Gotowa bibliografia na temat „Novel Nanoporous Organic Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Novel Nanoporous Organic Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Novel Nanoporous Organic Materials"
Shimojima, Atsushi, i Kazuyuki Kuroda. "Alkoxy- and Silanol-Functionalized Cage-Type Oligosiloxanes as Molecular Building Blocks to Construct Nanoporous Materials". Molecules 25, nr 3 (25.01.2020): 524. http://dx.doi.org/10.3390/molecules25030524.
Pełny tekst źródłaSarkisov, Lev, Tina Düren i Randall Q. Snurr. "Molecular modelling of adsorption in novel nanoporous metal–organic materials". Molecular Physics 102, nr 2 (20.01.2004): 211–21. http://dx.doi.org/10.1080/00268970310001654854.
Pełny tekst źródłaSarkisov, Lev, Tina Düren i Randall Q. Snurr. "Molecular modelling of adsorption in novel nanoporous metal-organic materials". Molecular Physics -1, nr 1 (1.01.2003): 1. http://dx.doi.org/10.1080/00268970410001654854.
Pełny tekst źródłaXiao, Heting, Hebin Jiang, Haixia Yin i Yueting Sun. "Nanofluidic Attenuation of Metal-Organic Frameworks". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 1 (1.02.2023): 6314–21. http://dx.doi.org/10.3397/in_2022_0938.
Pełny tekst źródłaZhang, Lu, Yuan Liu, Han Song, Bintong Huang, Bang-Ce Ye i Yingchun Li. "Nanoporous gold leaf as a signal amplification agent for the detection of VOCs with a quartz crystal microbalance". Analyst 141, nr 15 (2016): 4625–31. http://dx.doi.org/10.1039/c6an00556j.
Pełny tekst źródłaWijaya, Karna, Eddy Heraldy, Lukman Hakim, Ahmad Suseno, Poedji Loekitowati Hariani, Maisari Utami i Wahyu Dita Saputri. "Synthesis and Application of Nanolayered and Nanoporous Materials". ICS Physical Chemistry 1, nr 1 (6.02.2021): 1. http://dx.doi.org/10.34311/icspc.2021.1.1.1.
Pełny tekst źródłaIsaeva, Vera I., Oleg M. Nefedov i Leonid M. Kustov. "Metal–Organic Frameworks-Based Catalysts for Biomass Processing". Catalysts 8, nr 9 (31.08.2018): 368. http://dx.doi.org/10.3390/catal8090368.
Pełny tekst źródłaVasin, Andrii, Dmytro Kysil, Andriy Rusavsky, Oksana Isaieva, Alexander Zaderko, Alexei Nazarov i Volodymyr Lysenko. "Synthesis and Luminescent Properties of Carbon Nanodots Dispersed in Nanostructured Silicas". Nanomaterials 11, nr 12 (1.12.2021): 3267. http://dx.doi.org/10.3390/nano11123267.
Pełny tekst źródłaJ, Ganesan, Jeyadevi S, Siva Kaylasa Sundari S, Arunjunai Raj M, Pitchaimari G i Vijayakumar CT. "Thermal, mechanical, and electrical properties of difunctional and trifunctional epoxy blends with nanoporous materials". Journal of Elastomers & Plastics 54, nr 3 (10.12.2021): 494–508. http://dx.doi.org/10.1177/00952443211060400.
Pełny tekst źródłaLiu, Chunqing, Nathaniel Naismith, Lei Fu i James Economy. "Novel nanoporous hybrid organic–inorganic silica containing iminodiethanol chelating groups inside the channel pores". Chem. Commun., nr 15 (2003): 1920–21. http://dx.doi.org/10.1039/b304057g.
Pełny tekst źródłaRozprawy doktorskie na temat "Novel Nanoporous Organic Materials"
Mangano, Enzo. "Rapid screening of novel nanoporous materials for carbon capture separations". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/9497.
Pełny tekst źródłaLiu, Yuanyuan. "DEVELOPMENT OF METAL-ORGANIC FRAMEWORK-BASED NANOPOROUS MATERIALS FOR ADSORPTION APPLICATIONS". Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1542906215640054.
Pełny tekst źródłaVuong, Gia Thanh. "Synthesis and characterization of nanoporous materials: nanozeolites and metal-organic frameworks". Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29925/29925.pdf.
Pełny tekst źródłaIn this thesis, two types of nanoporous materials: nanozeolites and metal-organic frameworks were studies. For nanozeolites, two novel methods e.g. single-phase and two-phases were reported for the synthesis of nanozeolites. In the single-phase synthesis method, a proper amount of zeolite gel solution was added to a toluene/n-butanol solution containing an organosilane. After 12 hours at 60oC, a single phase mixture was obtained. This mixture was then subjected to hydrothermal crystallization to produce uniform functionalized nanozeolites. In contrast, the two-phase synthesis method involved the introduction of an organic solvent containing organosilane to the aqueous zeolite gel solution, resulting in a two-phase mixture. Upon mixing and hydrothermal treatment of this mixture, organosilane-functionalized nanozeolites were obtained in the organic phase whereas, large zeolite crystals were found in the aqueous phase. In principle, both methods employed the use of organosilane to inhibit the crystal growth. The organic solvent acted as the medium for the dispersion of nanozeolites functionalized with organosilane from the aqueous phase, which led to the complete halt of the growth process. These two methods were demonstrated to be applicable to the synthesis of MFI and FAU nanozeolites such as silicalite-1 and NaY, and could be applied to the synthesis of other types of zeolites. Catalytic activity of the synthesized nanozeolites was evaluated by the cracking reaction of FCC feed. The result showed that FAU nanozeolites can be good catalysts for the cracking reaction. For the study of the metal-organic frameworks (MOF), a new rational approach was developed for the synthesis of mixed metal MIL-88B metal organic framework based on the use of neutral bimetallic cluster, such as Fe2Ni(µ3-O) cluster. Unlike the conventional negative charged single metal cluster, the use of neutral bimetallic cluster as a framework node avoids the need of compensating anion inside porous MIL-88B system; thus such a bimetallic MIL-88B becomes porous. The flexibility of the mixed metal MIL-88B can be controlled by terminal ligands with different steric hindrance. This allows us to reversibly customize the porosity of MIL-88B structure at three levels of specific surface area as well as the pore volume. Synthesis mechanism was also studied. It was found that the monometallic Fe3-MOF-235 is the precursors to the formation of MIL-88B. MOF-235 comes first then later transforms to Fe3-MIL-88B or acts as seeds for the formation of mixed Fe2Ni-MIL88B. FeCl4- anion is very important to the successful formation of MOF-235. An anion mediated mechanism of the formation of MOF-235 is suggested.
Sun, Zhengfei Wei Yen. "Novel sol-gel nanoporous materials, nanocomposites and their applications in bioscience /". Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/556.
Pełny tekst źródłaSmith, Helen. "Novel organic materials for photovoltaic devices". Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5859/.
Pełny tekst źródłaPaxton, G. A. N. "Novel organic materials for gas sensing". Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273584.
Pełny tekst źródłaJones, Christopher Lloyd. "Some novel oligothiophene-based materials". Thesis, University of Liverpool, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343689.
Pełny tekst źródłaBae, Tae-Hyun. "Engineering nanoporous materials for application in gas separation membranes". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/42712.
Pełny tekst źródłaRichards, Gary J. "Novel organic materials for electroluminescent display devices". Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342862.
Pełny tekst źródłaHaldoupis, Emmanuel. "Mulitscale modeling and screening of nanoporous materials and membranes for separations". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47669.
Pełny tekst źródłaKsiążki na temat "Novel Nanoporous Organic Materials"
service), SpringerLink (Online, red. Free-Radical Retrograde-Precipitation Polymerization (FRRPP): Novel Concepts, Processes, Materials, and Energy Aspects. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaKuzmany, Hans. Electronic Properties of Fullerenes: Proceedings of the International Winterschool on Electronic Properties of Novel Materials, Kirchberg, Tirol, March 6-13, 1993. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Znajdź pełny tekst źródłaNATO Advanced Research Workshop on Frontiers of High-Pressure Research (2nd 2001 Pingree Park, Colo.). Frontiers of high pressure research II: Application of high pressure to low-dimensional novel electronic materials. Dordrecht: Kluwer Academic Publishers, 2001.
Znajdź pełny tekst źródła1940-, Kuzmany H., red. International Winterschool on Electronic Properties of Novel Materials, progress in fullerene research: Kirchberg, Tyrol, Austria, 5-12 March 1994. Singapore: World Scientific, 1994.
Znajdź pełny tekst źródłaYan, Mei. Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaYan, Mei. Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer, 2014.
Znajdź pełny tekst źródłaYan, Mei. Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer Japan, 2016.
Znajdź pełny tekst źródłaDevelopment of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Mei Yan, 2014.
Znajdź pełny tekst źródła(Editor), A. K.-Y. Jen, L. R. Dalton (Editor) i M. F. Rubner (Editor), red. Electrical, Optical, and Magnetic Properties of Organic Solid State Materials: Symposium Held Novel 27-December 1, 1995 (Materials Research Society Symposium Proceedings). Materials Research Society, 1996.
Znajdź pełny tekst źródłaNovel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Novel Nanoporous Organic Materials"
Bon, V., I. Senkovska i S. Kaskel. "Metal-Organic Frameworks". W Nanoporous Materials for Gas Storage, 137–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3504-4_6.
Pełny tekst źródłaMa, Yunsheng, Hideki Tanaka i Ryotaro Matsuda. "CO2 Storage on Metal-Organic Frameworks". W Nanoporous Materials for Gas Storage, 331–58. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3504-4_12.
Pełny tekst źródłaDailly, Anne, i Matthew Beckner. "Methane Storage on Metal-Organic Frameworks". W Nanoporous Materials for Gas Storage, 227–53. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3504-4_9.
Pełny tekst źródłaLadik, János J., i Thomas C. Collins. "On the Possibility of High-Temperature Superconductivity in Organic Materials". W Novel Superconductivity, 181–85. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1937-5_19.
Pełny tekst źródłaJiang, Wen Long, Yu Duan, Yi Zhao, Jingying Hou i Shi Yong Liu. "A Novel Efficient Blue Organic Light Emitting Structure". W Materials Science Forum, 3677–80. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3677.
Pełny tekst źródłaOnodera, Tsunenobu, Hitoshi Kasai, Hidetoshi Oikawa i Hachiro Nakanishi. "Fabrication of Organic Nanocrystals and Novel NanoHybrid Materials". W Nanohybridization of Organic-Inorganic Materials, 81–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92233-9_4.
Pełny tekst źródłaDubbeldam, David. "Simulation of Crystalline Nanoporous Materials and the Computation of Adsorption/Diffusion Properties". W Gas Adsorption in Metal-Organic Frameworks, 219–326. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429469770-6.
Pełny tekst źródłaLu, Weiyi. "Novel Protection Mechanism of Blast and Impact Waves by Using Nanoporous Materials". W Dynamic Behavior of Materials, Volume 1, 177–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22452-7_25.
Pełny tekst źródłaPrasad, Paras N., Frank V. Bright, Upvan Narang, Run Wang, Richard A. Dunbar, Jeffrey D. Jordan i Raz Gvishi. "Novel Organic—Inorganic Composite Materials for Photonics". W ACS Symposium Series, 317–30. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0585.ch025.
Pełny tekst źródłaGadd, K. F. "Metal-Containing Cellulose: Some Novel Materials". W Inclusion Phenomena in Inorganic, Organic, and Organometallic Hosts, 265–68. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3987-5_46.
Pełny tekst źródłaStreszczenia konferencji na temat "Novel Nanoporous Organic Materials"
Barua, Nirmalay, William T. Winter, Serrita A. McAuley, Paul T. Clarkson, Joshua Prestage, Andrew R. Salmon i Tanya Hutter. "Adsorption of volatile organic compounds inside a nanoporous silica waveguide". W Optics and Photonics for Sensing the Environment. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/es.2022.em1d.3.
Pełny tekst źródłaParkinson, Bruce, i John Hoberg. "New 2D Nanoporous Covalent Organic Framework Materials with Functionalized". W nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.080.
Pełny tekst źródłaParkinson, Bruce, i John Hoberg. "New 2D Nanoporous Covalent Organic Framework Materials with Functionalized". W nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.080.
Pełny tekst źródłaTuz, A. A., A. K. Şimşek i M. Kazanci. "Production of organic nanoparticles by using nanoporous membranes". W PROCEEDINGS OF THE 6TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION: (APMAS 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4975463.
Pełny tekst źródłaLevchenko, A. N., A. I. Starikov, O. N. Bezkrovnaya, I. M. Pritula, I. S. Krapivin i V. B. Tyutyunnik. "Electrical properties of SiO2-based nanoporous materials containing organic dyes". W 2016 IEEE 7th International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 2016. http://dx.doi.org/10.1109/caol.2016.7851398.
Pełny tekst źródłaIlin, D. O., N. A. Martemyanov, A. S. Vokhmintsev i I. A. Weinstein. "Comparative Analysis of Photoluminescence Characteristics of Nanoporous Alumina Anodized in Different Electrolytes". W Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.now1j.3.
Pełny tekst źródłaMERIAKRI, V. V., I. P. NIKITIN, M. P. PARKHOMENKO, N. A. FEDOSEEV i KUANG-LIEH LU. "DIELECTRIC PROPERTIES OF NANOPOROUS METAL-ORGANIC FRAMEWORK MATERIALS IN THE MILLIMETER-WAVE BAND". W Proceedings of International Conference Nanomeeting – 2013. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814460187_0064.
Pełny tekst źródłaGuenter, Peter. "Novel High Nonlinearity Organic Crystals". W Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlo.1996.nwd.2.
Pełny tekst źródłaArmani, Andrea M., Jinghan He, Andre Kovach i Hyungwoo Choi. "Hybrid Organic/Inorganic Integrated Photonics". W Novel Optical Materials and Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/noma.2019.nom2b.2.
Pełny tekst źródłaNguyen, Thuc-Quyen. "Novel materials for organic electrochemical transistors". W Organic and Hybrid Field-Effect Transistors XX, redaktorzy Oana D. Jurchescu i Iain McCulloch. SPIE, 2021. http://dx.doi.org/10.1117/12.2597204.
Pełny tekst źródłaRaporty organizacyjne na temat "Novel Nanoporous Organic Materials"
Laird, Dr Darin, Dr Christine McGuiness i Mark Storch. High Performance Organic Photovoltaics via Novel Materials Combinations. Office of Scientific and Technical Information (OSTI), styczeń 2011. http://dx.doi.org/10.2172/1002150.
Pełny tekst źródłaHu, Bin. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, listopad 2015. http://dx.doi.org/10.21236/ada626817.
Pełny tekst źródłaPark, Soo Y., i Jin H. Kim. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2015. http://dx.doi.org/10.21236/ada626929.
Pełny tekst źródłaBiefeld, R. M., S. R. Kurtz i A. A. Allerman. Novel materials and device design by metal-organic chemical vapor deposition for use in infrared emitters. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/414397.
Pełny tekst źródła