investment and equilibrium output; then, the monetary shock determines prices and sales of consumer goods. Simulation results are presented.
Style APA, Harvard, Vancouver, ISO itp.
39

Thorpe, Sally Elaine. "Variability of the Southern Antarctic circumpolar current in the Scotia Sea and its implications for transport to South Georgia". Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368389.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Neveu, Emilie. "Applications des méthodes multigrilles à l'assimilation de données en géophysique". Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00693486.

Pełny tekst źródła
Streszczenie:
Depuis ces trente dernières années, les systèmes d'observation de la Terre et les modèles numériques se sont perfectionnés et complexifiés pour nous fournir toujours plus de données, réelles et numériques. Ces données, de nature très diverse, forment maintenant un ensemble conséquent d'informations précises mais hétérogènes sur les structures et la dynamique des fluides géophysiques. Dans les années 1980, des méthodes d'optimisation, capables de combiner les informations entre elles, ont permis d'estimer les paramètres des modèles numériques et d'obtenir une meilleure prévision des courants marins et atmosphériques. Ces méthodes puissantes, appelées assimilation variationnelle de données, peinent à tirer profit de la toujours plus grande complexité des informations de par le manque de puissance de calcul disponible. L'approche, que nous développons, s'intéresse à l'utilisation des méthodes multigrilles, jusque là réservées à la résolution de systèmes d'équations différentielles, pour résoudre l'assimilation haute résolution de données. Les méthodes multigrilles sont des méthodes de résolution itératives, améliorées par des corrections calculées sur des grilles de plus basses résolutions. Nous commençons par étudier dans le cas d'un modèle linéaire la robustesse de l'approche multigrille et en particulier l'effet de la correction par grille grossière. Nous dérivons ensuite les algorithmes multigrilles dans le cadre non linéaire. Les deux types d'algorithmes étudiés reposent d'une part sur la méthode de Gauss Newton multigrille et d'autre part sur une méthode sans linéarisation globale : le Full Approximation Scheme (FAS). Ceux-ci sont appliqués au problème de l'assimilation variationnelle de données dans le cadre d'une équation de Burgers 1D puis d'un modèle Shallow-water 2D. Leur comportement est analysé et comparé aux méthodes plus traditionnelles de type incrémentale ou multi-incrémentale.
Style APA, Harvard, Vancouver, ISO itp.
41

Webster, Mort David, Jeffery Scott, Andrei P. Sokolov i Peter H. Stone. "Estimating Probability Distributions from Complex Models with Bifurcations: The Case of Ocean Circulation Collapse". MIT Joint Program on the Science and Policy of Global Change, 2006. http://hdl.handle.net/1721.1/32540.

Pełny tekst źródła
Streszczenie:
Studying the uncertainty in computationally expensive models has required the development of specialized methods, including alternative sampling techniques and response surface approaches. However, existing techniques for response surface development break down when the model being studied exhibits discontinuities or bifurcations. One uncertain variable that exhibits this behavior is the thermohaline circulation (THC) as modeled in three-dimensional general circulation models. This is a critical uncertainty for climate change policy studies. We investigate the development of a response surface for studying uncertainty in THC using the Deterministic Equivalent Modeling Method, a stochastic technique using expansions in orthogonal polynomials. We show that this approach is unable to reasonably approximate the model response. We demonstrate an alternative representation that accurately simulates the model’s response, using a basis function with properties similar to the model’s response over the uncertain parameter space. This indicates useful directions for future methodological improvements.
Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).
This research was supported in part by the Methods and Models for Integrated Assessments Program of the National Science Foundation, Grant ATM-9909139, by the Office of Science (BER), U.S. Department of Energy, Grant Nos. DE-FG02-02ER63468 and DE-FG02-93ER61677, and by the MIT Joint Program on the Science and Policy of Global Change (JPSPGC).
Style APA, Harvard, Vancouver, ISO itp.
42

Kuo, Yu-Heng. "Errors caused by incompatible wind and buoyancy forcing in the ocean general circulation models". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23658.

Pełny tekst źródła
Streszczenie:
Approved for public release; distribution is unlimited
The Geophysical Fluid Dynamics Laboratory Modular Ocean Model (GFDL MOM) is used to investigate the model difference between compatible and incompatible surface wind and buoyancy forcing. The atmosphere is a physical system in which surface wind and temperature fields are related, however in most ocean numerical models, the wind stress and buoyancy forcing are usually specified separately, i.e., no constraint between the surface wind stress and surface air temperature is considered. In reality, only one of these two fields can be prescribed in the atmosphere-driven ocean models. When the surface wind field is prescribed, the surface air temperature should be derived, and vice versa. If the two related fields are treated as totally independent in forcing the ocean models the results will be distorted. Since the model solutions depend upon the atmospheric forcing, it is important that we study the compatibility between the wind and buoyancy forcings and the effect which incompatibility might have on the ocean numerical models. This study shows that the surface wind and buoyancy forcing widely used in ocean numerical models are incompatible. Such an incompatibility results in 21 % error in the total northward transport of heat, 16% error in the total northward transport of salt, 25% error in v velocity, and 16% error in w velocity.
Style APA, Harvard, Vancouver, ISO itp.
43

Lee, Craig M. "Observations and models of upper ocean response to atmospheric forcing : wind driven flow, surface heating and near-inertial wave interactions with mesoscale currents /". Thesis, Connect to this title online; UW restricted, 1995. http://hdl.handle.net/1773/11039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Burrowes, Kelly Suzanne. "An anatomically-based mathematical model of the human pulmonary circulation". Thesis, University of Auckland, 2005. http://hdl.handle.net/2292/70.

Pełny tekst źródła
Streszczenie:
This research develops a detailed, anatomically-based model of the human pulmonary circulatory system from the large scale arterial and venous vessels, to the microcirculatory alveolar-capillary unit. Flow is modelled through these networks enabling structure-function simulations to be conducted to increase our understanding of this complex system.Voronoi meshing is applied in a novel technique to represent the three-dimensional structure of the alveoli, and the corresponding capillary plexus intimately wrapped over the alveolar surface. This technique is used to create the alveolar-capillary structure of a single alveolar sac, closely representing the geometry measured in anatomical studies.A Poiseuille type flow solution technique is implemented within the capillary geometry. The solution procedure incorporates calculations of red and white blood cell transit time frequencies. Novel predictions of regional microcirculatory blood cell transit in the anatomically-realistic alveolar-capillary model compare well with experimental measures.An anatomically-based finite element model of the arterial and venous vessels, down to the level of their accompanying respiratory bronchioles, is created using a combination of imaging and computational algorithms, which includes generation of supernumerary vessels. Large arterial and venous vessels and lobar geometries are derived from multi-detector row x-ray computed tomography (MDCT) scans. From these MDCT vessel end points a volume-filling branching algorithm is used to generate the remaining blood vessels that accompany the airways into the MDCT-derived host volume. An empirically-based algorithm generates supernumerary blood vessels - unaccompanied by airways that branch to supply the closest parenchymal tissue. This new approach produces a model of pulmonary vascular geometry that is far more anatomically-realistic than previous models in the literature.A reduced form of the Navier-Stokes equations are solved within the vascular geometries to yield pressure, radius, and velocity distributions. Inclusion of a gravitational term in the governing equations allows application of the model in investigating the relative effects of gravity, structure, and posture on regional perfusion.Gravity is shown to have a lesser influence on blood flow distribution than suggested by earlier experimental studies, and by comparison between different model solutions the magnitude of the gravitational flow gradient is predicted. This study clearly demonstrates the significant role that symmetric vascular branching has in determining the distribution of blood flow. The influence of branching geometry is revealed by solution in symmetric, human, and ovine vascular models.
Style APA, Harvard, Vancouver, ISO itp.
45

Arbic, Brian K. "Generation of mid-ocean eddies : the local baroclinic instability hypothesis". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/53047.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000.
Includes bibliographical references (p. 284-290).
by Brian Kenneth Arbic.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
46

Ropp, David L. "Numerical study of shallow water models with variable topography". Diss., The University of Arizona, 2000. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2000_165_sip1_w.pdf&type=application/pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Arnold, Robert John. "Mathematical modelling of wind effects on closed lakes /". Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09pha758.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Amrhein, Daniel Edward. "Inferring ocean circulation during the last glacial maximum and last deglaciation using data and models". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107085.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2016.
Ph. D. Joint Program in Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 179-192).
Since the Last Glacial Maximum (LGM, ~ 20,000 years ago) air temperatures warmed, sea level rose roughly 130 meters, and atmospheric concentrations of carbon dioxide increased. This thesis combines global models and paleoceanographic observations to constrain the ocean's role in storing and transporting heat, salt, and other tracers during this time, with implications for understanding how the modem ocean works and how it might change in the future. -- By combining a kinematic ocean model with "upstream" and "downstream" deglacial oxygen isotope time series from benthic and planktonic foraminifera, I show that the data are in agreement with the modem circulation, quantify their power to infer circulation changes, and propose new data locations. -- An ocean general circulation model (the MITgcm) constrained to fit LGM sea surface temperature proxy observations reveals colder ocean temperatures, greater sea ice extent, and changes in ocean mixed layer depth, and suggests that some features in the data are not robust. -- A sensitivity analysis in the MITgcm demonstrates that changes in winds or in ocean turbulent transport can explain the hypothesis that the boundary between deep Atlantic waters originating from Northern and Southern Hemispheres was shallower at the LGM than it is today.
by Daniel Edward Amrhein.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
49

Santoso, Agus Mathematics &amp Statistics Faculty of Science UNSW. "Evolution of climate anomalies and variability of Southern Ocean water masses on interannual to centennial time scales". Awarded by:University of New South Wales. School of Mathematics and Statistics, 2005. http://handle.unsw.edu.au/1959.4/33355.

Pełny tekst źródła
Streszczenie:
In this study the natural variability of Southern Ocean water masses on interannual to centennial time scales is investigated using a long-term integration of the Commonwealth Scientic and Industrial Research Organisation (CSIRO) coupled climate model. We focus our attention on analysing the variability of Antarctic IntermediateWater (AAIW), Circumpolar DeepWater (CDW), and Antarctic Bottom Water (AABW). We present an analysis of the dominant modes of temperature and salinity (T - S) variability within these water masses. Climate signals are detected and analysed as they get transmitted into the interior from the water mass formation regions. Eastward propagating wavenumber-1, -2, and -3 signals are identied using a complex empirical orthogonal function (CEOF) analysis along the core of the AAIW layer. Variability in air-sea heat uxes and ice meltwater rates are shown by heat and salt budget analyses to control variability of Antarctic Surface Water where density surfaces associated with AAIW outcrop. The dominant mode in the CDW layer is found to exhibit an interbasin-scale of variability originating from the North Atlantic, and propagating southward into the Southern Ocean. Salinity dipole anomalies appear to propagate around the Atlantic meridional overturning circulation with the strengthening and weakening of North Atlantic Deep Water formation. In the AABW layer, T - S anomalies are shown to originate from the southwestern Weddell Sea, driven by salinity variations and convective overturning in the region. It is also demonstrated that the model exhibits spatial patterns of T - S variability for the most part consistent with limited observational record in the Southern Hemisphere. However, some observations of decadal T - S changes are found to be beyond that seen in the model in its unperturbed state. We further assess sea surface temperature (SST) variability modes in the Indian Ocean on interannual time scales in the CSIRO model and in reanalysis data. The emergence of a meridional SST dipole during years of southwest Western Australian rainfall extremes is shown to be connected to a large-scale mode of Indian Ocean climate variability. The evolution of the dipole is controlled by variations in atmospheric circulation driving anomalous latent heat uxes with wind-driven ocean transport moderating the impact of evaporation and setting the conditions favourable for the next generation phase of an opposite dipole.
Style APA, Harvard, Vancouver, ISO itp.
50

Rotzoll, Kolja. "Hydraulic Parameter Estimation Using Aquifer Tests, Specific Capacity, Ocean Tides, and Wave Setup for Hawai'i Aquifers". Thesis, Water Resources Research Center, University of Hawaii at Manoa, 2007. http://hdl.handle.net/10125/22265.

Pełny tekst źródła
Streszczenie:
The islands of Hawaii face increasing ground-water demands due to population growth in the last decades. Analytical and numerical models are essential tools for managing sustainable ground-water resources. The models require estimates of hydraulic properties, such as hydraulic conductivity and storage parameters. Four methods were evaluated to estimate hydraulic properties for basalts on the island of Maui. First, unconventional step-drawdown tests were evaluated. The results compare favorably with those from classical aquifer tests with a correlation of 0.81. Hydraulic conductivity is log-normally distributed and ranges from 1 to 2,500 m/d with a geometric mean of 276 m/d and a median of 370 m/d. The second approach developed a simplified parameter-estimation scheme through an empirical relationship between specific capacity and hydraulic parameters that utilized Hawaii's state well database. For Maui's basalts, the analysis yields a geometric-mean and median hydraulic conductivity of 423 and 493 m/d, respectively. Results from aquifer tests and specific-capacity relationships were used to generate island-wide hydraulic-conductivity maps using kriging. The maps are expected to be of great benefit in absence of site-specific field assessments. In the third approach, ocean-tide responses in the central Maui aquifer were used to estimate an effective hydraulic diffusivity of 2.3 x 10^7 m^2/d. The position of the study area necessitated refining the existing analytical solution that considers asynchronous and asymmetric tidal influence from two sides in an aquifer. Finally, measured ground-water responses to wave setup were used to estimate hydraulic parameters. Setup responses were significant as far as 5 km inland and dominated barometric-pressure effects during times of energetic swell events. The effective diffusivity estimated from setup was 2.3 x 10^7 m^2/d, matching that based on tides. Additionally, simple numerical ground-water flow models were developed to assess the accuracy of results from analytical solutions for step-drawdown tests, dual-tides and wave setup, and to evaluate sediment-damping effects on tidal propagation. The estimated mean hydraulic conductivities of the four methods range between 300 and 500 m/d for basalts in Maui. The results of different methods are consistent among each other and match previous estimates for basalts.
USGS Pacific Island Water Science Center
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii