Gotowa bibliografia na temat „Nonradiative energy transfer”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nonradiative energy transfer”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Nonradiative energy transfer"

1

Tewari, K. K., and S. D. Pandey. "Pb2+→Mn2+nonradiative energy transfer in KBr." Physical Review B 40, no. 4 (1989): 2101–8. http://dx.doi.org/10.1103/physrevb.40.2101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Suchocki, Andrzej, Zbigniew Kalinski, Jerzy M. Langer, and Richard C. Powell. "Nonradiative energy‐transfer processes in Cd1−xMnxF2crystals." Journal of Applied Physics 71, no. 1 (1992): 28–36. http://dx.doi.org/10.1063/1.350703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Stepashkina, A. S., D. M. Samosvat, O. P. Chikalova-Luzina, and G. G. Zegrya. "Nonradiative resonance energy transfer between quantum dots." Journal of Physics: Conference Series 461 (August 28, 2013): 012001. http://dx.doi.org/10.1088/1742-6596/461/1/012001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Basun, S. A., S. P. Feofilov, and A. A. Kaplyanskii. "Fast resonant nonradiative energy transfer in alexandrite." Journal of Luminescence 48-49 (January 1991): 166–70. http://dx.doi.org/10.1016/0022-2313(91)90097-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Prochazka, K., B. Bednar, E. Mukhtar, P. Svoboda, J. Trnena, and M. Almgren. "Nonradiative energy transfer in block copolymer micelles." Journal of Physical Chemistry 95, no. 11 (1991): 4563–68. http://dx.doi.org/10.1021/j100164a069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bililign, Solomon, Brian C. Hattaway, and Gwang-Hi Jeung. "Nonradiative Energy Transfer in Li*(3p)−CH4Collisions." Journal of Physical Chemistry A 106, no. 2 (2002): 222–27. http://dx.doi.org/10.1021/jp012616w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Guzelturk, Burak, Murat Olutas, Savas Delikanli, Yusuf Kelestemur, Onur Erdem, and Hilmi Volkan Demir. "Nonradiative energy transfer in colloidal CdSe nanoplatelet films." Nanoscale 7, no. 6 (2015): 2545–51. http://dx.doi.org/10.1039/c4nr06003b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kaur, Amrita, Pardeep Kaur, and Sahil Ahuja. "Förster resonance energy transfer (FRET) and applications thereof." Analytical Methods 12, no. 46 (2020): 5532–50. http://dx.doi.org/10.1039/d0ay01961e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Samosvat, D. M., O. P. Chikalova-Luzina, and G. G. Zegrya. "Nonradiative resonance energy transfer between semiconductor quantum dots." Journal of Experimental and Theoretical Physics 121, no. 1 (2015): 76–95. http://dx.doi.org/10.1134/s1063776115060138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

MORAWETZ, H. "Studies of Synthetic Polymers by Nonradiative Energy Transfer." Science 240, no. 4849 (1988): 172–76. http://dx.doi.org/10.1126/science.240.4849.172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Nonradiative energy transfer"

1

Zhao, Pihong. "Nonradiative energy transfer in solutions." Scholarly Commons, 1994. https://scholarlycommons.pacific.edu/uop_etds/2807.

Pełny tekst źródła
Streszczenie:
Electronic excitation energy transfer from coumarins to xanthene dyes in different media has been investigated. Nonradiative energy transfer between coumarin 1 (d) and fluorescein (a), in 95% ethanol and in n-octanol takes place with critical transfer distances: 48.4 A (d-a) and 21.0 A (d-d) in 95% ethanol, and 46.4 A (d-a) and 25.4 A (d-d) in 1-octanol. The rate constants of nonradiative energy transfer and energy migration in these two solvents were compared with the rates of diffusion. Energy transfer in the three-component system coumarin 1/fluorescein/rhodamine B, was studied. The critica
Style APA, Harvard, Vancouver, ISO itp.
2

Dandu, Medha. "Tailoring optical and electrical characteristics of layered materials through van der Waals heterojunctions." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5623.

Pełny tekst źródła
Streszczenie:
The feasibility of isolation of layered materials and arbitrary stacking of different materials provide plenty of opportunities to realize van der Waals heterostructures (vdWhs) with desired characteristics. In this thesis, we experimentally demonstrate the tunability of optical and electrical characteristics of transition metal dichalcogenides (TMDs), a class of layered materials, using their vdWhs. Monolayer (1L) TMDs exhibit remarkable light-matter interaction by hosting direct bandgap, strongly bound excitonic complexes, ultra-fast radiative decay, many-body states, and coupled spin-valley
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Nonradiative energy transfer"

1

Armağan, Güzin. Radiative and nonradiative energy transfer between Cr3+ and Nd3+ in GSGG. 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Nonradiative energy transfer"

1

Buoncristiani, A. M., G. Armagan, B. Di Bartolo, and J. J. Swetits. "Energy Transfer in Cr, Tm:YAG." In Advances in Nonradiative Processes in Solids. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-4446-0_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Govorov, Alexander, Pedro Ludwig Hernández Martínez, and Hilmi Volkan Demir. "Förster-Type Nonradiative Energy Transfer Models." In Understanding and Modeling Förster-type Resonance Energy Transfer (FRET). Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-378-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Demchenko, Alexander P. "Nonradiative Transfer of Electronic Excitation Energy." In Ultraviolet Spectroscopy of Proteins. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70847-3_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hernández Martínez, Pedro Ludwig, Alexander Govorov, and Hilmi Volkan Demir. "Nonradiative Energy Transfer in Assembly of Nanostructures." In Understanding and Modeling Förster-type Resonance Energy Transfer (FRET). Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1873-2_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hernández Martínez, Pedro Ludwig, Alexander Govorov, and Hilmi Volkan Demir. "Förster-Type Nonradiative Energy Transfer Rates for Nanostructures with Various Dimensionalities." In Understanding and Modeling Förster-type Resonance Energy Transfer (FRET). Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1873-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Morawetz, H. "Characterization of the Interpenetration of Chain Molecules by Nonradiative Energy Transfer." In Photophysical and Photochemical Tools in Polymer Science. Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4726-9_24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Armagan, G., and B. Di Bartolo. "Radiative and Nonradiative Energy Transfer Between Cr3+ and Nd3+ in GSGG." In Springer Series in Optical Sciences. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-540-47433-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hernández Martínez, Pedro Ludwig, Alexander Govorov, and Hilmi Volkan Demir. "Applying Förster-Type Nonradiative Energy Transfer Formalism to Nanostructures with Various Directionalities: Dipole Electric Potential of Exciton and Dielectric Environment." In Understanding and Modeling Förster-type Resonance Energy Transfer (FRET). Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1873-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

"Appendix H: The Mechanism of Nonradiative Energy Transfer." In Transitions in Molecular Systems. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630219.app8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Nonradiative energy transfer"

1

Higgins, L. J., X. Zhang, C. A. Marocico, et al. "Enhancing Förster nonradiative energy transfer via plasmon interaction." In SPIE Photonics Europe, edited by David L. Andrews, Jean-Michel Nunzi, and Andreas Ostendorf. SPIE, 2016. http://dx.doi.org/10.1117/12.2229032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Clapp, Aaron R., Thomas Pons, Hedi Mattoussi, Igor L. Medintz, and Joseph S. Melinger. "Two-Photon Excitation of Quantum Dot Based Nonradiative Energy Transfer." In Biomedical Topical Meeting. OSA, 2006. http://dx.doi.org/10.1364/bio.2006.sf5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ushakova, Elena V., Aleksandr P. Litvin, Peter S. Parfenov, Anatoly V. Fedorov, Sergei A. Cherevkov, and Alexander V. Baranov. "Nonradiative resonant energy transfer between PbS QDs in porous matrix." In SPIE NanoScience + Engineering, edited by Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg, and Taleb Mokari. SPIE, 2013. http://dx.doi.org/10.1117/12.2023035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gough, J. J., M. O'Brien, N. McEvoy, A. P. Bell, G. S. Duesberg, and A. L. Bradley. "Enhancing the electrical properties of MoS2 through nonradiative energy transfer." In 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials). IEEE, 2017. http://dx.doi.org/10.1109/metamaterials.2017.8107862.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Luo, Yang, Hangyong Shan, Xiaoqing Gao, Pengfei Qi, and Zheyu Fang. "Enhanced Photoluminescence of Heterostructure: Energy Transfer and Nonradiative Exciton Relaxation Suppression." In CLEO: Applications and Technology. OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jw2f.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Evans, Jonathan W., Thomas R. Harris, Eric J. Turner, et al. "Re-absorption and nonradiative energy transfer in vibronic laser gain media." In Solid State Lasers XXVII: Technology and Devices, edited by W. Andrew Clarkson and Ramesh K. Shori. SPIE, 2018. http://dx.doi.org/10.1117/12.2290822.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Palm, Jorg, F. Gan, and Lionel C. Kimerling. "Nonradiative energy back transfer from erbium in silicon by impurity Auger process." In Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare Earth and Transitional Ions, edited by Alexander I. Ryskin and V. F. Masterov. SPIE, 1996. http://dx.doi.org/10.1117/12.229162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gough, John J., Niall McEvoy, Maria O'Brien, et al. "Nonradiative Energy Transfer and Photocurrent Enhancements in Hybrid Quantum Dot-MoS2 Devices." In 2018 20th International Conference on Transparent Optical Networks (ICTON). IEEE, 2018. http://dx.doi.org/10.1109/icton.2018.8473673.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Golmakaniyoon, Sepideh, Hilmi V. Demir, and Xiao Wei Sun. "Nonradiative energy transfer in a layered metal-dielectric nanostructure mediated by surface plasmons." In SPIE Nanoscience + Engineering, edited by Allan D. Boardman and Din Ping Tsai. SPIE, 2015. http://dx.doi.org/10.1117/12.2187970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yeltik, Aydan, Burak Guzelturk, Pedro Ludwig Hernandez Martinez, and Hilmi Volkan Demir. "Phonon-assisted nonradiative energy transfer from colloidal quantum dots to monocrystalline bulk silicon." In 2012 IEEE Photonics Conference (IPC). IEEE, 2012. http://dx.doi.org/10.1109/ipcon.2012.6358845.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!