Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Nonradiative energy transfer.

Artykuły w czasopismach na temat „Nonradiative energy transfer”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nonradiative energy transfer”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tewari, K. K., i S. D. Pandey. "Pb2+→Mn2+nonradiative energy transfer in KBr". Physical Review B 40, nr 4 (1.08.1989): 2101–8. http://dx.doi.org/10.1103/physrevb.40.2101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Suchocki, Andrzej, Zbigniew Kalinski, Jerzy M. Langer i Richard C. Powell. "Nonradiative energy‐transfer processes in Cd1−xMnxF2crystals". Journal of Applied Physics 71, nr 1 (styczeń 1992): 28–36. http://dx.doi.org/10.1063/1.350703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Stepashkina, A. S., D. M. Samosvat, O. P. Chikalova-Luzina i G. G. Zegrya. "Nonradiative resonance energy transfer between quantum dots". Journal of Physics: Conference Series 461 (28.08.2013): 012001. http://dx.doi.org/10.1088/1742-6596/461/1/012001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Basun, S. A., S. P. Feofilov i A. A. Kaplyanskii. "Fast resonant nonradiative energy transfer in alexandrite". Journal of Luminescence 48-49 (styczeń 1991): 166–70. http://dx.doi.org/10.1016/0022-2313(91)90097-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Prochazka, K., B. Bednar, E. Mukhtar, P. Svoboda, J. Trnena i M. Almgren. "Nonradiative energy transfer in block copolymer micelles". Journal of Physical Chemistry 95, nr 11 (maj 1991): 4563–68. http://dx.doi.org/10.1021/j100164a069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bililign, Solomon, Brian C. Hattaway i Gwang-Hi Jeung. "Nonradiative Energy Transfer in Li*(3p)−CH4Collisions". Journal of Physical Chemistry A 106, nr 2 (styczeń 2002): 222–27. http://dx.doi.org/10.1021/jp012616w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Guzelturk, Burak, Murat Olutas, Savas Delikanli, Yusuf Kelestemur, Onur Erdem i Hilmi Volkan Demir. "Nonradiative energy transfer in colloidal CdSe nanoplatelet films". Nanoscale 7, nr 6 (2015): 2545–51. http://dx.doi.org/10.1039/c4nr06003b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kaur, Amrita, Pardeep Kaur i Sahil Ahuja. "Förster resonance energy transfer (FRET) and applications thereof". Analytical Methods 12, nr 46 (2020): 5532–50. http://dx.doi.org/10.1039/d0ay01961e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Samosvat, D. M., O. P. Chikalova-Luzina i G. G. Zegrya. "Nonradiative resonance energy transfer between semiconductor quantum dots". Journal of Experimental and Theoretical Physics 121, nr 1 (lipiec 2015): 76–95. http://dx.doi.org/10.1134/s1063776115060138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

MORAWETZ, H. "Studies of Synthetic Polymers by Nonradiative Energy Transfer". Science 240, nr 4849 (8.04.1988): 172–76. http://dx.doi.org/10.1126/science.240.4849.172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Eteng, Akaa Agbaeze, Sharul Kamal Abdul Rahim i Chee Yen Leow. "Wireless Nonradiative Energy Transfer: Antenna performance enhancement techniques." IEEE Antennas and Propagation Magazine 57, nr 3 (czerwiec 2015): 16–22. http://dx.doi.org/10.1109/map.2015.2437281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Aceves, R., U. Caldiño G, J. Rubio O i E. Camarillo. "Nonradiative energy transfer Sn2+ → Mn2+ in monocrystalline KBr". Journal of Luminescence 65, nr 3 (sierpień 1995): 113–19. http://dx.doi.org/10.1016/0022-2313(95)00069-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Ibrayev N. Kh., Kucherenko M. G., Temirbayeva D. A. i Seliverstova E. V. "Plasmon-activated Forster energy transfer in molecular systems". Optics and Spectroscopy 130, nr 5 (2022): 569. http://dx.doi.org/10.21883/eos.2022.05.54441.1-22.

Pełny tekst źródła
Streszczenie:
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein-nile red (NR) and rhodamine B-NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein-nile red pair than for the rhodamine B-nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs. Keywords: energy transfer, silver nanoparticles, plasmon, model
Style APA, Harvard, Vancouver, ISO itp.
14

Kucherenko, M. G., V. N. Stepanov i N. Yu Kruchinin. "Intermolecular nonradiative energy transfer in clusters with plasmonic nanoparticles". Optics and Spectroscopy 118, nr 1 (styczeń 2015): 103–10. http://dx.doi.org/10.1134/s0030400x15010154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Samosvat, D. M., O. P. Chikalova-Luzina, A. S. Stepashkina i G. G. Zegrya. "Nonradiative resonance energy transfer between two semiconductor quantum dots". Technical Physics Letters 39, nr 1 (styczeń 2013): 74–77. http://dx.doi.org/10.1134/s1063785013010240.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Morawetz, Herbert. "Recent Applications of Nonradiative Energy Transfer to Polymer Studies". Collection of Czechoslovak Chemical Communications 58, nr 10 (1993): 2266–71. http://dx.doi.org/10.1135/cccc19932266.

Pełny tekst źródła
Streszczenie:
Recent studies of polymers in solution and in bulk by energy transfer between two fluorescent labels are reviewed. Such studies are concerned with the equilibrium and dynamics of polymer chain expansion, molecular cluster formation in solution, the miscibility of polymers in bulk, and the interdiffusion of polymer latex particles.
Style APA, Harvard, Vancouver, ISO itp.
17

Poddubny, A. N., i A. V. Rodina. "Nonradiative and radiative Förster energy transfer between quantum dots". Journal of Experimental and Theoretical Physics 122, nr 3 (marzec 2016): 531–38. http://dx.doi.org/10.1134/s1063776116030092.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Chikalova-Luzina, O. P., D. M. Samosvat, V. M. Vyatkin i G. G. Zegrya. "Nonradiative resonance energy transfer in the quantum dot system". Physica E: Low-dimensional Systems and Nanostructures 114 (październik 2019): 113568. http://dx.doi.org/10.1016/j.physe.2019.113568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Singldinger, Andreas, Moritz Gramlich, Christoph Gruber, Carola Lampe i Alexander S. Urban. "Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets". ACS Energy Letters 5, nr 5 (1.04.2020): 1380–85. http://dx.doi.org/10.1021/acsenergylett.0c00471.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kucherenko, M. G., i D. A. Kislov. "Plasmon-activated intermolecular nonradiative energy transfer in spherical nanoreactors". Journal of Photochemistry and Photobiology A: Chemistry 354 (marzec 2018): 25–32. http://dx.doi.org/10.1016/j.jphotochem.2017.10.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Tomin, V. I. "Nonradiative energy transfer in a concentrated solution of prodan". Optics and Spectroscopy 101, nr 4 (październik 2006): 563–67. http://dx.doi.org/10.1134/s0030400x06100109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Muoz F., A., G. Muoz H. i J. Rubio O. "Nonradiative energy transfer fromCu+toMn2+ions in monocrystalline NaCl". Physical Review B 41, nr 15 (15.05.1990): 10830–34. http://dx.doi.org/10.1103/physrevb.41.10830.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Khrebtov, A. I., R. R. Reznik, E. V. Ubyivovk, A. P. Litvin, I. D. Skurlov, P. S. Parfenov, A. S. Kulagina, V. V. Danilov i G. E. Cirlin. "Nonradiative Energy Transfer in Hybrid Nanostructures with Varied Dimensionality". Semiconductors 53, nr 9 (wrzesień 2019): 1258–61. http://dx.doi.org/10.1134/s1063782619090082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Gaudreau, L., K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. García de Abajo i F. H. L. Koppens. "Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene". Nano Letters 13, nr 5 (15.04.2013): 2030–35. http://dx.doi.org/10.1021/nl400176b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

LAREO, LEONARDO R., i JANNETH GONZÁLEZ. "INTRAMOLECULAR EXCITED ENERGY TRANSFER PATHWAYS IN PROTEINS". Journal of Theoretical and Computational Chemistry 07, nr 01 (luty 2008): 91–102. http://dx.doi.org/10.1142/s0219633608003629.

Pełny tekst źródła
Streszczenie:
The transfer of energy perturbations within protein structure is an important phenomenon in many biological processes. In particular, the transfer of energy perturbations within a molecule in the absence of electron transfer is critical to the understanding of such processes as signaling involving receptors, channels, and enzymes among others, and to the design and development of relevant conducting materials. In this work, we have proposed a mechanism to explain this nonradiative, nonelectron energy transfer based on the π-orbital interactions of aromatic amino acids. Additionally, some theoretical background and possible computational approaches are presented as support for the proposal.
Style APA, Harvard, Vancouver, ISO itp.
26

Ибраев, Н. Х., М. Г. Кучеренко, Д. А. Темирбаева i Е. В. Селиверстова. "Плазмон-активированный фёрстеровский перенос энергии в молекулярных системах". Оптика и спектроскопия 130, nr 5 (2022): 721. http://dx.doi.org/10.21883/os.2022.05.52426.1-22.

Pełny tekst źródła
Streszczenie:
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein–nile red (NR) and rhodamine B–NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein–nile red pair than for the rhodamine B–nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs.
Style APA, Harvard, Vancouver, ISO itp.
27

Avila-Huerta, Mariana D., Edwin J. Ortiz-Riaño, Diana L. Mancera-Zapata, Karen Cortés-Sarabia i Eden Morales-Narváez. "Facile Determination of COVID-19 Seroconversion via Nonradiative Energy Transfer". ACS Sensors 6, nr 6 (28.05.2021): 2136–40. http://dx.doi.org/10.1021/acssensors.1c00795.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

van de Haar, Marie Anne, Anne C. Berends, Michael R. Krames, Liudmyla Chepyga, Freddy T. Rabouw i Andries Meijerink. "Eu3+ Sensitization via Nonradiative Interparticle Energy Transfer Using Inorganic Nanoparticles". Journal of Physical Chemistry Letters 11, nr 3 (10.01.2020): 689–95. http://dx.doi.org/10.1021/acs.jpclett.9b03764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gan, Daoji, i L. Andrew Lyon. "Interfacial Nonradiative Energy Transfer in Responsive Core−Shell Hydrogel Nanoparticles". Journal of the American Chemical Society 123, nr 34 (sierpień 2001): 8203–9. http://dx.doi.org/10.1021/ja015974l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bednář, B., L. Karásek i J. Pokorný. "Nonradiative energy transfer studies of block copolymers in selective solvents". Polymer 37, nr 23 (listopad 1996): 5261–68. http://dx.doi.org/10.1016/0032-3861(96)00344-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Park, Jun Kue, Kyu Won Lee, W. Lee i Cheol Eui Lee. "Nonradiative energy transfer in ZnO nanorods/dye-doped polymer heterostructures". Applied Physics Letters 94, nr 23 (8.06.2009): 233301. http://dx.doi.org/10.1063/1.3153117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Levin, M. B., M. G. Reva, V. V. Rodchenkova i Boris M. Uzhinov. "Ratio of radiative to nonradiative energy transfer in lasing systems". Soviet Journal of Quantum Electronics 16, nr 6 (30.06.1986): 833–36. http://dx.doi.org/10.1070/qe1986v016n06abeh006927.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Konyshev, Yu V., R. T. Nasibullin, V. N. Cherepanov, G. V. Baryshnikov i R. R. Valiev. "Theoretical Study of Nonradiative Energy Transfer from Exciplex to Perovskites". Russian Physics Journal 62, nr 10 (luty 2020): 1911–16. http://dx.doi.org/10.1007/s11182-020-01922-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Efimova, S. L., A. V. Sorokin, A. N. Lebedenko, Yu V. Malyukin i E. N. Obukhova. "Nonradiative energy transfer in carbocyanine dye compositions inside surfactant micelles". Journal of Applied Spectroscopy 73, nr 2 (marzec 2006): 164–70. http://dx.doi.org/10.1007/s10812-006-0053-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Cho, Eun-Bum, i Dukjoon Kim. "Nonradiative Energy Transfer in Chromophore-Tagged PS–PEO Diblock Copolymers". Macromolecular Symposia 249-250, nr 1 (kwiecień 2007): 437–44. http://dx.doi.org/10.1002/masy.200750416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Karpińska, Miriam, Minpeng Liang, Roman Kempt, Kati Finzel, Machteld Kamminga, Mateusz Dyksik, Nan Zhang i in. "Nonradiative Energy Transfer and Selective Charge Transfer in a WS2/(PEA)2PbI4 Heterostructure". ACS Applied Materials & Interfaces 13, nr 28 (6.07.2021): 33677–84. http://dx.doi.org/10.1021/acsami.1c08377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Choi, Yong Gyu, Kyong Hon Kim, Yong Seop Han i Jong Heo. "Sensitizing effect of Yb3+ on near-infrared fluorescence emission of Cr4+-doped calcium aluminate glasses". Journal of Materials Research 15, nr 2 (luty 2000): 278–81. http://dx.doi.org/10.1557/jmr.2000.0045.

Pełny tekst źródła
Streszczenie:
We have demonstrated that an efficient energy transfer takes place from Yb3+ to Cr4+ in calcium aluminate glasses. Yb3+ improves excitation efficiency at around 980 nm, enhancing emission intensity of Cr4+ fluorescence at 1.2–1.6 μm. Nonradiative energy transfer via electric dipole–dipole interaction between ytterbium and chromium ions was found to be dominant over radiative Yb3+ → Cr4+ energy transfer. A diffusionlimited energy transfer mechanism well explains the decay behavior of Yb3+/Cr4+- codoped glasses. This codoping scheme may be applicable to other Cr4+-containing crystals and glasses.
Style APA, Harvard, Vancouver, ISO itp.
38

Grajek, Hanna, Jacek Kubicki, Ignacy Gryczyński, Jerzy Karolczak, Grażyna Żurkowska, Agnieszka I. Piotrowicz-Cieślak i Piotr Bojarski. "Effect of Dimer Structure and Inhomogeneous Broadening of Energy Levels on the Action of Flavomononucleotide in Rigid Polyvinyl Alcohol Films". International Journal of Molecular Sciences 22, nr 14 (20.07.2021): 7759. http://dx.doi.org/10.3390/ijms22147759.

Pełny tekst źródła
Streszczenie:
The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.66 ns (at λexc = 445 nm) and τfl = 2.02 (at λexc = 487 nm) at λobs = 600 nm and T = 253 K from H and J state of dimers, respectively. We show that inhomogeneous orientational broadening of energy levels (IOBEL) affects the shape of the fluorescence decay and leads to the dependence of the average monomer fluorescence lifetime on excitation wavelength. IOBEL affected the nonradiative energy transfer and indicated that different flavin positioning in the protein pocket could (1) change the spectroscopic properties of flavins due to the existence of “blue” and “red” fluorescence centers, and (2) diminish the effectiveness of energy transfer between FMN molecules.
Style APA, Harvard, Vancouver, ISO itp.
39

Johnson, E., i R. Aroca. "Energy transfer between Langmuir–Blodgett monolayers of organic dyes". Canadian Journal of Chemistry 69, nr 11 (1.11.1991): 1728–31. http://dx.doi.org/10.1139/v91-253.

Pełny tekst źródła
Streszczenie:
The Langmuir–Blodgett technique has been used to prepare multilayer structures in order to investigate the distance dependence of the nonradiative transfer of electronic energy from a donor plane of molecules to an acceptor plane. The distance between well-separated donor molecules and acceptor molecules was carefully controlled by spacer layers of arachidic acid. New systems for energy transfer studies are considered that use N-hexyl-N′-ethyl-3,4:9,10-perylenetetracarboxyldiimide (HPTCDE) and N-hexyl-3,4:9,10-perylenetetracarboxylmonoimide (HPTCO) as donors and lutetium diphthalocyanine (LuPc2) as acceptor. The limitations of the Förster dipole theory of energy transfer from a donor monolayer of point dipoles to an acceptor layer are discussed. Key words: energy transfer, Langmuir–Blodgett, diphthalocyanine, perylene.
Style APA, Harvard, Vancouver, ISO itp.
40

An, Li Min, Yan Fang Duan, Hong Liu, Jie Yi, Chun Xia Liu, Xiao Guang Li, Li Zhi He, Ling Song Zhou, Pu Yu Wang i Wen Yu An. "Fluorescence from the Compound System of PVK Molecules and SiO2 Nanoparticles with Different Sizes". Advanced Materials Research 981 (lipiec 2014): 797–800. http://dx.doi.org/10.4028/www.scientific.net/amr.981.797.

Pełny tekst źródła
Streszczenie:
SiO2nanoparticles (NPs) are synthesized in ethanol solution and mixed with polyvinyl carbazole (PVK). The sizes of SiO2NPs are 40nm and 60nm. PVK/SiO2NPs compound systems with different sizes and with different ratios of mass fraction are obtained. Photoluminescence spectra are employed to research the optical properties of PVK molecules and PVK/SiO2NPs compound system. In compound system, the process of interface energy transfer between PVK and SiO2NPs are observed. The mainly energy transfer form is nonradiative resonance transfer.
Style APA, Harvard, Vancouver, ISO itp.
41

El Kabbash, Mohamed, Alireza Rahimi Rashed, Kandammathe Valiyaveedu Sreekanth, Antonio De Luca, Melissa Infusino i Giuseppe Strangi. "Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems". Journal of Nanomaterials 2016 (2016): 1–21. http://dx.doi.org/10.1155/2016/4819040.

Pełny tekst źródła
Streszczenie:
The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET) process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.
Style APA, Harvard, Vancouver, ISO itp.
42

Yeltik, Aydan, Gokce Kucukayan-Dogu, Burak Guzelturk, Somayeh Fardindoost, Yusuf Kelestemur i Hilmi Volkan Demir. "Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures". Journal of Physical Chemistry C 117, nr 48 (20.11.2013): 25298–304. http://dx.doi.org/10.1021/jp408465a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Zygelman, B., A. Dalgarno, M. Kimura i N. F. Lane. "Radiative and nonradiative charge transfer inHe++H collisions at low energy". Physical Review A 40, nr 5 (1.09.1989): 2340–45. http://dx.doi.org/10.1103/physreva.40.2340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Yang, Zhenling, Yuqiang Liu, Xing He, Yanan Wen i Yanqiang Yang. "Competition between surface trapping and nonradiative energy transfer to gold nanofilm". Journal of Applied Physics 108, nr 9 (listopad 2010): 094309. http://dx.doi.org/10.1063/1.3503518.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Di Bartolo, B., J. Danko i D. Pacheco. "Nonradiative energy transfer without lifetime quenching in doped Mn-based crystals". Physical Review B 35, nr 12 (15.04.1987): 6386–94. http://dx.doi.org/10.1103/physrevb.35.6386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Pokorna, Veronika, Frantisek Mikes, Jan Pecka i Drahomir Vyprachticky. "Study of poly(methyl methacrylate) stereocomplex formation by nonradiative energy transfer". Macromolecules 26, nr 8 (kwiecień 1993): 2139–40. http://dx.doi.org/10.1021/ma00060a052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Shokurov, Alexander V., Lubov’ V. Nikolayeva, Darina N. Novak, Vladimir V. Arslanov i Sofiya L. Selektor. "Nonradiative energy transfer in planar systems based on structurally different fluorophores". Mendeleev Communications 27, nr 4 (lipiec 2017): 366–67. http://dx.doi.org/10.1016/j.mencom.2017.07.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kühne, H., G. Weiser, E. I. Terukov, A. N. Kusnetsov i V. Kh Kudoyarova. "Resonant nonradiative energy transfer to erbium ions in amorphous hydrogenated silicon". Journal of Applied Physics 86, nr 2 (15.07.1999): 896–901. http://dx.doi.org/10.1063/1.370820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Cardullo, R. A., S. Agrawal, C. Flores, P. C. Zamecnik i D. E. Wolf. "Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer." Proceedings of the National Academy of Sciences 85, nr 23 (1.12.1988): 8790–94. http://dx.doi.org/10.1073/pnas.85.23.8790.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Yuldasheva, D. K., D. N. Pevtsov, A. V. Gadomska i S. A. Tovstun. "Kinetics of Nonradiative Energy Transfer between Close-Packed InP/ZnS Nanocrystals". High Energy Chemistry 56, nr 6 (grudzień 2022): 399–410. http://dx.doi.org/10.1134/s0018143922060182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii