Artykuły w czasopismach na temat „Novel Nanoporous Organic Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Novel Nanoporous Organic Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shimojima, Atsushi, i Kazuyuki Kuroda. "Alkoxy- and Silanol-Functionalized Cage-Type Oligosiloxanes as Molecular Building Blocks to Construct Nanoporous Materials". Molecules 25, nr 3 (25.01.2020): 524. http://dx.doi.org/10.3390/molecules25030524.
Pełny tekst źródłaSarkisov, Lev, Tina Düren i Randall Q. Snurr. "Molecular modelling of adsorption in novel nanoporous metal–organic materials". Molecular Physics 102, nr 2 (20.01.2004): 211–21. http://dx.doi.org/10.1080/00268970310001654854.
Pełny tekst źródłaSarkisov, Lev, Tina Düren i Randall Q. Snurr. "Molecular modelling of adsorption in novel nanoporous metal-organic materials". Molecular Physics -1, nr 1 (1.01.2003): 1. http://dx.doi.org/10.1080/00268970410001654854.
Pełny tekst źródłaXiao, Heting, Hebin Jiang, Haixia Yin i Yueting Sun. "Nanofluidic Attenuation of Metal-Organic Frameworks". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 1 (1.02.2023): 6314–21. http://dx.doi.org/10.3397/in_2022_0938.
Pełny tekst źródłaZhang, Lu, Yuan Liu, Han Song, Bintong Huang, Bang-Ce Ye i Yingchun Li. "Nanoporous gold leaf as a signal amplification agent for the detection of VOCs with a quartz crystal microbalance". Analyst 141, nr 15 (2016): 4625–31. http://dx.doi.org/10.1039/c6an00556j.
Pełny tekst źródłaWijaya, Karna, Eddy Heraldy, Lukman Hakim, Ahmad Suseno, Poedji Loekitowati Hariani, Maisari Utami i Wahyu Dita Saputri. "Synthesis and Application of Nanolayered and Nanoporous Materials". ICS Physical Chemistry 1, nr 1 (6.02.2021): 1. http://dx.doi.org/10.34311/icspc.2021.1.1.1.
Pełny tekst źródłaIsaeva, Vera I., Oleg M. Nefedov i Leonid M. Kustov. "Metal–Organic Frameworks-Based Catalysts for Biomass Processing". Catalysts 8, nr 9 (31.08.2018): 368. http://dx.doi.org/10.3390/catal8090368.
Pełny tekst źródłaVasin, Andrii, Dmytro Kysil, Andriy Rusavsky, Oksana Isaieva, Alexander Zaderko, Alexei Nazarov i Volodymyr Lysenko. "Synthesis and Luminescent Properties of Carbon Nanodots Dispersed in Nanostructured Silicas". Nanomaterials 11, nr 12 (1.12.2021): 3267. http://dx.doi.org/10.3390/nano11123267.
Pełny tekst źródłaJ, Ganesan, Jeyadevi S, Siva Kaylasa Sundari S, Arunjunai Raj M, Pitchaimari G i Vijayakumar CT. "Thermal, mechanical, and electrical properties of difunctional and trifunctional epoxy blends with nanoporous materials". Journal of Elastomers & Plastics 54, nr 3 (10.12.2021): 494–508. http://dx.doi.org/10.1177/00952443211060400.
Pełny tekst źródłaLiu, Chunqing, Nathaniel Naismith, Lei Fu i James Economy. "Novel nanoporous hybrid organic–inorganic silica containing iminodiethanol chelating groups inside the channel pores". Chem. Commun., nr 15 (2003): 1920–21. http://dx.doi.org/10.1039/b304057g.
Pełny tekst źródłaRezanejade Bardajee, Ghasem, Ali Pourjavadi i Rouhollah Soleyman. "Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone". Journal of Polymer Research 18, nr 3 (25.03.2010): 337–46. http://dx.doi.org/10.1007/s10965-010-9423-3.
Pełny tekst źródłaCao, Xinwang, Xianfeng Wang, Bin Ding, Jianyong Yu i Gang Sun. "Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers". Carbohydrate Polymers 92, nr 2 (luty 2013): 2041–47. http://dx.doi.org/10.1016/j.carbpol.2012.11.085.
Pełny tekst źródłaCox, Jordan M., Ian M. Walton, Cassidy A. Benson, Yu-Sheng Chen i Jason B. Benedict. "A versatile environmental control cell forin situguest exchange single-crystal diffraction". Journal of Applied Crystallography 48, nr 2 (24.03.2015): 578–81. http://dx.doi.org/10.1107/s160057671500432x.
Pełny tekst źródłaRo, Hyun Wook, Kook Ji Kim, Patrick Theato, David W. Gidley i Do Y. Yoon. "Novel Inorganic−Organic Hybrid Block Copolymers as Pore Generators for Nanoporous Ultralow-Dielectric-Constant Films". Macromolecules 38, nr 3 (luty 2005): 1031–34. http://dx.doi.org/10.1021/ma048353w.
Pełny tekst źródłaKlajn, Rafal. "Immobilized azobenzenes for the construction of photoresponsive materials". Pure and Applied Chemistry 82, nr 12 (15.10.2010): 2247–79. http://dx.doi.org/10.1351/pac-con-10-09-04.
Pełny tekst źródłaYim, Jin-Heong, Jongseob Kim, David W. Gidley, Richard S. Vallery, Hua-Gen Peng, Duk Keun An, Byoung-Ki Choi, Young-Kwon Park i Jong-Ki Jeon. "Calixarene Derivatives as Novel Nanopore Generators for Templates of Nanoporous Thin Films". Macromolecular Materials and Engineering 291, nr 4 (7.04.2006): 369–76. http://dx.doi.org/10.1002/mame.200500370.
Pełny tekst źródłaQuach, Qui, Ngan Quach, Kade Adamy i Tarek M. Abdel-Fattah. "Surface Modification of Magnetic Nanoporous Silica with Carbon Based Materials for Enhancing Organic Dye Removal". ECS Meeting Abstracts MA2022-02, nr 8 (9.10.2022): 671. http://dx.doi.org/10.1149/ma2022-028671mtgabs.
Pełny tekst źródłaZhou, Yingjie, Qibin Li i Qiang Wang. "Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study". Energies 12, nr 13 (30.06.2019): 2521. http://dx.doi.org/10.3390/en12132521.
Pełny tekst źródłaVeselovsky, Vladimir V., Antonina V. Lozanova, Vera I. Isaeva, Anna A. Lobova, Andrew N. Fitch i Vladimir V. Chernyshev. "Optically active derivatives of terephthalic acid: four crystal structures from two powder patterns". Acta Crystallographica Section C Structural Chemistry 74, nr 3 (5.02.2018): 248–55. http://dx.doi.org/10.1107/s2053229618001705.
Pełny tekst źródłaHajizadeh, Alireza, Ahmad Reza Bahramian i Alireza Sharif. "Effect of Rubber Modification on the Morphology and Properties of Novolac Nanostructures". Advanced Materials Research 829 (listopad 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.829.41.
Pełny tekst źródłaChakraborty, Debabrata, Tapabrata Dam, Arindam Modak, Kamal K. Pant, Bijan Krishna Chandra, Adinath Majee, Aswini Ghosh i Asim Bhaumik. "A novel crystalline nanoporous iron phosphonate based metal–organic framework as an efficient anode material for lithium ion batteries". New Journal of Chemistry 45, nr 34 (2021): 15458–68. http://dx.doi.org/10.1039/d1nj02841c.
Pełny tekst źródłaAbbasi, Alireza, Farrokh Mohammadnezhad i Shokoofeh Geranmayeh. "A Novel 3-D Nanoporous Ce(III) Metal-Organic Framework with Terephthalic Acid; Thermal, Topology, Porosity and Structural Studies". Journal of Inorganic and Organometallic Polymers and Materials 24, nr 6 (23.09.2014): 1021–26. http://dx.doi.org/10.1007/s10904-014-0086-0.
Pełny tekst źródłaPhuoc, Ngo Minh, Euiyeon Jung, Nguyen Anh Thu Tran, Young-Woo Lee, Chung-Yul Yoo, Beom-Goo Kang i Younghyun Cho. "Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs". Nanomaterials 10, nr 11 (22.10.2020): 2091. http://dx.doi.org/10.3390/nano10112091.
Pełny tekst źródłaElmekawy, Ahmed, Qui Quach i Tarek M. Abdel-Fattah. "Synthesis of a Novel Multifunctional Organic-Inorganic Nanocomposite for Metal Ions and Organic Dye Removals". ECS Meeting Abstracts MA2022-02, nr 8 (9.10.2022): 672. http://dx.doi.org/10.1149/ma2022-028672mtgabs.
Pełny tekst źródłaLai, Huazhang, Shuiyan Chen, Xiaoyu Su, Xiaoying Huang, Qin Zheng, Ming Yang, Baode Shen i Pengfei Yue. "Sponge-liked Silica Nanoporous Particles for Sustaining Release and Long-Term Antibacterial Activity of Natural Essential Oil". Molecules 28, nr 2 (6.01.2023): 594. http://dx.doi.org/10.3390/molecules28020594.
Pełny tekst źródłaDaraie, Mansoureh, Razieh Mirsafaei i Majid M. Heravi. "Acid-functionalized Mesoporous Silicate (KIT-5-Pr-SO3H) Synthesized as an Efficient and Nanocatalyst for Green Multicomponent". Current Organic Synthesis 16, nr 1 (4.02.2019): 145–53. http://dx.doi.org/10.2174/1570179415666181005110543.
Pełny tekst źródłaQiu, Ruiqi, Qiu Xu, Hui Jiang i Xuemei Wang. "A Novel Enzyme-Free Biosensor Based on Porous Core–Shell Metal Organic Frame Nanocomposites Modified Electrode for Highly Sensitive Detection of Uric Acid and Dopamine". Journal of Biomedical Nanotechnology 15, nr 7 (1.07.2019): 1443–53. http://dx.doi.org/10.1166/jbn.2019.2791.
Pełny tekst źródłaAriga, Katsuhiko, Tatsuyuki Makita, Masato Ito, Taizo Mori, Shun Watanabe i Jun Takeya. "Review of advanced sensor devices employing nanoarchitectonics concepts". Beilstein Journal of Nanotechnology 10 (16.10.2019): 2014–30. http://dx.doi.org/10.3762/bjnano.10.198.
Pełny tekst źródłaLiu, Rong, Xinwei Wang, Junrong Yu, Yan Wang, Jing Zhu i Zuming Hu. "A Novel Approach to Design Nanoporous Polyethylene/Polyester Composite Fabric via TIPS for Human Body Cooling". Macromolecular Materials and Engineering 303, nr 3 (15.01.2018): 1700456. http://dx.doi.org/10.1002/mame.201700456.
Pełny tekst źródłaJoshi, Sahira, Rekha Goswami Shrestha, Raja Ram Pradhananga, Katsuhiko Ariga i Lok Kumar Shrestha. "High Surface Area Nanoporous Activated Carbons Materials from Areca catechu Nut with Excellent Iodine and Methylene Blue Adsorption". C 8, nr 1 (27.12.2021): 2. http://dx.doi.org/10.3390/c8010002.
Pełny tekst źródłaSun, Yuntao, Can Wang, Shengyao Qin, Fengda Pan, Yongyan Li, Zhifeng Wang i Chunling Qin. "Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation". Nanomaterials 12, nr 16 (18.08.2022): 2850. http://dx.doi.org/10.3390/nano12162850.
Pełny tekst źródłaYousaf, Afifa, Ali Muhammad Arif, Na Xu, Jie Zhou, Chun-Yi Sun, Xin-Long Wang i Zhong-Min Su. "A triazine-functionalized nanoporous metal–organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln3+ ion encapsulation". Journal of Materials Chemistry C 7, nr 29 (2019): 8861–67. http://dx.doi.org/10.1039/c9tc02786f.
Pełny tekst źródłaSai, Huazheng, Meijuan Wang, Changqing Miao, Qiqi Song, Yutong Wang, Rui Fu, Yaxiong Wang, Litong Ma i Yan Hao. "Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile". Gels 7, nr 3 (17.09.2021): 145. http://dx.doi.org/10.3390/gels7030145.
Pełny tekst źródłaApblett, Allen, Nicholas Materer, Evgueni Kadossov i Shoaib Shaikh. "Superior Monitoring of Chemical Exposure Using Nanoconfinement Technology". Military Medicine 186, Supplement_1 (1.01.2021): 795–800. http://dx.doi.org/10.1093/milmed/usaa372.
Pełny tekst źródłaAkbari, Masoud, Chiara Crivello, Octavio Graniel, Martial Defort, Skandar Basrour, Kevin Musselman i David Muñoz-Rojas. "ZIF-Based Metal-Organic Frameworks for Cantilever Gas Sensors". ECS Meeting Abstracts MA2022-01, nr 52 (7.07.2022): 2144. http://dx.doi.org/10.1149/ma2022-01522144mtgabs.
Pełny tekst źródłaSakaguchi, Shugo, Koshi Kamiya, Tsuneaki Sakurai i Shu Seki. "Interactions of Single Particle with Organic Matters: A Facile Bottom-Up Approach to Low Dimensional Nanostructures". Quantum Beam Science 4, nr 1 (5.02.2020): 7. http://dx.doi.org/10.3390/qubs4010007.
Pełny tekst źródłaLuo, Jia, Michael Florian Peter Wagner, Nils Ulrich, Peter Kopold, Christina Trautmann i Maria Eugenia Toimil Molares. "(Digital Presentation) Electrochemical Conversion of Cu Nanowires Synthesized By Electrodeposition in Track-Etched Templates to HKUST-1". ECS Meeting Abstracts MA2022-02, nr 23 (9.10.2022): 977. http://dx.doi.org/10.1149/ma2022-0223977mtgabs.
Pełny tekst źródłaLi, Man, Tao Chen, Seunghyun Song, Yang Li i Joonho Bae. "HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature". Nanomaterials 11, nr 3 (15.03.2021): 736. http://dx.doi.org/10.3390/nano11030736.
Pełny tekst źródłaYao, Zhuo, Dianli Qu, Yuxiang Guo, Yujing Yang i Hong Huang. "Fabrication and Characteristics of Mn@ Cu3(BTC)2 for Low-Temperature Catalytic Reduction of NOx with NH3". Advances in Materials Science and Engineering 2019 (31.10.2019): 1–9. http://dx.doi.org/10.1155/2019/2935942.
Pełny tekst źródłaJing, Feng-Ya, i Yu-Qing Zhang. "Unidirectional Nanopore Dehydration Induces an Anisotropic Polyvinyl Alcohol Hydrogel Membrane with Enhanced Mechanical Properties". Gels 8, nr 12 (8.12.2022): 803. http://dx.doi.org/10.3390/gels8120803.
Pełny tekst źródłaNangia, Ashwini. "Organic nanoporous structures". Current Opinion in Solid State and Materials Science 5, nr 2-3 (kwiecień 2001): 115–22. http://dx.doi.org/10.1016/s1359-0286(00)00038-3.
Pełny tekst źródłaSasaki, Takafumi, Shoji Nagaoka, Teppei Tezuka, Yoshiaki Suzuki, Masaya Iwaki i Hiroyoshi Kawakami. "Preparation of novel organic-inorganic nanoporous membranes". Polymers for Advanced Technologies 16, nr 9 (2005): 698–701. http://dx.doi.org/10.1002/pat.639.
Pełny tekst źródłaNoguchi, Hiroshi, Atsushi Kondo, Daisuke Noguchi, Dong Young Kim, Tomonori Ohba, Cheol-Min Yang, Hirofumi Kanoh i Katsumi Kaneko. "Adsorptive Properties of Novel Nanoporous Materials". JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 40, nr 13 (2007): 1159–65. http://dx.doi.org/10.1252/jcej.07we211.
Pełny tekst źródłaGin, D. L., i W. Gu. "Nanoporous Catalytic Materials with Organic Frameworks". Advanced Materials 13, nr 18 (wrzesień 2001): 1407–10. http://dx.doi.org/10.1002/1521-4095(200109)13:18<1407::aid-adma1407>3.0.co;2-0.
Pełny tekst źródłaPergher, Sibele, i Enrique Rodríguez-Castellón. "Nanoporous Materials and Their Applications". Applied Sciences 9, nr 7 (29.03.2019): 1314. http://dx.doi.org/10.3390/app9071314.
Pełny tekst źródłaLiu, Qingquan, Zhe Tang, Minda Wu, Bo Liao, Hu Zhou, Baoli Ou, Guipeng Yu, Zhihua Zhou i Xiaojuan Li. "Novel ferrocene-based nanoporous organic polymers for clean energy application". RSC Advances 5, nr 12 (2015): 8933–37. http://dx.doi.org/10.1039/c4ra12834f.
Pełny tekst źródłaMuralidharan, Vijayanand, i Chung-Yuen Hui. "Stability of Nanoporous Materials". Macromolecular Rapid Communications 25, nr 16 (26.08.2004): 1487–90. http://dx.doi.org/10.1002/marc.200400190.
Pełny tekst źródłaVan Riet, Romuald, Eder Amayuelas, Peter Lodewyckx, Michel H. Lefebvre i Conchi O. Ania. "Novel opportunities for nanoporous carbons as energetic materials". Carbon 164 (sierpień 2020): 129–32. http://dx.doi.org/10.1016/j.carbon.2020.03.061.
Pełny tekst źródłaRyder, M. R., i J.-C. Tan. "Nanoporous metal organic framework materials for smart applications". Materials Science and Technology 30, nr 13 (28.04.2014): 1598–612. http://dx.doi.org/10.1179/1743284714y.0000000550.
Pełny tekst źródłaXiao, Bo, i Qingchun Yuan. "Nanoporous metal organic framework materials for hydrogen storage". Particuology 7, nr 2 (kwiecień 2009): 129–40. http://dx.doi.org/10.1016/j.partic.2009.01.006.
Pełny tekst źródła