Gotowa bibliografia na temat „Nucleus Pulposus Regeneration”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nucleus Pulposus Regeneration”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nucleus Pulposus Regeneration"
Kregar Velikonja, Nevenka, Jill Urban, Mirjam Fröhlich, Cornelia Neidlinger-Wilke, Dimitris Kletsas, Urska Potocar, Sarah Turner i Sally Roberts. "Cell sources for nucleus pulposus regeneration". European Spine Journal 23, S3 (3.12.2013): 364–74. http://dx.doi.org/10.1007/s00586-013-3106-9.
Pełny tekst źródłaYu, Lei, Zi-Jie Sun, Quan-Chang Tan, Shuang Wang, Wei-Heng Wang, Xiang-Qun Yang i Xiao-Jian Ye. "Thermosensitive injectable decellularized nucleus pulposus hydrogel as an ideal biomaterial for nucleus pulposus regeneration". Journal of Biomaterials Applications 35, nr 2 (26.04.2020): 182–92. http://dx.doi.org/10.1177/0885328220921328.
Pełny tekst źródłaPatt, Stephan, Mario Brock, Heinz Michael Mayer, Carl Schreiner i Lamartine Pedretti. "Nucleus Pulposus Regeneration After Chemonucleolysis with chymopapain?" Spine 18, nr 2 (luty 1993): 227–31. http://dx.doi.org/10.1097/00007632-199302000-00009.
Pełny tekst źródłaRisbud, Makarand V., Irving M. Shapiro, Alexander R. Vaccaro i Todd J. Albert. "Stem cell regeneration of the nucleus pulposus". Spine Journal 4, nr 6 (listopad 2004): S348—S353. http://dx.doi.org/10.1016/j.spinee.2004.07.031.
Pełny tekst źródłaKrouwels, Anita, Juvita D. Iljas, Angela H. M. Kragten, Wouter J. A. Dhert, F. Cumhur Öner, Marianna A. Tryfonidou i Laura B. Creemers. "Bone Morphogenetic Proteins for Nucleus Pulposus Regeneration". International Journal of Molecular Sciences 21, nr 8 (14.04.2020): 2720. http://dx.doi.org/10.3390/ijms21082720.
Pełny tekst źródłaBodnarchuk, J. A., M. V. Khyzhnjak, О. О. Potapov i N. G. Chopik. "BIOCHEMICAL AND BIOMECHANICAL SUBSTANTIATION OF REPARATIVE REGENERATION OF INTERVERTEBRAL DISCS IN PATIENTS WITH DEGENERATIVE DISC DISEASES". Eastern Ukrainian Medical Journal 8, nr 3 (2020): 249–54. http://dx.doi.org/10.21272/eumj.2020;8(3):249-254.
Pełny tekst źródłaPeng, Xuan, Lingjia Yu, Lin Shi, Huajun Dong, Xiaohui Meng i Bin Zhu. "Polymeric hydrogels and decellularized nucleus pulposus extracellular matrix technology for nucleus pulposus repair and regeneration". Polymer Testing 117 (styczeń 2023): 107854. http://dx.doi.org/10.1016/j.polymertesting.2022.107854.
Pełny tekst źródłaZhu, Yanxia, Jie Tan, Hongxia Zhu, Guangyao Lin, Fei Yin, Liang Wang, Kedong Song, Yiwei Wang, Guangqian Zhou i Weihong Yi. "Development of kartogenin-conjugated chitosan–hyaluronic acid hydrogel for nucleus pulposus regeneration". Biomaterials Science 5, nr 4 (2017): 784–91. http://dx.doi.org/10.1039/c7bm00001d.
Pełny tekst źródłaHodgkinson, Tom, Francis Wignall, Judith A. Hoyland i Stephen M. Richardson. "High BMPR2 expression leads to enhanced SMAD1/5/8 signalling and GDF6 responsiveness in human adipose-derived stem cells: implications for stem cell therapies for intervertebral disc degeneration". Journal of Tissue Engineering 11 (styczeń 2020): 204173142091933. http://dx.doi.org/10.1177/2041731420919334.
Pełny tekst źródłaLi, Zhen, Keren Mevorat Kaplan, Abraham Wertzel, Marianna Peroglio, Boaz Amit, Mauro Alini, Sibylle Grad i Avner Yayon. "Biomimetic fibrin–hyaluronan hydrogels for nucleus pulposus regeneration". Regenerative Medicine 9, nr 3 (maj 2014): 309–26. http://dx.doi.org/10.2217/rme.14.5.
Pełny tekst źródłaRozprawy doktorskie na temat "Nucleus Pulposus Regeneration"
Kim, Anne Jungjoo. "In situ regeneration of the nucleus pulposus". Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3359553.
Pełny tekst źródłaSource: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3639. Adviser: Jeffrey C. Lotz.
Simson, Jacob A. "Physical analysis of collagen-GAG composite scaffolds for nucleus pulposus tissue regeneration". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/57874.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 27-28).
In this study biomaterial scaffolds for regeneration of nucleus pulposus were developed by freeze drying slurries with different proportions of collagen II (CII), chondroitin-6-sulfate (CS), and hyaluronic acid (HA). The scaffolds were analyzed using biochemical assays to determine final composition. Chemically cross-linked scaffolds were analyzed to determine pore size and cross-link density. It was determined that every material type contained large enough pore size (275 gm) to seed nucleus pulposus cells and mesenchymal stem cells. The addition of CS to the scaffold increased pore size. It was also found that increasing levels of CS and HA resulted in lower cross-link density. These materials will be used next in In Vitro studies to determine their viability as regenerative tissue engineering constructs.
by Jacob A. Simson.
S.B.
Aladin, Kaderbatcha Darwesh Mohideen. "Nanoscale structure-property and macroscale biomechanical function of nucleus pulposus in health, disease and regeneration". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45197143.
Pełny tekst źródłaEhlicke, Franziska [Verfasser]. "Entwicklung eines injizierbaren Zell-Matrix-Komposites zur Regeneration der Bandscheibe (Nucleus pulposus) : Einfluss verschiedener Stimuli auf die Differenzierung von humanen mesenchymalen Stammzellen in Richtung Nucleus pulposus-Zellen / Franziska Ehlicke". Aachen : Shaker, 2014. http://d-nb.info/1049379608/34.
Pełny tekst źródłaStrassburg, Sandra. "An In Vitro Culture System to Study Human Mesenchymal Stem Cell / Nucleus Pulposus Cell Interactions : Implications for Intervertebral Disc Regeneration". Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521587.
Pełny tekst źródłaRodrigues, Pinto Ricardo Pedro Ferreira. "Isolation and phenotypic characterisation of human notochordal cells : implications for the development of cell-based therapies for intervertebral disc degeneration". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/isolation-and-phenotypic-characterisation-of-human-notochordal-cells-implications-for-the-development-of-cellbased-therapies-for-intervertebral-disc-degeneration(8d5cbfdd-edd0-458c-a048-554f6a2c830b).html.
Pełny tekst źródłaKhan, Shahnaz. "The effect of the intervertebral disc microenvironment on disc cell and mesenchymal stem cell behaviour : implications for disc degeneration and regeneration". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/the-effect-of-the-intervertebral-disc-microenvironment-on-disc-cell-and-mesenchymal-stem-cell-behaviour-implications-for-disc-degeneration-and-regeneration(b5629a75-4cb0-45d8-affb-2b936d9408e1).html.
Pełny tekst źródłaLok, Peter Yin Cheung. "Development of a novel minimally invasive scaffold system for spinal disc repair". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12583.
Pełny tekst źródłaFrancisco, Aubrey Therese. "Laminin-Functionalized Polyethylene Glycol Hydrogels for Nucleus Pulposus Regeneration". Diss., 2013. http://hdl.handle.net/10161/8204.
Pełny tekst źródłaIntervertebral disc (IVD) disorders and age-related degeneration are believed to contribute to low back pain. There is significant interest in cell-based strategies for regenerating the nucleus pulposus (NP) region of the disc; however, few scaffolds have been evaluated for their ability to promote or maintain an immature NP cell phenotype. Additionally, while cell delivery to the pathological IVD has significant therapeutic potential for enhancing NP regeneration, the development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the NP region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into biomaterial scaffolds for NP tissue engineering or cell delivery to the disc may be beneficial for promoting NP cell survival and phenotype. In this dissertation, laminin-111 (LM111) functionalized poly(ethylene glycol) (PEG) hydrogels were developed and evaluated as biomaterial scaffolds for cell-based NP regeneration.
Here, PEG-LM111 conjugates with functional acrylate groups for crosslinking were synthesized and characterized to allow for protein coupling to both photocrosslinkable and injectable PEG-based biomaterial scaffolds. PEG-LM111 conjugates synthesized using low ratios of PEG to LM111 were found support NP cell attachment and signaling in a manner similar to unmodified LM111. A single PEG-LM111 conjugate was conjugated to photocrosslinkable PEG-LM111 hydrogels, and studies were performed to evaluate the effects of hydrogel formulation on immature NP cell phenotype in vitro. When primary immature porcine NP cells were seeded onto PEG-LM111 hydrogels of varying stiffnesses, softer LM111 presenting hydrogels were found to promote cell clustering and increased levels of sGAG production as compared to stiffer LM111 presenting and PEG-only gels. When cells were encapsulated in 3D gels, hydrogel formulation was found to influence NP cell metabolism and expression of proposed NP phenotypic markers, with higher expression of N-cadherin and cytokeratin 8 observed for cells cultured in softer (<1 kPa) PEG-LM111 hydrogels.
A novel, injectable PEG-LM111 hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. PEG-LM111 conjugates were crosslinked via a Michael-type addition reaction upon the addition of PEG-octoacrylate and PEG-dithiol. Injectable PEG-LM111 hydrogel gelation time, mechanical properties, and ability to retain delivered cells in the IVD space were evaluated. Gelation occurred in approximately 20 minutes without an initiator, with dynamic shear moduli in the range of 0.9 - 1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 hydrogel carrier, as compared to cells in liquid suspension.
The studies presented in this dissertation demonstrate that soft, LM111 functionalized hydrogels may promote or maintain the expression of specific markers and cell-cell interactions characteristic of an immature NP cell phenotype. Furthermore, these findings suggest that this novel, injectable laminin-functionalized biomaterial may be an easy to use and biocompatible carrier for delivering cells to the IVD.
Dissertation
Tai, Pei-Wen, i 戴珮雯. "Developing hyaluronic acid-silk fibroin double-network hydrogel for nucleus pulposus regeneration". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/k52xdj.
Pełny tekst źródłaKsiążki na temat "Nucleus Pulposus Regeneration"
Shine, Kristy Melissa. Tissue engineering of the intervertebral disc: A scaffold-based approach to nucleus pulposus regeneration. 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Nucleus Pulposus Regeneration"
Grad, Sibylle, Mauro Alini, Daisuke Sakai i Joji Mochida. "Cell Therapy for Nucleus Pulposus Regeneration". W Cells and Biomaterials for Intervertebral Disc Regeneration, 1–42. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-02580-8_1.
Pełny tekst źródłaMercuri, Jeremy J., i Dan T. Simionescu. "Advances in Tissue Engineering Approaches to Treatment of Intervertebral Disc Degeneration: Cells and Polymeric Scaffolds for Nucleus Pulposus Regeneration". W Polymers in Nanomedicine, 201–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/12_2011_149.
Pełny tekst źródłaStreszczenia konferencji na temat "Nucleus Pulposus Regeneration"
Cleary, Heather, Thomas Barkley, Adam Goodman, Michael Payne, John Virtue, Jennifer Vernengo i Jennifer Kadlowec. "Design of a Bioreactor for Mechanical Stimulation of Adipose Derived Stem Cells for Intervertebral Disc Tissue Engineering". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80745.
Pełny tekst źródłaFrancisco, Aubrey T., Robert J. Mancino, Claire G. Jeong, Isaac O. Karikari, Robby D. Bowles, Stephen L. Craig i Lori A. Setton. "Injectable and Photocrosslinkable Laminin Functionalized Biomaterials for Intervertebral Disc Regeneration". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80660.
Pełny tekst źródłaTasci, Arzu, Ladina Ettinger, Stephen Ferguson i Philippe Büchler. "The Role of Agarose Mechanical Response on the Matrix Synthesis of Nucleus Pulposus Cells: A Pilot Study". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206763.
Pełny tekst źródłaHouseman, C., M. Scro, S. Belverud, D. Chen, P. Razzano, M. Levine, D. A. Grande i N. O. Chahine. "Effect of TGF-β3 on the Gene Expression of Intervertebral Disc Cells in 3D Pellet Cultures". W ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19246.
Pełny tekst źródłaOrlansky, Amy S., John I. Boxberger i Dawn M. Elliott. "The Dynamic Viscoelastic Properties of the Rat Lumbar Disc Are Decreased Following Nucleus Pulposus GAG Reduction". W ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192634.
Pełny tekst źródłaNatarajan, Raghu N., Alejandro Espinoza i Gunnar B. J. Andersson. "Effect of Needle Puncture Injury on Human Intervertebral Disc Mechanics". W ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19116.
Pełny tekst źródłaKorecki, Casey L., Catherine K. Kuo, Rocky S. Tuan i James C. Iatridis. "Effect of Age and Frequency on Intervertebral Disc Cell Response to Dynamic Compression". W ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176595.
Pełny tekst źródła