Gotowa bibliografia na temat „Nucleoporins (Nups)”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nucleoporins (Nups)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Nucleoporins (Nups)"

1

Xu, Songli, i Maureen A. Powers. "In vivo analysis of human nucleoporin repeat domain interactions". Molecular Biology of the Cell 24, nr 8 (15.04.2013): 1222–31. http://dx.doi.org/10.1091/mbc.e12-08-0585.

Pełny tekst źródła
Streszczenie:
The nuclear pore complex (NPC), assembled from ∼30 proteins termed nucleoporins (Nups), mediates selective nucleocytoplasmic trafficking. A subset of nucleoporins bear a domain with multiple phenylalanine–glycine (FG) motifs. As binding sites for transport receptors, FG Nups are critical in translocation through the NPC. Certain FG Nups are believed to associate via low-affinity, cohesive interactions to form the permeability barrier of the pore, although the form and composition of this functional barrier are debated. We used green fluorescent protein–Nup98/HoxA9 constructs with various numbers of repeats and also substituted FG domains from other nucleoporins for the Nup98 domain to directly compare cohesive interactions in live cells by fluorescence recovery after photobleaching (FRAP). We find that cohesion is a function of both number and type of FG repeats. Glycine–leucine–FG (GLFG) repeat domains are the most cohesive. FG domains from several human nucleoporins showed no interactions in this assay; however, Nup214, with numerous VFG motifs, displayed measurable cohesion by FRAP. The cohesive nature of a human nucleoporin did not necessarily correlate with that of its yeast orthologue. The Nup98 GLFG domain also functions in pore targeting through binding to Nup93, positioning the GLFG domain in the center of the NPC and supporting a role for this nucleoporin in the permeability barrier.
Style APA, Harvard, Vancouver, ISO itp.
2

Heinß, Nike, Mikhail Sushkin, Miao Yu i Edward A. Lemke. "Multifunctionality of F-rich nucleoporins". Biochemical Society Transactions 48, nr 6 (18.12.2020): 2603–14. http://dx.doi.org/10.1042/bst20200357.

Pełny tekst źródła
Streszczenie:
Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.
Style APA, Harvard, Vancouver, ISO itp.
3

Makio, Tadashi, Leslie H. Stanton, Cheng-Chao Lin, David S. Goldfarb, Karsten Weis i Richard W. Wozniak. "The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly". Journal of Cell Biology 185, nr 3 (4.05.2009): 459–73. http://dx.doi.org/10.1083/jcb.200810029.

Pełny tekst źródła
Streszczenie:
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs.
Style APA, Harvard, Vancouver, ISO itp.
4

Flemming, Dirk, Phillip Sarges, Philipp Stelter, Andrea Hellwig, Bettina Böttcher i Ed Hurt. "Two structurally distinct domains of the nucleoporin Nup170 cooperate to tether a subset of nucleoporins to nuclear pores". Journal of Cell Biology 185, nr 3 (4.05.2009): 387–95. http://dx.doi.org/10.1083/jcb.200810016.

Pełny tekst źródła
Streszczenie:
How individual nucleoporins (Nups) perform their role in nuclear pore structure and function is largely unknown. In this study, we examined the structure of purified Nup170 to obtain clues about its function. We show that Nup170 adopts a crescent moon shape with two structurally distinct and separable domains, a β-propeller N terminus and an α-solenoid C terminus. To address the individual roles of each domain, we expressed these domains separately in yeast. Notably, overexpression of the Nup170 C domain was toxic in nup170Δ cells and caused accumulation of several Nups in cytoplasmic foci. Further experiments indicated that the C-terminal domain anchors Nup170 to nuclear pores, whereas the N-terminal domain functions to recruit or retain a subset of Nups, including Nup159, Nup188, and Pom34, at nuclear pores. We conclude that Nup170 performs its role as a structural adapter between cytoplasmically oriented Nups and the nuclear pore membrane.
Style APA, Harvard, Vancouver, ISO itp.
5

Huang, Kai, i Igal Szleifer. "Modeling the nucleoporins that form the hairy pores". Biochemical Society Transactions 48, nr 4 (14.08.2020): 1447–61. http://dx.doi.org/10.1042/bst20190941.

Pełny tekst źródła
Streszczenie:
Sitting on the nuclear envelope, nuclear pore complexes (NPCs) control the molecular transport between the nucleus and the cytoplasm. Without definite open or close states, the NPC uses a family of intrinsically disordered nucleoporins called FG-Nups to construct a selective permeability barrier whose functional structure is unclear. Experimental advances have offered high-resolution molecular knowledge of the NPC scaffold and docking of the unfolded FG-Nups, however, the ‘hairy’ barrier structure still appears as blurred lobes even under the state-of-the-art microscopy. Without accurate experimental visualization, the molecular mechanism for the NPC-mediated transport remains a matter of debate. Modeling provides an alternative way to resolve this long-standing mystery. Here, we briefly review different methods employed in modeling the FG-Nups, arranging from all-atom molecular dynamics to mean-field theories. We discuss the advantage and limit of each modeling technique, and summarize the theoretical insights that, despite certain controversy, deepened our understanding of the hairy pore.
Style APA, Harvard, Vancouver, ISO itp.
6

Colussi, Claudia, i Claudio Grassi. "Epigenetic Regulation of Neural Stem Cells: The Emerging Role of Nucleoporins". Stem Cells 39, nr 12 (25.08.2021): 1601–14. http://dx.doi.org/10.1002/stem.3444.

Pełny tekst źródła
Streszczenie:
Abstract Nucleoporins (Nups) are components of the nuclear pore complex that, besides regulating nucleus-cytoplasmic transport, emerged as a hub for chromatin interaction and gene expression modulation. Specifically, Nups act in a dynamic manner both at specific gene level and in the topological organization of chromatin domains. As such, they play a fundamental role during development and determination of stemness/differentiation balance in stem cells. An increasing number of reports indicate the implication of Nups in many central nervous system functions with great impact on neurogenesis, neurophysiology, and neurological disorders. Nevertheless, the role of Nup-mediated epigenetic regulation in embryonic and adult neural stem cells (NSCs) is a field largely unexplored and the comprehension of their mechanisms of action is only beginning to be unveiled. After a brief overview of epigenetic mechanisms, we will present and discuss the emerging role of Nups as new effectors of neuroepigenetics and as dynamic platform for chromatin function with specific reference to the biology of NSCs.
Style APA, Harvard, Vancouver, ISO itp.
7

Holden, Jennifer M., Ludek Koreny, Samson Obado, Alexander V. Ratushny, Wei-Ming Chen, Jean-Mathieu Bart, Miguel Navarro i in. "Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes". Molecular Biology of the Cell 29, nr 9 (maj 2018): 1100–1110. http://dx.doi.org/10.1091/mbc.e17-06-0430.

Pełny tekst źródła
Streszczenie:
Components of the nuclear periphery coordinate a multitude of activities, including macromolecular transport, cell-cycle progression, and chromatin organization. Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport, mRNA processing, and transcriptional regulation, and NPC components can define regions of high transcriptional activity in some organisms at the nuclear periphery and nucleoplasm. Lineage-specific features underpin several core nuclear functions and in trypanosomatids, which branched very early from other eukaryotes, unique protein components constitute the lamina, kinetochores, and parts of the NPCs. Here we describe a phenylalanine-glycine (FG)-repeat nucleoporin, TbNup53b, that has dual localizations within the nucleoplasm and NPC. In addition to association with nucleoporins, TbNup53b interacts with a known trans-splicing component, TSR1, and has a role in controlling expression of surface proteins including the nucleolar periphery-located, procyclin genes. Significantly, while several nucleoporins are implicated in intranuclear transcriptional regulation in metazoa, TbNup53b appears orthologous to components of the yeast/human Nup49/Nup58 complex, for which no transcriptional functions are known. These data suggest that FG-Nups are frequently co-opted to transcriptional functions during evolution and extend the presence of FG-repeat nucleoporin control of gene expression to trypanosomes, suggesting that this is a widespread and ancient eukaryotic feature, as well as underscoring once more flexibility within nucleoporin function.
Style APA, Harvard, Vancouver, ISO itp.
8

Pulupa, Joan, Manas Rachh, Michael D. Tomasini, Joshua S. Mincer i Sanford M. Simon. "A coarse-grained computational model of the nuclear pore complex predicts Phe-Gly nucleoporin dynamics". Journal of General Physiology 149, nr 10 (8.09.2017): 951–66. http://dx.doi.org/10.1085/jgp.201711769.

Pełny tekst źródła
Streszczenie:
The phenylalanine-glycine–repeat nucleoporins (FG-Nups), which occupy the lumen of the nuclear pore complex (NPC), are critical for transport between the nucleus and cytosol. Although NPCs differ in composition across species, they are largely conserved in organization and function. Transport through the pore is on the millisecond timescale. Here, to explore the dynamics of nucleoporins on this timescale, we use coarse-grained computational simulations. These simulations generate predictions that can be experimentally tested to distinguish between proposed mechanisms of transport. Our model reflects the conserved structure of the NPC, in which FG-Nup filaments extend into the lumen and anchor along the interior of the channel. The lengths of the filaments in our model are based on the known characteristics of yeast FG-Nups. The FG-repeat sites also bind to each other, and we vary this association over several orders of magnitude and run 100-ms simulations for each value. The autocorrelation functions of the orientation of the simulated FG-Nups are compared with in vivo anisotropy data. We observe that FG-Nups reptate back and forth through the NPC at timescales commensurate with experimental measurements of the speed of cargo transport through the NPC. Our results are consistent with models of transport where FG-Nup filaments are free to move across the central channel of the NPC, possibly informing how cargo might transverse the NPC.
Style APA, Harvard, Vancouver, ISO itp.
9

Terry, Laura J., i Susan R. Wente. "Flexible Gates: Dynamic Topologies and Functions for FG Nucleoporins in Nucleocytoplasmic Transport". Eukaryotic Cell 8, nr 12 (2.10.2009): 1814–27. http://dx.doi.org/10.1128/ec.00225-09.

Pełny tekst źródła
Streszczenie:
ABSTRACT The nuclear envelope is a physical barrier between the nucleus and cytoplasm and, as such, separates the mechanisms of transcription from translation. This compartmentalization of eukaryotic cells allows spatial regulation of gene expression; however, it also necessitates a mechanism for transport between the nucleus and cytoplasm. Macromolecular trafficking of protein and RNA occurs exclusively through nuclear pore complexes (NPCs), specialized channels spanning the nuclear envelope. A novel family of NPC proteins, the FG-nucleoporins (FG-Nups), coordinates and potentially regulates NPC translocation. The extensive repeats of phenylalanine-glycine (FG) in each FG-Nup directly bind to shuttling transport receptors moving through the NPC. In addition, FG-Nups are essential components of the nuclear permeability barrier. In this review, we discuss the structural features, cellular functions, and evolutionary conservation of the FG-Nups.
Style APA, Harvard, Vancouver, ISO itp.
10

Sachdev, Ruchika, Cornelia Sieverding, Matthias Flötenmeyer i Wolfram Antonin. "The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes". Molecular Biology of the Cell 23, nr 4 (15.02.2012): 740–49. http://dx.doi.org/10.1091/mbc.e11-09-0761.

Pełny tekst źródła
Streszczenie:
Nuclear pore complexes (NPCs) are large macromolecular assemblies that control all transport across the nuclear envelope. They are formed by about 30 nucleoporins (Nups), which can be roughly categorized into those forming the structural skeleton of the pore and those creating the central channel and thus providing the transport and gating properties of the NPC. Here we show that the conserved nucleoporin Nup93 is essential for NPC assembly and connects both portions of the NPC. Although the C-terminal domain of the protein is necessary and sufficient for the assembly of a minimal structural backbone, full-length Nup93 is required for the additional recruitment of the Nup62 complex and the establishment of transport-competent NPCs.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Nucleoporins (Nups)"

1

Lin, Junyan. "Assembly and function of cytosolic nuclear pore complexes". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ037.

Pełny tekst źródła
Streszczenie:
Les complexes des pores nucléaires (CPN) sont d'énormes assemblages protéiques intégrés dans l'enveloppe nucléaire (EN). Ils servent de structures pour le transport bidirectionnel. Essentiels, ils permettent le maintien de l'équilibre entre le noyau et le cytoplasme. Au-delà de leur résidence dans l'EN, les CPN se trouvent également dans des feuillets du réticulum endoplasmique (RE) empilés connus sous le nom de lamelles annulaires (LA). Cependant, la fonction et les voies régissant la biogenèse des LA restent énigmatiques. Notre investigation dans les cellules de mammifères révèle un mécanisme où la formation des LA résulte de la fusion de CPN cytosoliques préassemblés. Le mouvement des CPN cytosoliques est intimement lié à la dynamique du RE, car ils migrent vers l'EN et s'y intègrent en début d'interphase en conditions de croissance normales, ce processus est médié par les microtubules. RanBP2 (Nup358), un constituant des filaments cytoplasmiques des CPN, apparaît comme nécessaire et suffisant pour la formation des LA dans le cytoplasme. Mécaniquement, les répétitions FG dans le N-terminus de RanBP2 jouent un rôle crucial en orchestrant l'état d'oligomérisation des unités de l'anneau extérieur des CPN, connues sous le nom de complexes Y. Notre étude élucide un processus d'assemblage crucial pour nourrir l'EN, assurant la fonctionnalité des pores nucléaires et soulignant l'importance des CPN cytosoliques dans l'homéostasie cellulaire des mammifères
Nuclear pore complexes (NPCs), huge protein assemblies built into the nuclear envelope (NE), serve as pivotal structures for bidirectional transport, maintaining the equilibrium between the nucleus and cytoplasm. Beyond their residence within the NE, NPCs are also found in stacked cytoplasmic membranes known as annulate lamellae (AL). However, the function and pathways governing the biogenesis of AL remain enigmatic. Our investigation in mammalian cells unveils a mechanism wherein AL formation arises through the fusion of pre-assembled cytosolic NPCs. The movement of cytosolic NPCs is intricately linked to the dynamics of the endoplasmic reticulum (ER), as they migrate towards and integrate into NE during early interphase under normal growth conditions, a process mediated by microtubules. RanBP2 (Nup358), a constituent of the NPC cytoplasmic filaments, emerges as necessary and sufficient for AL formation in the cytoplasm. Mechanistically, the FG repeats in the N-terminus of RanBP2 play a pivotal role by orchestrating the oligomerization state of the NPC outer ring units, known as Y-complexes. Our study elucidates an assembly process crucial for NE nourishment, ensuring the functionality of nuclear pores and underscoring the significance of cytosolic NPCs in mammalian cellular homeostasis
Style APA, Harvard, Vancouver, ISO itp.
2

Markossian, Sarine W. "Nup2 and a Newly Discovered Nuclear Pore Complex Protein, NupA, Function at Mitotic Chromatin Controlled by the NIMA Kinase". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306851345.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii