Gotowa bibliografia na temat „Nonlinear optimal control”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nonlinear optimal control”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Nonlinear optimal control"

1

Goncharenko, Borys, Larysa Vikhrova i Mariia Miroshnichenko. "Optimal control of nonlinear stationary systems at infinite control time". Central Ukrainian Scientific Bulletin. Technical Sciences, nr 4(35) (2021): 88–93. http://dx.doi.org/10.32515/2664-262x.2021.4(35).88-93.

Pełny tekst źródła
Streszczenie:
The article presents a solution to the problem of control synthesis for dynamical systems described by linear differential equations that function in accordance with the integral-quadratic quality criterion under uncertainty. External perturbations, errors and initial conditions belong to a certain set of uncertainties. Therefore, the problem of finding the optimal control in the form of feedback on the output of the object is presented in the form of a minimum problem of optimal control under uncertainty. The problem of finding the optimal control and initial state, which maximizes the quality criterion, is considered in the framework of the optimization problem, which is solved by the method of Lagrange multipliers after the introduction of the auxiliary scalar function - Hamiltonian. The case of a stationary system on an infinite period of time is considered. The formulas that can be used for calculations are given for the first and second variations. It is proposed to solve the problem of control search in two stages: search of intermediate solution at fixed values of control and error vectors and subsequent search of final optimal control. The solution of -optimal control for infinite time taking into account the signal from the compensator output is also considered, as well as the solution of the corresponding matrix algebraic equations of Ricatti type.
Style APA, Harvard, Vancouver, ISO itp.
2

Fernández de la Vega, Constanza S., Richard Moore, Mariana Inés Prieto i Diego Rial. "Optimal control problem for nonlinear optical communications systems". Journal of Differential Equations 346 (luty 2023): 347–75. http://dx.doi.org/10.1016/j.jde.2022.11.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hassanzadeh, Iraj, Ghasem Alizadeh, Naser Pourqorban Shirjoposht i Farzad Hashemzadeh. "A New Optimal Nonlinear Approach to Half Car Active Suspension Control". International Journal of Engineering and Technology 2, nr 1 (2010): 78–84. http://dx.doi.org/10.7763/ijet.2010.v2.104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yang, J. N., F. X. Long i D. Wong. "Optimal Control of Nonlinear Structures". Journal of Applied Mechanics 55, nr 4 (1.12.1988): 931–38. http://dx.doi.org/10.1115/1.3173744.

Pełny tekst źródła
Streszczenie:
Three optimal control algorithms are proposed for reducing oscillations of flexible nonlinear structures subjected to general stochastic dynamic loads, such as earthquakes, waves, winds, etc. The optimal control forces are determined analytically by minimizing a time-dependent quadratic performance index, and nonlinear equations of motion are solved using the Wilson-θ numerical procedures. The optimal control algorithms developed for applications to nonlinear structures are referred to as the instantaneous optimal control algorithms, including the instantaneous optimal open-loop control algorithm, instantaneous optimal closed-loop control algorithm, and instantaneous optimal closed-open-loop control algorithm. These optimal algorithms are computationally efficient and suitable for on-line implementation of active control systems to realistic nonlinear structures. Numerical examples are worked out to demonstrate the applications of these optimal control algorithms to nonlinear structures. In particular, control of structures undergoing inelastic deformations under strong earthquake excitations are illustrated. The advantage of using combined passive/active control systems is also demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
5

Akyurek, Alper Sinan, i Tajana Simunic Rosing. "Optimal Distributed Nonlinear Battery Control". IEEE Journal of Emerging and Selected Topics in Power Electronics 5, nr 3 (wrzesień 2017): 1045–54. http://dx.doi.org/10.1109/jestpe.2016.2645480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kaczorek, Tadeusz. "Nonlinear and optimal control systems". Control Engineering Practice 5, nr 12 (grudzień 1997): 1781. http://dx.doi.org/10.1016/s0967-0661(97)87397-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lu, Q., Y. Sun, Z. Xu i T. Mochizuki. "Decentralized nonlinear optimal excitation control". IEEE Transactions on Power Systems 11, nr 4 (1996): 1957–62. http://dx.doi.org/10.1109/59.544670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hualin Tan i W. J. Rugh. "Pseudolinearization and nonlinear optimal control". IEEE Transactions on Automatic Control 43, nr 3 (marzec 1998): 386–91. http://dx.doi.org/10.1109/9.661596.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Loxton, Ryan, Qun Lin i Kok Lay Teo. "Minimizing control variation in nonlinear optimal control". Automatica 49, nr 9 (wrzesień 2013): 2652–64. http://dx.doi.org/10.1016/j.automatica.2013.05.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lovíšek, Ján. "Singular perturbations in optimal control problem with application to nonlinear structural analysis". Applications of Mathematics 41, nr 4 (1996): 299–320. http://dx.doi.org/10.21136/am.1996.134328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Nonlinear optimal control"

1

Zhu, Jinghao. "Some results on nonlinear optimal control". Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-10042006-143910/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Xiaohong. "Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations". Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40185.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gavriel, Christos. "Higher order conditions in nonlinear optimal control". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9042.

Pełny tekst źródła
Streszczenie:
The most widely used tool for the solution of optimal control problems is the Pontryagin Maximum Principle. But the Maximum Principle is, in general, only a necessary condition for optimality. It is therefore desirable to have supplementary conditions, for example second order sufficient conditions, which confirm optimality (at least locally) of an extremal arc, meaning one that satisfies the Maximum Principle. Standard second order sufficient conditions for optimality, when they apply, yield the information not only that the extremal is locally minimizing, but that it is also locally unique. There are problems of interest, however, where minimizers are not locally unique, owing to the fact that the cost is invariant under small perturbations of the extremal of a particular structure (translations, rotations or time-shifting). For such problems the standard second order conditions can never apply. The first contribution of this thesis is to develop new second order conditions for optimality of extremals which are applicable in some cases of interest when minimizers are not locally unique. The new conditions can, for example, be applied to problems with periodic boundary conditions when the cost is invariant under time translations. The second order conditions investigated here apply to normal extremals. These extremals satisfy the conditions of the Maximum Principle in normal form (with the cost multiplier taken to be 1). It is, therefore, of interest to know when the Maximum Principle applies in normal form. This issue is also addressed in this thesis, for optimal control problems that can be expressed as calculus of variations problems. Normality of the Maximum Principle follows from the fact that, under the regularity conditions developed, the highest time derivative of an extremal arc is essentially bounded. The thesis concludes with a brief account of possible future research directions.
Style APA, Harvard, Vancouver, ISO itp.
4

Primbs, James A. Doyle John Comstock. "Nonlinear optimal control : a receding horizon approach /". Diss., Pasadena, Calif. : California Institute of Technology, 1999. http://resolver.caltech.edu/CaltechETD:etd-10172005-103315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tigrek, Tuba. "Nonlinear adaptive optimal control of HVAC systems". Thesis, University of Iowa, 2001. https://ir.uiowa.edu/etd/3429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chudoung, Jerawan. "Robust Control for Hybrid, Nonlinear Systems". Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/26983.

Pełny tekst źródła
Streszczenie:
We develop the robust control theories of stopping-time nonlinear systems and switching-control nonlinear systems. We formulate a robust optimal stopping-time control problem for a state-space nonlinear system and give the connection between various notions of lower value function for the associated game (and storage function for the associated dissipative system) with solutions of the appropriate variational inequality (VI). We show that the stopping-time rule can be obtained by solving the VI in the viscosity sense. It also happens that a positive definite supersolution of the VI can be used for stability analysis. We also show how to solve the VI for some prototype examples with one-dimensional state space. For the robust optimal switching-control problem, we establish the Dynamic Programming Principle (DPP) for the lower value function of the associated game and employ it to derive the appropriate system of quasivariational inequalities (SQVI) for the lower value vector function. Moreover we formulate the problem in the L2-gain/dissipative system framework. We show that, under appropriate assumptions, continuous switching-storage (vector) functions are characterized as viscosity supersolutions of the SQVI, and that the minimal such storage function is equal to the lower value function for the game. We show that the control strategy achieving the dissipative inequality is obtained by solving the SQVI in the viscosity sense; in fact this solution is also used to address stability analysis of the switching system. In addition we prove the comparison principle between a viscosity subsolution and a viscosity supersolution of the SQVI satisfying a boundary condition and use it to give an alternative derivation of the characterization of the lower value function. Finally we solve the SQVI for a simple one-dimensional example by a direct geometric construction.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
7

Meum, Patrick. "Optimal Reservoir control using nonlinear MPC and ECLIPSE". Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9610.

Pełny tekst źródła
Streszczenie:

Recent years advances within well deployment and instrumentation technology offers huge potentials for increased oil recovery from reservoir production. Wells can now be equipped with controllable valves at reservoir depth, which may possibly alter the production profitability of the field completely, if the devices are used in an intelligent manner. This thesis investigates this potential by using model predictive control to maximize reservoir production performance and total oil production. The report describes an algorithm for nonlinear model predictive control, using a single shooting, multistep, quasi-Newton method, and implements it on an existing industrial MPC platform - Statoil's in-house MPC tool SEPTIC. The method is an iterative method, solving a series of quadratic problems analogous to sequential quadratic programming, to find the optimal control settings. An interface between SEPTIC and a commercial reservoir simulator, ECLIPSE, is developed for process modelling and predictions. ECLIPSE provides highly realistic and detailed reservoir behaviour and is used by SEPTIC to obtain numerical gradients for optimization. The method is applied to two reservoir examples, Case 1 and Case 2, and develops optimal control strategies for each of these. The two examples have conceptually different model structures. Case 1 is a simple introduction model. Case 2 is a benchmark model previously used in Yeten, Durlofsky and Aziz (2002) and models a North Sea type channelized reservoir. It is described by a set of different realizations, to capture a notion of model uncertainty. The report addresses each of the available realizations and shows how the value of an optimal production strategy can vary for equally probable realizations. Improvements in reservoir production performance using the model predictive control method are shown for all cases, compared to basic controlled references cases. For the benchmark example improvements range up to as much as 68% increase in one realization, and 30% on average for all realizations. This is an increase from the results previously published for the benchmark, with a 3% average. However, the level of improvement shows significant variation, and is only marginal for example Case 1. A thorough field analysis should therefore be performed before deciding to take the extra cost of well equipment and optimal control.

Style APA, Harvard, Vancouver, ISO itp.
8

Dong, Wenjie. "Self-organizing and optimal control for nonlinear systems". Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3359894.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of California, Riverside, 2009.
Includes abstract. Title from first page of PDF file (viewed January 27, 2010). Includes bibliographical references (p. 82-87). Issued in print and online. Available via ProQuest Digital Dissertations.
Style APA, Harvard, Vancouver, ISO itp.
9

Blanchard, Eunice Anita. "Exact penalty methods for nonlinear optimal control problems". Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1805.

Pełny tekst źródła
Streszczenie:
Research comprised of developing solution techniques to three classes of non-standard optimal control problems, namely: optimal control problems with discontinuous objective functions arising in aquaculture operations; impulsive optimal control problems with minimum subsystem durations; optimal control problems involving dual-mode hybrid systems with state-dependent switching conditions. The numerical algorithms developed involved an exact penalty approach to transform the constrained problem into an unconstrained problem which was readily solvable by a standard optimal control software.
Style APA, Harvard, Vancouver, ISO itp.
10

Jorge, Tiago R., João M. Lemos i Miguel Barão. "Optimal Control for Vehicle Cruise Speed Transfer". Bachelor's thesis, ACTAPRESS, 2011. http://hdl.handle.net/10174/4513.

Pełny tekst źródła
Streszczenie:
The contribution of this paper consists in a procedure to solve the optimal cruise control problem that consists in transferring the car velocity between two specified values, in a fixed interval of time, with minimum fuel consumption. The solution is obtained by applying a recursive numerical algorithm that provides an approximation to the condition provided by Pontryagin’s Optimum Principle. This solution is compared with the one obtained by using a reduced complexity linear model for the car dynamics that allows an exact (“analytical”) solution of the corresponding optimal control problem. This work has been performed within the framework of activity 2.4.1 – Smart drive control of project SE2A - Nanoelectronics for Safe, Fuel Efficient and Environment Friendly Automotive Solutions, ENIAC initiative.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Nonlinear optimal control"

1

Grass, Dieter, Jonathan P. Caulkins, Gustav Feichtinger, Gernot Tragler i Doris A. Behrens. Optimal Control of Nonlinear Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77647-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Agrachev, Andrei A., A. Stephen Morse, Eduardo D. Sontag, Héctor J. Sussmann i Vadim I. Utkin. Nonlinear and Optimal Control Theory. Redaktorzy Paolo Nistri i Gianna Stefani. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77653-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vincent, Thomas L. Nonlinear and optimal control systems. New York: Wiley, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1946-, Sussmann Hector J., red. Nonlinear controllability and optimal control. New York: M. Dekker, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wei, Qinglai, Ruizhuo Song, Benkai Li i Xiaofeng Lin. Self-Learning Optimal Control of Nonlinear Systems. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4080-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

P, Banks Stephen. On the optimal control of nonlinear systems. Sheffield: University, Dept. of Control Engineering, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

P, Banks Stephen. Optimal control and stabilization for nonlinear systems. Sheffield: University of Sheffield, Dept. of Control Engineering, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Synthesis of optimal control for nonlinear third order systems. Warszawa: Państwowe Wydawn. Nauk., 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gunzburger, Max D. Finite dimensional approximation of a class of constrained nonlinear optimal control problems. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

E, Helfrich Clifford, i United States. National Aeronautics and Space Administration., red. Robust neighboring optimal guidance for the advanced launch system. [Austin, Tex.]: Guidance and Control Group, Dept. of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Nonlinear optimal control"

1

Kagiwada, Harriet, Robert Kalaba, Nima Rasakhoo i Karl Spingarn. "Optimal Control". W Numerical Derivatives and Nonlinear Analysis, 35–109. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5056-9_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chernousko, Felix L., Igor M. Ananievski i Sergey A. Reshmin. "Optimal control". W Control of Nonlinear Dynamical Systems, 11–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-70784-4_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Andrei, Neculai. "Optimal Control". W Nonlinear Optimization Applications Using the GAMS Technology, 287–322. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6797-7_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Löber, Jakob. "Optimal Control". W Optimal Trajectory Tracking of Nonlinear Dynamical Systems, 79–118. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46574-6_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chernousko, Felix L. "Decomposition and Feedback Control of Nonlinear Dynamic Systems". W Optimal Control, 163–71. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-7539-4_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tomás-Rodríguez, María, i Stephen P. Banks. "Optimal Control". W Linear, Time-varying Approximations to Nonlinear Dynamical Systems, 101–21. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-101-1_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Arutyunov, Aram, Dmitry Karamzin i Fernando Lobo Pereira. "General Nonlinear Impulsive Control Problems". W Optimal Impulsive Control, 153–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02260-0_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pervozvanskii, A. A., i V. G. Gaitsgori. "Nonlinear Optimal Control Problems". W Theory of Suboptimal Decisions, 306–67. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2833-6_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kupfer, F. S., i E. W. Sachs. "Reduced SQP Methods for Nonlinear Heat Conduction Control Problems". W Optimal Control, 145–60. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-7539-4_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tröltzsch, Fredi. "Semidiscrete Ritz-Galerkin Approximation of Nonlinear Parabolic Boundary Control Problems". W Optimal Control, 57–68. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-7539-4_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Nonlinear optimal control"

1

Memon, Attaullah Y. "Optimal output regulation of minimum phase nonlinear systems". W 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334679.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nie, Yuanbo, i Eric C. Kerrigan. "Efficient Implementation of Rate Constraints for Nonlinear Optimal Control". W 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, 2018. http://dx.doi.org/10.1109/control.2018.8516847.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hu, Yi, Peng Zhang, Cibo Lou, Weiyu Huang, Jingjun Xu i Zhigang Chen. "Optimal control of the ballistic trajectory of Airy beams". W Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.ntuc30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lu, Ping, i Frank Chavez. "Nonlinear Optimal Guidance". W AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-6079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Rigatos, G., i Masoud Abbaszadeh. "Nonlinear Optimal Control for a Cells Signaling Pathway Model Under Time-Delays". W 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, 2018. http://dx.doi.org/10.1109/control.2018.8516752.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Best, M. C. "Nonlinear optimal control of vehicle driveline vibrations". W UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yao Li, William S. Levine, Yonghong Yang i Chengqi He. "A nonlinear optimal human postural regulator". W 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sharma, Vivek, i Yiyuan Zhao. "Dynamic Optimal Linearization of Nonlinear Systems". W 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Haddad, W. M., V. S. Chellaboina, J. L. Fausz i A. Leonessa. "Optimal nonlinear robust control for nonlinear uncertain cascade systems". W Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Haddad, W. M., V. S. Chellaboina i J. L. Fausz. "Optimal nonlinear disturbance rejection control for nonlinear cascade systems". W Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611838.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Nonlinear optimal control"

1

Oates, William S., i Ralph C. Smith. Nonlinear Optimal Control of Plate Structures Using Magnetostrictive Actuators. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2005. http://dx.doi.org/10.21236/ada443741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Oates, William S., i Ralph C. Smith. Nonlinear Optimal Tracking Control of a Piezoelectric Nanopositioning Stage. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2006. http://dx.doi.org/10.21236/ada443786.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kath, William L., i Gregory G. Luther. Modeling and Control of Nonlinear Optical Wavelength Conversion. Fort Belvoir, VA: Defense Technical Information Center, październik 2001. http://dx.doi.org/10.21236/ada419572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Steel, Duncan G. The Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2005. http://dx.doi.org/10.21236/ada437780.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Steel, Duncan G. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2002. http://dx.doi.org/10.21236/ada402598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lambropoulos, P. [Coherent control of photoabsorption processes and calculation of nonlinear optical processes]. Final technical report. Office of Scientific and Technical Information (OSTI), lipiec 1998. http://dx.doi.org/10.2172/631276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Steel, Duncan G. Working Beyond Moore's Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2015. http://dx.doi.org/10.21236/ad1003429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii