Artykuły w czasopismach na temat „Numerical modelling”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Numerical modelling.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Numerical modelling”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Jaichuang, Atit, i Wirawan Chinviriyasit. "Numerical Modelling of Influenza Model with Diffusion". International Journal of Applied Physics and Mathematics 4, nr 1 (2014): 15–21. http://dx.doi.org/10.7763/ijapm.2014.v4.247.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gerya, Taras V., David Fossati, Curdin Cantieni i Diane Seward. "Dynamic effects of aseismic ridge subduction: numerical modelling". European Journal of Mineralogy 21, nr 3 (29.06.2009): 649–61. http://dx.doi.org/10.1127/0935-1221/2009/0021-1931.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Higdon, Robert L. "Numerical modelling of ocean circulation". Acta Numerica 15 (maj 2006): 385–470. http://dx.doi.org/10.1017/s0962492906250013.

Pełny tekst źródła
Streszczenie:
Computational simulations of ocean circulation rely on the numerical solution of partial differential equations of fluid dynamics, as applied to a relatively thin layer of stratified fluid on a rotating globe. This paper describes some of the physical and mathematical properties of the solutions being sought, some of the issues that are encountered when the governing equations are solved numerically, and some of the numerical methods that are being used in this area.
Style APA, Harvard, Vancouver, ISO itp.
4

Constantin, Albert Titus, Marie Alice Ghitescu, Gheorghe I. Lazar i Serban Vlad Nicoara. "Fish Ladder Numerical Modelling". Revista de Chimie 69, nr 3 (15.04.2018): 591–96. http://dx.doi.org/10.37358/rc.18.3.6156.

Pełny tekst źródła
Streszczenie:
The paper presents a 1D numerical modeling of the sanitary water flow passing through a fish ladder designed for the low head step built across the Alb (White) River near Coroiesti Vilage in Hunedoara County. The model aims to evaluate the water velocity spectrum, emphasizing the maximum values, in the cross sections along this passing structure and in the same time to establish the water levels development. In order to reach this goal, the numerical model will consider a sinthetical hydrograph based on the maximum value of the sanitary water flow required on the river.
Style APA, Harvard, Vancouver, ISO itp.
5

Pritchard, M. A., i K. W. Savigny. "Numerical modelling of toppling". Canadian Geotechnical Journal 27, nr 6 (1.12.1990): 823–34. http://dx.doi.org/10.1139/t90-095.

Pełny tekst źródła
Streszczenie:
Evidence of large-scale toppling deformation has been reported in association with deep-seated landslides affecting mountain slopes along the Beaver River valley, Glacier National Park, British Columbia, Canada. A study has been undertaken to quantitatively investigate the relationship between the toppling mass movement process and the deep-seated landslides; specifically, whether the landslides represent a limiting condition of the toppling process. This is the first of two papers that describe the study. Methods of toppling analysis, including limit-equilibrium, finite-element, and distinct-element methods, are critically reviewed. The distinct-element method emerges as the best technique for modelling both block and flexural modes of toppling. The method is verified by modelling three examples of toppling: a theoretical block topple, a physical model of flexural toppling, and an engineered slope from the Brenda mine near Peachland, British Columbia. The results demonstrate that the Universal Distinct Element Code (UDEC) is capable of modelling both block and flexural types of toppling, that the toppling mass movement process limits to deep-seated planar aswell as curvilinear landslides, and that other landforms such as obsequent scarps and grabens are a manifestation of the toppling process. The research reported here contributes to understanding of the deformation behaviour of engineered slopes and the evolution of natural slopes in rock masses containing pervasive discontinuities. Key words: block toppling, flexural toppling, landslide, numerical modelling, distinct element, DDEC, sackung.
Style APA, Harvard, Vancouver, ISO itp.
6

CUNDALL, PETER A., i ROGER D. HART. "NUMERICAL MODELLING OF DISCONTINUA". Engineering Computations 9, nr 2 (luty 1992): 101–13. http://dx.doi.org/10.1108/eb023851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jeremic, Radun. "Numerical modelling of detonation". Vojnotehnicki glasnik 50, nr 2 (2002): 155–65. http://dx.doi.org/10.5937/vojtehg0202155j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lindgren, L. E. "Numerical modelling of welding". Computer Methods in Applied Mechanics and Engineering 195, nr 48-49 (październik 2006): 6710–36. http://dx.doi.org/10.1016/j.cma.2005.08.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chenari, B., S. S. Saadatian i Almerindo D. Ferreira. "Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam". Journal of Clean Energy Technologies 3, nr 4 (2015): 276–81. http://dx.doi.org/10.7763/jocet.2015.v3.208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Russell, James K., Daniele Giordano, Donald B. Dingwell i Kai-Uwe Hess. "Modelling the non-Arrhenian rheology of silicate melts: Numerical considerations". European Journal of Mineralogy 14, nr 2 (22.03.2002): 417–28. http://dx.doi.org/10.1127/0935-1221/2002/0014-0417.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Fujihara, Masayuki. "Numerical Modelling of Flow in Fishways Using Shallow Water Equations". Journal of Rainwater Catchment Systems 14, nr 2 (2009): 97–98. http://dx.doi.org/10.7132/jrcsa.kj00005284815.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Vala, Jiří. "Numerical approaches to the modelling of quasi-brittle crack propagation". Archivum Mathematicum, nr 3 (2023): 295–303. http://dx.doi.org/10.5817/am2023-3-295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Benim, Ali Cemal, Aydin Cicek i Arif Mert Eker. "A numerical analysis of the thermohydraulics of an EGS project in Turkey". MATEC Web of Conferences 240 (2018): 05001. http://dx.doi.org/10.1051/matecconf/201824005001.

Pełny tekst źródła
Streszczenie:
A numerical study of the thermohydraulics of an enhanced geothermal system project in Turkey is presented. The solid structures are modelled as porous media, using the numerically determined hydraulic fracturing data of other authors. The influence of several numerical modelling aspects such as the domain size, grid resolution, temporal resolution as well as the discretization scheme are investigated and assessed to obtain highly accurate numerical solutions under the applied modelling assumptions. Using the suggested mathematical and numerical model, different production scenarios are investigated.
Style APA, Harvard, Vancouver, ISO itp.
14

Agraine, Hana, i Meriem Fakhreddine Bouali. "Numerical Modelling of Oedometer Test". Selected Scientific Papers - Journal of Civil Engineering 15, nr 2 (1.12.2020): 127–36. http://dx.doi.org/10.1515/sspjce-2020-0025.

Pełny tekst źródła
Streszczenie:
Abstract The oedometric test is a test widely used in civil engineering. The main objective of this article has been to investigate the primary consolidation behaviour of the intact soil samples by comparing the results obtained from finite element analysis computations in PlAXIS2D with the experimental result of the soil samples obtained from the site of the Al-Ahdab oil field in the east of Iraq. Three different material models were utilized during the finite element analysis, comparing the performance of the more advanced constitutive Soft Soil material model against the modified Cam Clay and Mohr-Coulomb material models. Numerical results of Oedomter test show that the Soft Soil model behaviour is the most appropriate model to describe the observed behaviour.
Style APA, Harvard, Vancouver, ISO itp.
15

Bladé Castellet, Ernest, Luis Cea i Georgina Corestein. "Numerical modelling of river inundations". Ingeniería del agua 18, nr 1 (4.08.2014): 68. http://dx.doi.org/10.4995/ia.2014.3144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Matsubara, Hitoshi, Kosaburo Hirose, Taka-aki Edo, Kei-ichi Tamanaha, Hisao Hara i Tomonori Yamada. "Numerical modelling of mudcrack growth". Japanese Geotechnical Society Special Publication 2, nr 31 (2016): 1143–47. http://dx.doi.org/10.3208/jgssp.atc1-3-17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Szakály, Ferenc, Imre Bojtár i Gábor Szebényi. "Numerical modelling of human ligaments". Biomechanica Hungarica 9, nr 1 (lipiec 2016): 7–15. http://dx.doi.org/10.17489/biohun/2016/1/04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Rubinacci, Guglielmo, Antonello Tamburrino, Salvatore Ventre i Fabio Villone. "Numerical modelling of volumetric defects". International Journal of Applied Electromagnetics and Mechanics 19, nr 1-4 (24.04.2004): 345–49. http://dx.doi.org/10.3233/jae-2004-588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Tkadlečková, Markéta. "Numerical Modelling in Steel Metallurgy". Metals 11, nr 6 (28.05.2021): 885. http://dx.doi.org/10.3390/met11060885.

Pełny tekst źródła
Streszczenie:
Steel production represents a complex process which is accompanied by a series of physical–chemical processes from melting, through the multiphase flow of steel and chemical reactions (processes taking place between the slag, metal, and an inert gas) after solidification [...]
Style APA, Harvard, Vancouver, ISO itp.
20

Fokina, K. V., K. Yu Bulgakov i K. L. Voskanyan. "NUMERICAL MODELLING OF BREEZE CIRCULATIION". Proceedings of the Russian State Hydrometeorological University, nr 56 (2019): 50–60. http://dx.doi.org/10.33933/2074-2762-2019-56-50-60.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Melentijevic, Svetlana, Javier Moreno Robles i Pablo Martín Blanco. "Numerical modelling of vertical drains". Geotecnia 144 (listopad 2018): 71–87. http://dx.doi.org/10.24849/j.geot.2018.144.07.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Trefilík, Jiří, Karel Kozel i Jaromír Příhoda. "Numerical experiments modelling turbulent flows". EPJ Web of Conferences 67 (2014): 02118. http://dx.doi.org/10.1051/epjconf/20146702118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Pryds, N. H., i J. H. Hattel. "Numerical modelling of rapid solidification". Modelling and Simulation in Materials Science and Engineering 5, nr 5 (1.09.1997): 451–72. http://dx.doi.org/10.1088/0965-0393/5/5/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kresic, Neven, i Sorab Panday. "Numerical groundwater modelling in karst". Geological Society, London, Special Publications 466, nr 1 (14.12.2017): 319–30. http://dx.doi.org/10.1144/sp466.12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Durán-Olivencia, F. J., F. Pontiga i A. Castellanos. "Numerical Modelling of Electrical Discharges". Journal of Physics: Conference Series 490 (11.03.2014): 012209. http://dx.doi.org/10.1088/1742-6596/490/1/012209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

NGUYEN, Y. Q., i John C. WELLS. "NUMERICAL MODELLING OF BEDFORM DEVELOPMENT". PROCEEDINGS OF HYDRAULIC ENGINEERING 52 (2008): 163–68. http://dx.doi.org/10.2208/prohe.52.163.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dalewski, Rafał, i Jerzy Jachimowicz. "Numerical modelling of welded joints". Welding International 25, nr 3 (marzec 2011): 182–87. http://dx.doi.org/10.1080/09507116.2010.540831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Talemi, R. Hojjati, M. Abdel Wahab i P. De Baets. "Numerical modelling of fretting fatigue". Journal of Physics: Conference Series 305 (19.07.2011): 012061. http://dx.doi.org/10.1088/1742-6596/305/1/012061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

De Moortel, I., i K. Galsgaard. "Numerical modelling of 3D reconnection". Astronomy & Astrophysics 459, nr 2 (12.09.2006): 627–39. http://dx.doi.org/10.1051/0004-6361:20065716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Deepu, M., S. S. Gokhale i S. Jayaraj. "Numerical Modelling of Scramjet Combustor". Defence Science Journal 57, nr 4 (20.07.2007): 367–79. http://dx.doi.org/10.14429/dsj.57.1784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Abdulle, A., i Y. Bai. "Reduced-order modelling numerical homogenization". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, nr 2021 (6.08.2014): 20130388. http://dx.doi.org/10.1098/rsta.2013.0388.

Pełny tekst źródła
Streszczenie:
A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately ‘interpolated’ in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.
Style APA, Harvard, Vancouver, ISO itp.
32

van Dijk, J., G. M. W. Kroesen i A. Bogaerts. "Plasma modelling and numerical simulation". Journal of Physics D: Applied Physics 42, nr 19 (18.09.2009): 190301. http://dx.doi.org/10.1088/0022-3727/42/19/190301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

SRP�I�, Gregor. "Numerical modelling of linear generators". PRZEGLĄD ELEKTROTECHNICZNY 1, nr 1 (5.01.2019): 6–8. http://dx.doi.org/10.15199/48.2019.01.02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Gao, Yan, Alexandre C. M. Correia, Peter P. Eggleton i Zhanwen Han. "Numerical modelling of tertiary tides". Monthly Notices of the Royal Astronomical Society 479, nr 3 (14.06.2018): 3604–15. http://dx.doi.org/10.1093/mnras/sty1558.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Frankovská, Jana, Miloslav Kopecký, Jakub Panuška i Juraj Chalmovský. "Numerical Modelling of Slope Instability". Procedia Earth and Planetary Science 15 (2015): 309–14. http://dx.doi.org/10.1016/j.proeps.2015.08.076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

White, David A., i Nicola Verdone. "Numerical modelling of sedimentation processes". Chemical Engineering Science 55, nr 12 (czerwiec 2000): 2213–22. http://dx.doi.org/10.1016/s0009-2509(99)00496-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nieminen, T. A., H. Rubinsztein-Dunlop, N. R. Heckenberg i A. I. Bishop. "Numerical modelling of optical trapping". Computer Physics Communications 142, nr 1-3 (grudzień 2001): 468–71. http://dx.doi.org/10.1016/s0010-4655(01)00391-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Passchier, C. W., i E. Druguet. "Numerical modelling of asymmetric boudinage". Journal of Structural Geology 24, nr 11 (listopad 2002): 1789–803. http://dx.doi.org/10.1016/s0191-8141(01)00163-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Bungum, Hilmar. "Numerical modelling of fault activities". Computers & Geosciences 33, nr 6 (czerwiec 2007): 808–20. http://dx.doi.org/10.1016/j.cageo.2006.10.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Casperson, Lee W. "Numerical modelling of laser instabilities". Mathematical and Computer Modelling 11 (1988): 298–302. http://dx.doi.org/10.1016/0895-7177(88)90502-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Kornfeld, Matthias, Tino Lindner-Silwester, Emanuel Hummel i Bernhard Streibl. "Numerical Modelling of Explosion Protection". MTZ industrial 4, nr 2 (23.08.2014): 30–37. http://dx.doi.org/10.1007/s40353-014-0137-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wiles, T. D. "Reliability of numerical modelling predictions". International Journal of Rock Mechanics and Mining Sciences 43, nr 3 (kwiecień 2006): 454–72. http://dx.doi.org/10.1016/j.ijrmms.2005.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Mazzucco, G., B. Pomaro, V. A. Salomoni i C. E. Majorana. "Numerical modelling of ellipsoidal inclusions". Construction and Building Materials 167 (kwiecień 2018): 317–24. http://dx.doi.org/10.1016/j.conbuildmat.2018.01.160.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Davies, G. A. O., X. Zhang, G. Zhou i S. Watson. "Numerical modelling of impact damage". Composites 25, nr 5 (maj 1994): 342–50. http://dx.doi.org/10.1016/s0010-4361(94)80004-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kamnis, S., i S. Gu. "Numerical modelling of droplet impingement". Journal of Physics D: Applied Physics 38, nr 19 (16.09.2005): 3664–73. http://dx.doi.org/10.1088/0022-3727/38/19/015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Duh, J. C. "Numerical modelling of enclosure convection". Acta Astronautica 22 (styczeń 1990): 367–74. http://dx.doi.org/10.1016/0094-5765(90)90041-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kaltenbacher, M., M. Rausch, H. Landes i R. Lerch. "Numerical modelling of electrodynamic loudspeakers". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 18, nr 3 (wrzesień 1999): 504–14. http://dx.doi.org/10.1108/03321649910275189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Arbuzov, V. I., i R. A. Turusov. "Numerical modelling of hardening polymers". Mechanics of Composite Materials 31, nr 6 (1996): 603–7. http://dx.doi.org/10.1007/bf00634912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Klemp, J. B., i D. R. Durran. "Numerical modelling of Bora winds". Meteorology and Atmospheric Physics 36, nr 1-4 (1987): 215–27. http://dx.doi.org/10.1007/bf01045150.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Dular, Matevž, i Olivier Coutier-Delgosha. "Numerical modelling of cavitation erosion". International Journal for Numerical Methods in Fluids 61, nr 12 (30.12.2009): 1388–410. http://dx.doi.org/10.1002/fld.2003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii