Gotowa bibliografia na temat „Nuclear magnetic resonance”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nuclear magnetic resonance”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Nuclear magnetic resonance"

1

MIYAZAWA, TATSUO. "Nuclear Magnetic Resonance in Biochemistry". YAKUGAKU ZASSHI 105, nr 11 (1985): 1009–18. http://dx.doi.org/10.1248/yakushi1947.105.11_1009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nam, Myung Jin. "A Review on Nuclear Magnetic Resonance Logging: Data Interpretation". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, nr 1 (2013): 144. http://dx.doi.org/10.12972/ksmer.2013.50.1.144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Leonard, J. C. "NUCLEAR MAGNETIC RESONANCE". Journal of Pediatric Orthopaedics 6, nr 1 (styczeń 1986): 116. http://dx.doi.org/10.1097/01241398-198601000-00030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Harborne, Jeffrey B. "Nuclear magnetic resonance:". Phytochemistry 26, nr 10 (styczeń 1987): 2877. http://dx.doi.org/10.1016/s0031-9422(00)83617-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nixon, C., N. P. Hirsch., I. E. C. Ormerod i G. Johnson. "Nuclear magnetic resonance." Anaesthesia 41, nr 2 (luty 1986): 131–37. http://dx.doi.org/10.1111/j.1365-2044.1986.tb13166.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Nageswara Rao, B. D. "Nuclear magnetic resonance". Resonance 20, nr 11 (listopad 2015): 969–85. http://dx.doi.org/10.1007/s12045-015-0265-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

W.S.B. "Nuclear Magnetic Resonance". Journal of Magnetic Resonance (1969) 84, nr 2 (wrzesień 1989): 439–40. http://dx.doi.org/10.1016/0022-2364(89)90394-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

W.S.B. "Nuclear magnetic resonance". Journal of Magnetic Resonance (1969) 90, nr 3 (grudzień 1990): 619–20. http://dx.doi.org/10.1016/0022-2364(90)90074-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

S.L.S. "Nuclear Magnetic Resonance". Journal of Molecular Structure 144, nr 3-4 (maj 1986): 391. http://dx.doi.org/10.1016/0022-2860(86)85021-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

S, S. L. "Nuclear Magnetic Resonance". Journal of Molecular Structure 160, nr 1-2 (sierpień 1987): 183–84. http://dx.doi.org/10.1016/0022-2860(87)87017-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Nuclear magnetic resonance"

1

Sklar, Howard Fred. "Nuclear magnetic resonance logging". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10503.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1997.
Includes bibliographical references (leaves 119-121).
by Howard Fred Sklar.
M.S.
Style APA, Harvard, Vancouver, ISO itp.
2

Tang, Xiao-wu 1972. "Nuclear magnetic resonance microscopy". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9542.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1999.
Includes bibliographical references (leaves 96-100).
This thesis describes the design and applications of an improved Nuclear Magnetic Resonance (NMR) microscope, which permits MRI to study small sample sizes ( < 2mm) at high resolution (up to 2[mu]m). The effects of molecular diffusion and local variations in the magnetic susceptibility in NMR microscopy are described, which, along with the intrinsic low sensitivity of NMR, are the fundamental limitations to resolution. Molecular diffusion in the presence of a magnetization grating not only broadens the point spread function but also reduces the signal intensity. The significance of these effects depends strongly on the magnetic field gradient strengths and imaging protocols. A NMR microscope for a standard bore 14.lT magnet was developed, it is equipped with a highly efficient. solenoidal RF coil and three orthogonal gradients with strengths of 1260G / cm for Gz , 760G/cm for Gy , and 410G/cm for Gx at 15A. A modified CTI sequence is presented which incorporates strong pulsed gradients, Ernst angle excitation, CP coherent detection and reduced k-space sampling. It is the optimal pulse sequence for acquiring high-resolution ( < 5[mu]m) NMR images (best signal-to-noise ratio per unit time) when the effect of molecular diffusion is significant. It is demonstrated that this new sequence makes it possible to acquire images with a high resolution of 2[mu]m x 2[mu]m x 8[mu]m within a few hours. A wide variety of images have been acquired using the new microscope, and representative images are presented to demonstrate the potential of NMR microscopy as a new tool in developmental biology research. In particular, used in combination with other biological techniques, NMR microscopy can provide a robust, non-invasive, 3D imaging approach to quantifying changes in structure due for instance to radiative exposure, therapy, and natural growth or genetic modifications.
by Xiao-wu Tang.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
3

Norwood, Timothy John. "Nuclear magnetic resonance in inhomogeneous magnetic fields". Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24875.

Pełny tekst źródła
Streszczenie:
The work described in this thesis was initiated in an attempt to overcome the limitations imposed upon NMR spectroscopy by magnetic field inhomogeneity in two specific areas: high resolution spectroscopy in isotropic liquids, and chemical shift resolved NMR imaging in isotropic liquids. In both cases magnetic field inhomogeneity may degrade the resolution of spectra to such an extent that no useful information can be obtained from them. In high resolution NMR spectroscopy it is necessary to be able to extract accurately the parameters present within the spectrum such as chemical shifts, coupling constants and peak areas. In chemical shift resolved imaging experiments the requirements are less stringent; and it is only necessary that the resonances of different chemical species be resolved. However, even the less stringent requirements of NMR imaging are often difficult to meet as the sample volumes required are often several orders of magnitude larger than those required in conventional high resolution NMR spectroscopy. The use of zero-quantum coherence has been investigated as a potential solution to the magnetic field inhomogeneity problem in both of these areas. Zero-quantum coherences are independent of magnetic field inhomogeneity and contain the parameters desired in both cases, though they are displayed in a way which differs from conventional NMR spectra. In this thesis, existing zero-quantum coherence experiments have been evaluated for use with inhomogeneous magnetic fields, and, where necessary, adapted for this purpose. Several completely new experiments have been developed for producing broad-band decoupled zero-quantum coherence spectra and also for presenting coupling constants and chemical shifts in a manner which is as close to conventional NMR spectra as possible, hence facilitating ease of use. Zero-quantum coherence has been evaluated as a tool for identifying unknown compounds and also for identifying the components of complex mixtures by "signature" recognition. Both decoupled and non-decoupled zero-quantum coherence experiments are adapted to provide imaging experiments which allow the separation of the images of different chemical species in inhomogeneous magnetic fields. The two-dimensional J-resolved experiment is also adapted for this purpose.
Science, Faculty of
Chemistry, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
4

Briand, Jacques. "Spatially localized nuclear magnetic resonance". Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/29062.

Pełny tekst źródła
Streszczenie:
The work presented in this thesis has involved the development and experimental implementation of a new method incorporating Nuclear Magnetic Resonance (NMR) methodology, and which enables a volume to be accurately defined and non-invasively interrogated within a larger object, by a sequence of radiofrequency (RF) and linear magnetic field gradient pulses. The most important feature of the VOISINER (volume of interest by selective inversion, excitation and refocusing) sequence is its flexibility with respect to the location and size of the region of interest. The spatial coordinates and the size of the volume of interest can be directly selected from conventional NMR images and then converted into the VOISINER sequence by an appropriate setting of the radiofrequency carrier frequencies of the frequency-selective RF pulses and an appropriate scaling of the field gradient strengths used during those RF pulses. As part of the experimental protocol, the VOISINER sequence was actually combined with conventional spin echo imaging in order to facilitate the selection of the region of interest and the optimization of the spatial sensitivity profile of the localization process. The applicability of the VOISINER sequence was then examined under various experimental conditions in order to evaluate the factors that can deteriorate or improve the efficiency of its spatial selectivity and detection sensitivity. Potential extensions of the VOISINER technique for extracting a variety of high-resolution NMR information have been explored and experimentally demonstrated by combining it with conventional NMR methodology. In particular, it was combined with the inversion recovery method to measure on a model system, spatially localized spin-lattice (T₁) relaxation times. With regard to imaging, studies of a model system have been used to evaluate the technical prospects for using the VOISINER sequence as the basis for high-resolution imaging of small regions within a large object. Finally, to demonstrate that the technique is applicable for studies of living systems, it was tested on a human forearm and spatially localized ¹H high-resolution spectra were successfully obtained from muscle tissue and bone marrow.
Science, Faculty of
Chemistry, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
5

Broadhurst, R. William. "Flash photolysis nuclear magnetic resonance". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257654.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ling, Yibo. "Nuclear magnetic resonance readable sensors". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57705.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2010.
Page 104 blank. Cataloged from PDF version of thesis.
Includes bibliographical references.
The monitoring of physiological biomarkers is fundamental to the diagnosis and treatment of disease. We describe here the development of molecular sensors which can be read by magnetic resonance (MR) relaxometry. MR is an advantageous bio-sensor readout because it can be determined from opaque samples and through intervening layers of matter. Wash steps can therefore be avoided in in vitro MR assays and non-invasive interrogation achieved for in vivo MR sensing. Functionalized magnetic nanoparticles originally developed as in vivo contrast agents have recently been adapted for use in magnetic relaxometry assays. The first half of this thesis describes a simple particle functionalization strategy and its application to the detection of myocardial infarction ("heart attack") associated biomarkers. The particles were subcutaneously implanted in the form of small discrete sensors and shown to be efficacious in measuring the physiological release of three protein biomarkers. Alternative contrast mechanisms may also be employed by MR readable sensors. The second half of this thesis introduces the novel use of 'smart' polymers which produce analyte-responsive changes in MR relaxivity. We show that MR responsive calcium-crosslinked and pH-swelling hydrogels can be incorporated within discrete sensors.
by Yibo Ling.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
7

Meier, Benno. "Nuclear Magnetic Resonance in pulsed high magnetic fields". Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-101205.

Pełny tekst źródła
Streszczenie:
Höchste Magnetfelder haben sich zu einem unverzichtbaren Werkzeug der Festkörperphysik entwickelt. Sie werden insbesondere verwendet, um die elektronischen Eigenschaften von modernen Materialien zu erforschen. Da Magnetfelder oberhalb von 45 Tesla nicht mehr mit statischen (z.B. supraleitenden) Feldern zu erreichen sind, haben sich weltweit verschiedene Labore auf die Erzeugung gepulster Magnetfelder mit angestrebten Maximalwerten von 100 Tesla spezialisiert. In der vorliegenden Arbeit werden Anwendungsmöglichkeiten der kernmagnetischen Resonanz (NMR) in gepulsten Magnetfeldern aufgezeigt. Es ist gelungen, die starke Zeitabhängigkeit der gepulsten Magnetfelder mittels NMR präzise zu vermessen. Die genaue Kenntnis des Magnetfelds nach dem Puls ermöglicht, die Zeitabhängigkeit aus den Daten zu entfernen, sodass auch eine kohärente Signal-Mittelung möglich ist. Davon ausgehend werden erstmalig Messungen der chemischen Verschiebung, der Knight Shift, der Spin-Gitter-Relaxationsrate 1/T1 und der Spin-Spin-Relaxationsrate 1/T2 diskutiert. Schließlich werden die im Zusammenhang mit gepulsten Magnetfeldern erarbeiteten Gleichungen in vereinfachter Form zur genauen Messung und Analyse des freien Induktions-Zerfalls von 19F Kernspins in Calciumfluorid verwendet. Durch Messung des Zerfalls über sechs Größenordnungen wird eine genaue Analyse bezüglich einer neuartigen Theorie ermöglicht, welche den Zerfall basierend auf der Annahme mikroskopischen Chaos\' erklärt. Diese Theorie hat das Potenzial, zu einem tieferen Verständnis von Quantenchaos in makroskopischen Vielteilchensystemen zu führen.
Style APA, Harvard, Vancouver, ISO itp.
8

Chen, Cheng. "NUCLEAR QUADRUPLE RESONANCE AND LOW-FIELD NUCLEAR MAGNETIC RESONANCE FOR MATERIALS AUTHENTICATION". Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1567518073598426.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Munasinghe, B. D. Jeeva P. "Nuclear magnetic resonance imaging of mice". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gao, Yuan. "Nuclear magnetic resonance studies of cytochromes". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Nuclear magnetic resonance"

1

A, Webb G., i Royal Society of Chemistry, red. Nuclear magnetic resonance. London: Royal Society of Chemistry, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Webb, G. A. Nuclear magnetic resonance. Redaktor Royal Society of Chemistry (Great Britain). Cambridge: Royal Society of Chemistry, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Webb, G. A., red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2008. http://dx.doi.org/10.1039/9781847558473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Webb, G. A., red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847558480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Webb, G. A., red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847551023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wojcik, Jacek, i Krystyna Kamienska-Trela, red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737678.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kamienska-Trela, Krystyna, i Jacek Wojcik, red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781849738125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hodgkinson, Paul, red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164965.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hodgkinson, Paul, red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788010665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kamienska-Trela, Krystyna, i Jacek Wojcik, red. Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849734851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Nuclear magnetic resonance"

1

Chappell, Michael. "Resonance—Nuclear Magnetic Resonance". W Principles of Medical Imaging for Engineers, 39–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30511-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kowalewski, Jozef. "Nuclear spin relaxation". W Nuclear Magnetic Resonance, 34–76. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839167690-00034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kowalewski, Jozef. "Nuclear spin relaxation". W Nuclear Magnetic Resonance, 76–138. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788010665-00076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kowalewski, Jozef. "Nuclear spin relaxation". W Nuclear Magnetic Resonance, 41–97. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164965-00041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Atta-ur-Rahman. "Chemical Shift in 1H-NMR Spectroscopy". W Nuclear Magnetic Resonance, 1–33. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Atta-ur-Rahman. "Spin—Spin Coupling in 1-NMR Spectroscopy". W Nuclear Magnetic Resonance, 34–86. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Atta-ur-Rahman. "Experimental Procedures in NMR Spectroscopy". W Nuclear Magnetic Resonance, 87–139. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Atta-ur-Rahman. "Chemical Shifts and Spin—Spin Couplings in 13C-NMR Spectroscopy". W Nuclear Magnetic Resonance, 140–201. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Atta-ur-Rahman. "Special Pulse Sequences and Two-Dimensional NMR Spectroscopy". W Nuclear Magnetic Resonance, 202–313. New York, NY: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Simpson, T. J. "13C-NMR in Metabolic Studies". W Nuclear Magnetic Resonance, 1–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82609-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Nuclear magnetic resonance"

1

Mamin, John. "Nanoscale Nuclear Magnetic Resonance". W Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lth1g.3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Donley, E. A. "Nuclear magnetic resonance gyroscopes". W 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690983.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Avrin, William F., Sankaran Kumar i Lowell J. Burnett. "SQUID-detected nuclear magnetic resonance". W Substance Identification Technologies, redaktorzy Geoffrey L. Harding, Richard C. Lanza, Lawrence J. Myers i Peter A. Young. SPIE, 1994. http://dx.doi.org/10.1117/12.171278.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

OHTSUBO, T., S. OHYA, M. SASAKI, T. IZUMIKAWA, K. NISHIMURA, J. GOTO, M. TANIGAKI i in. "MAGNETIC HYPERFINE ANOMALY MEASUREMENTS USING NUCLEAR MAGNETIC RESONANCE ON ORIENTED NUCLEI". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702401_0045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kleinberg, R. L., G. Leu, Martin D. Hürlimann, Yi Qiao Song, Paola Fantazzini i Villiam Bortolotti. "Nuclear Magnetic Resonance Applications to Unconventional Fossil Fuel Resources". W MAGNETIC RESONANCE IN POROUS MEDIA: Proceedings of the 9th International Bologna Conference on Magnetic Resonance in Porous Media (MRPM9), including 8th Colloquium on Mobile Magnetic Resonance (CMMR8). AIP, 2008. http://dx.doi.org/10.1063/1.3058540.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Drack, E. D., M. G. Prammer, S. Zannoni, G. Goodman, P. Masak, S. Menger i M. Morys. "Advances in LWD Nuclear Magnetic Resonance". W SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2001. http://dx.doi.org/10.2118/71730-ms.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Baldrighi, Paola, Marco Castellano, Carla Vacchi, Davide Canina, Paolo Golzi i Gianni Ferrante. "Digital Nuclear Magnetic Resonance Acquisition Channel". W 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools. IEEE, 2008. http://dx.doi.org/10.1109/dsd.2008.103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ernst, R. R. "Nuclear magnetic resonance Fourier transform spectroscopy". W Optical 3D Measurement Techniques II: Applications in Inspection, Quality Control, and Robotics, redaktorzy Armin Gruen i Heribert Kahmen. SPIE, 1994. http://dx.doi.org/10.1117/12.169824.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kang, K. H., B. J. Mean, J. H. Kim, I. N. Hyun, Moohee Lee, B. K. Cho i J. S. Cho. "Nuclear Magnetic Resonance Study of YMn4Al8". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dong, Qikan, Dingnan Huang i Zhengsheng Zhao. "Nuclear Magnetic Resonance Radio Frequency System". W 2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE). IEEE, 2023. http://dx.doi.org/10.1109/icemce60359.2023.10491006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Nuclear magnetic resonance"

1

Marangoni, Alejandro G., i M. Fernanda Peyronel. Pulsed Nuclear Magnetic Resonance Spectrometry. AOCS, kwiecień 2014. http://dx.doi.org/10.21748/lipidlibrary.40797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Boudjouk, Philip. Purchase of a Nuclear Magnetic Resonance Spectrometer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1988. http://dx.doi.org/10.21236/ada197610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hammel, P. C., i Raffi Budakian. Single Nuclear Spin Magnetic Resonance Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, maj 2010. http://dx.doi.org/10.21236/ada532586.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rosemary Knight. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS. Office of Scientific and Technical Information (OSTI), sierpień 2008. http://dx.doi.org/10.2172/936264.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Knight, Rosemary, Manika Prasad i Kristina Keating. Geochemical Controls on Nuclear Magnetic Resonance Measurements. Office of Scientific and Technical Information (OSTI), listopad 2003. http://dx.doi.org/10.2172/817588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wang, Shuanhu. Two-dimensional nuclear magnetic resonance of quadrupolar systems. Office of Scientific and Technical Information (OSTI), wrzesień 1997. http://dx.doi.org/10.2172/6387.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Heaney, M. B. Nuclear magnetic resonance experiments with dc SQUID amplifiers. Office of Scientific and Technical Information (OSTI), listopad 1990. http://dx.doi.org/10.2172/6102726.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cherbal, Omar, i Mustapha Maamache. Nonadiabatic Geometric Angle in Nuclear Magnetic Resonance Connection. GIQ, 2012. http://dx.doi.org/10.7546/giq-6-2005-175-182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Budakian, Raffi. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2013. http://dx.doi.org/10.21236/ada591583.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Urban, Jeffry Todd. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/836811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii