Gotowa bibliografia na temat „Nonlinear periodic systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nonlinear periodic systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nonlinear periodic systems"
Gasiński, Leszek, i Nikolaos S. Papageorgiou. "Nonlinear Multivalued Periodic Systems". Journal of Dynamical and Control Systems 25, nr 2 (14.06.2018): 219–43. http://dx.doi.org/10.1007/s10883-018-9408-9.
Pełny tekst źródłaVerriest, Erik I. "Balancing for Discrete Periodic Nonlinear Systems". IFAC Proceedings Volumes 34, nr 12 (sierpień 2001): 249–54. http://dx.doi.org/10.1016/s1474-6670(17)34093-4.
Pełny tekst źródłaLuo, Albert C. J. "Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems". International Journal of Bifurcation and Chaos 25, nr 03 (marzec 2015): 1550044. http://dx.doi.org/10.1142/s0218127415500443.
Pełny tekst źródłaCan, Le Xuan. "On periodic waves of the nonlinear systems". Vietnam Journal of Mechanics 20, nr 4 (30.12.1998): 11–19. http://dx.doi.org/10.15625/0866-7136/10037.
Pełny tekst źródłaSundararajan, P., i S. T. Noah. "Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems". Journal of Vibration and Acoustics 119, nr 1 (1.01.1997): 9–20. http://dx.doi.org/10.1115/1.2889694.
Pełny tekst źródłaOrtega, Juan-Pablo. "Relative normal modes for nonlinear Hamiltonian systems". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 133, nr 3 (czerwiec 2003): 665–704. http://dx.doi.org/10.1017/s0308210500002602.
Pełny tekst źródłaGrigoraş, Victor, i Carmen Grigoraş. "Connecting Analog and Discrete Nonlinear Systems for Noise Generation". Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 68, nr 1 (1.03.2022): 81–90. http://dx.doi.org/10.2478/bipie-2022-0005.
Pełny tekst źródłaAbbas, Saïd, Mouffak Benchohra, Soufyane Bouriah i Juan J. Nieto. "Periodic solutions for nonlinear fractional differential systems". Differential Equations & Applications, nr 3 (2018): 299–316. http://dx.doi.org/10.7153/dea-2018-10-21.
Pełny tekst źródłaKamenskii, Mikhail, Oleg Makarenkov i Paolo Nistri. "Small parameter perturbations of nonlinear periodic systems". Nonlinearity 17, nr 1 (17.10.2003): 193–205. http://dx.doi.org/10.1088/0951-7715/17/1/012.
Pełny tekst źródłaGhadimi, M., A. Barari, H. D. Kaliji i G. Domairry. "Periodic solutions for highly nonlinear oscillation systems". Archives of Civil and Mechanical Engineering 12, nr 3 (wrzesień 2012): 389–95. http://dx.doi.org/10.1016/j.acme.2012.06.014.
Pełny tekst źródłaRozprawy doktorskie na temat "Nonlinear periodic systems"
Tang, Xiafei. "Periodic disturbance rejection of nonlinear systems". Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/periodic-disturbance-rejection-of-nonlinear-systems(0bddefd9-2750-47fd-8c92-c90a01b8e1ef).html.
Pełny tekst źródłaAbd-Elrady, Emad. "Nonlinear Approaches to Periodic Signal Modeling". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4644.
Pełny tekst źródłaGroves, James O. "Small signal analysis of nonlinear systems with periodic operating trajectories". Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-162614/.
Pełny tekst źródłaZhang, Zhen. "Adaptive robust periodic output regulation". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187118803.
Pełny tekst źródłaKhames, Imene. "Nonlinear network wave equations : periodic solutions and graph characterizations". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR04/document.
Pełny tekst źródłaIn this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory
Warkomski, Edward Joseph 1958. "Nonlinear structures subject to periodic and random vibration with applications to optical systems". Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277811.
Pełny tekst źródłaZhang, Xiaohong. "Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations". Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40185.
Pełny tekst źródłaMyers, Owen Dale. "Spatiotemporally Periodic Driven System with Long-Range Interactions". ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/524.
Pełny tekst źródłaHayward, Peter J. "On the computation of periodic responses for nonlinear dynamic systems with multi-harmonic forcing". Thesis, University of Sussex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429733.
Pełny tekst źródłaRoyston, Thomas James. "Computational and Experimental Analyses of Passive and Active, Nonlinear Vibration Mounting Systems Under Periodic Excitation /". The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487928649987553.
Pełny tekst źródłaKsiążki na temat "Nonlinear periodic systems"
Reithmeier, Eduard. Periodic Solutions of Nonlinear Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0094521.
Pełny tekst źródłaChulaevskiĭ, V. A. Almost periodic operators and related nonlinear integrable systems. Manchester, UK: Manchester University Press, 1989.
Znajdź pełny tekst źródłaAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.
Znajdź pełny tekst źródłaauthor, Bolle Philippe, red. Quasi-periodic solutions of nonlinear wave equations in the D-dimensional torus. Berlin: European Mathematical Society, 2020.
Znajdź pełny tekst źródłaReithmeier, Eduard. Periodic solutions of nonlinear dynamical systems: Numerical computation, stability, bifurcation, and transition to chaos. Berlin: Springer-Verlag, 1991.
Znajdź pełny tekst źródłaP, Walker K., i United States. National Aeronautics and Space Administration., red. Nonlinear mesomechanics of composites with periodic microstructure: Final report on NASA NAG3-882. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Znajdź pełny tekst źródłaLuo, Albert C. J. Periodic Flows to Chaos in Time-delay Systems. Springer, 2016.
Znajdź pełny tekst źródłaChulaevsky, V. A. Almost Periodic Operators and Related Nonlinear Integrable Systems (Nonlinear Science: Theory & Application). John Wiley & Sons, 1992.
Znajdź pełny tekst źródłaCoti-Zelati, V., i A. Ambrosetti. Periodic Solutions of Singular Lagrangian Systems. Birkhauser Verlag, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Nonlinear periodic systems"
Toda, Morikazu. "Periodic Systems". W Theory of Nonlinear Lattices, 98–146. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2_4.
Pełny tekst źródłaLuo, Albert C. J. "Periodic Flows in Continuous Systems". W Nonlinear Physical Science, 199–279. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47275-0_5.
Pełny tekst źródłaSzemplińska-Stupnicka, Wanda. "Secondary Resonances (Periodic and Almost-Periodic)". W The Behavior of Nonlinear Vibrating Systems, 171–245. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1870-2_7.
Pełny tekst źródłaAkhmet, Marat. "Discontinuous Almost Periodic Functions". W Nonlinear Systems and Complexity, 69–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_3.
Pełny tekst źródłaAkhmet, Marat. "Discontinuous Almost Periodic Solutions". W Nonlinear Systems and Complexity, 85–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_4.
Pełny tekst źródłaAnishchenko, Vadim S., Tatyana E. Vadivasova i Galina I. Strelkova. "Synchronization of Periodic Self-Sustained Oscillations". W Deterministic Nonlinear Systems, 217–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06871-8_13.
Pełny tekst źródłaBelyakov, Vladimir Alekseevich. "Nonlinear Optics of Periodic Media". W Partially Ordered Systems, 188–214. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4396-0_6.
Pełny tekst źródłaAkhmet, Marat. "Periodic Solutions of Nonlinear Systems". W Principles of Discontinuous Dynamical Systems, 99–111. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6581-3_7.
Pełny tekst źródłaLuo, Albert C. J. "Periodic Flows in Time-delay Systems". W Nonlinear Systems and Complexity, 221–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42778-2_4.
Pełny tekst źródłaLuo, Albert C. J. "Periodic Flows in Time-Delay Systems". W Nonlinear Systems and Complexity, 81–113. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42664-8_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Nonlinear periodic systems"
Sukhorukov, Andrey A., N. Marsal, A. Minovich, D. Wolfersberger, M. Sciamanna, G. Montemezzani, D. N. Neshev i Yu S. Kivshar. "Control of modulational instability in periodic feedback systems". W Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmd7.
Pełny tekst źródłaShermeneva, Maria. "Nonlinear periodic waves on a slope". W Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386843.
Pełny tekst źródłaVakakis, Alexander. "Nonlinear Periodic Systems: Bands and Localization". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87315.
Pełny tekst źródłaVladimirov, A. G., E. B. Pelyukhova i E. E. Fradkin. "Periodic and Chaotic Operations of a Laser with a Saturable Absorber". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.oc527.
Pełny tekst źródłaMandel, Paul, N. P. Pettiaux, Wang Kaige, P. Galatola i L. A. Lugiato. "Generic Properties of Periodic Attractors in Two-Photon Processes". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ob257.
Pełny tekst źródłaWinful, Herbert G., Shawe-Shiuan Wang i Richard K. DeFreez. "Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.pdp4.
Pełny tekst źródłaWinful, Herbert G., Shawe-Shiuan Wang i Richard K. DcFreez. "Spontaneous Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.sdslad119.
Pełny tekst źródłaDe Jagher, P. C., i D. Lenstra. "The modulated semiconductor laser: a Hamiltonian search for its periodic attractors". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tha5.
Pełny tekst źródłaPettiaux, Nicolas, i Thomas Erneux. "From harmonic to pulsating periodic solutions in intracavity second harmonic generation". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc25.
Pełny tekst źródłaRoyston, Thomas J., i Rajendra Singh. "Periodic Response of Nonlinear Engine Mounting Systems". W SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951297.
Pełny tekst źródłaRaporty organizacyjne na temat "Nonlinear periodic systems"
Mirus, Kevin A. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch. Office of Scientific and Technical Information (OSTI), styczeń 1998. http://dx.doi.org/10.2172/656820.
Pełny tekst źródłaSoloviev, Vladimir, i Andrey Belinskij. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2851.
Pełny tekst źródłaMoon, Francis C. Nonlinear dynamics of fluid-structure systems. Final technical report for period January 5, 1991 - December 31, 1997. Office of Scientific and Technical Information (OSTI), lipiec 1999. http://dx.doi.org/10.2172/756804.
Pełny tekst źródłaBielinskyi, Andrii O., Oleksandr A. Serdyuk, Сергій Олексійович Семеріков, Володимир Миколайович Соловйов, Андрій Іванович Білінський i О. А. Сердюк. Econophysics of cryptocurrency crashes: a systematic review. Криворізький державний педагогічний університет, grudzień 2021. http://dx.doi.org/10.31812/123456789/6974.
Pełny tekst źródłaWu, Yingjie, Selim Gunay i Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/ytgv8834.
Pełny tekst źródła