Gotowa bibliografia na temat „Nonlinear Dynamic Equations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nonlinear Dynamic Equations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nonlinear Dynamic Equations"
Feireisl, Eduard. "Dynamic von Kármán equations involving nonlinear damping: Time-periodic solutions". Applications of Mathematics 34, nr 1 (1989): 46–56. http://dx.doi.org/10.21136/am.1989.104333.
Pełny tekst źródłaMA, TIAN, i SHOUHONG WANG. "DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS". Chinese Annals of Mathematics 26, nr 02 (kwiecień 2005): 185–206. http://dx.doi.org/10.1142/s0252959905000166.
Pełny tekst źródłaYang, Min, Weiming Xiao, Erjing Han, Junjuan Zhao, Wenjiang Wang i Yunan Liu. "Dynamic analysis of negative stiffness noise absorber with magnet". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 7 (1.02.2023): 183–88. http://dx.doi.org/10.3397/in_2022_0031.
Pełny tekst źródłaTie, Yu Jia, Wei Yang i Hao Yu Tan. "Spacecraft Attitude and Orbit Coupled Nonlinear Adaptive Synchronization Control". Advanced Materials Research 327 (wrzesień 2011): 6–11. http://dx.doi.org/10.4028/www.scientific.net/amr.327.6.
Pełny tekst źródłaGebrel, Ibrahim F., i Samuel F. Asokanthan. "Influence of System and Actuator Nonlinearities on the Dynamics of Ring-Type MEMS Gyroscopes". Vibration 4, nr 4 (25.10.2021): 805–21. http://dx.doi.org/10.3390/vibration4040045.
Pełny tekst źródłaShan, Li Jun, Xue Fang i Wei Dong He. "Nonlinear Dynamic Model and Equations of RV Transmission System". Advanced Materials Research 510 (kwiecień 2012): 536–40. http://dx.doi.org/10.4028/www.scientific.net/amr.510.536.
Pełny tekst źródłaPiprek, Patrick, Michael M. Marb, Pranav Bhardwaj i Florian Holzapfel. "Trajectory/Path-Following Controller Based on Nonlinear Jerk-Level Error Dynamics". Applied Sciences 10, nr 23 (7.12.2020): 8760. http://dx.doi.org/10.3390/app10238760.
Pełny tekst źródłaXia, Xie, Huang Hong-Bin, Qian Feng, Zhang Ya-Jun, Yang Peng i Qi Guan-Xiao. "Dynamic Equations and Nonlinear Dynamics of Cascade Two-Photon Laser". Communications in Theoretical Physics 45, nr 6 (czerwiec 2006): 1042–48. http://dx.doi.org/10.1088/0253-6102/45/6/018.
Pełny tekst źródłaBohner, M., i S. H. Saker. "Oscillation criteria for perturbed nonlinear dynamic equations". Mathematical and Computer Modelling 40, nr 3-4 (sierpień 2004): 249–60. http://dx.doi.org/10.1016/j.mcm.2004.03.002.
Pełny tekst źródłaMa, Tian, i Shouhong Wang. "Bifurcation of Nonlinear Equations: II. Dynamic Bifurcation". Methods and Applications of Analysis 11, nr 2 (2004): 179–210. http://dx.doi.org/10.4310/maa.2004.v11.n2.a2.
Pełny tekst źródłaRozprawy doktorskie na temat "Nonlinear Dynamic Equations"
Peters, James Edward II. "Group analysis of the nonlinear dynamic equations of elastic strings". Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/29348.
Pełny tekst źródłaSotoudeh, Zahra. "Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41179.
Pełny tekst źródłaSee, Chong Wee Simon. "Numerical methods for the simulation of dynamic discontinuous systems". Thesis, University of Salford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358276.
Pełny tekst źródłaZigic, Jovan. "Optimization Methods for Dynamic Mode Decomposition of Nonlinear Partial Differential Equations". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103862.
Pełny tekst źródłaMaster of Science
The Navier-Stokes (NS) equations are the primary mathematical model for understanding the behavior of fluids. The existence and smoothness of the NS equations is considered to be one of the most important open problems in mathematics, and challenges in their numerical simulation is a barrier to understanding the physical phenomenon of turbulence. Due to the difficulty of studying this problem directly, simpler problems in the form of nonlinear partial differential equations (PDEs) that exhibit similar properties to the NS equations are studied as preliminary steps towards building a wider understanding of the field. Reduced-order models have long been used to understand the behavior of nonlinear partial differential equations. Naturally, reduced-order modeling techniques come at the price of either computational accuracy or computation time. Optimization techniques are studied to improve either or both of these objectives and decrease the total computational cost of the problem. This thesis focuses on the dynamic mode decomposition (DMD) applied to nonlinear PDEs with periodic boundary conditions. It provides one study of an existing optimization framework for the DMD method known as the Optimized DMD and provides another study of a newly proposed optimization framework for the DMD method called the Split DMD.
Brown, Andrew M. "Design, construction and analysis of a chaotic vibratory system". Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/18172.
Pełny tekst źródłaSOAVE, NICOLA. "Variational and geometric methods for nonlinear differential equations". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.
Pełny tekst źródłaQu, Zheng. "Nonlinear Perron-Frobenius theory and max-plus numerical methods for Hamilton-Jacobi equations". Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/92/71/22/PDF/thesis.pdf.
Pełny tekst źródłaDynamic programming is one of the main approaches to solve optimal control problems. It reduces the latter problems to Hamilton-Jacobi partial differential equations (PDE). Several techniques have been proposed in the literature to solve these PDE. We mention, for example, finite difference schemes, the so-called discrete dynamic programming method or semi-Lagrangian method, or the antidiffusive schemes. All these methods are grid-based, i. E. , they require a discretization of the state space, and thus suffer from the so-called curse of dimensionality. The present thesis focuses on max-plus numerical solutions and convergence analysis for medium to high dimensional deterministic optimal control problems. We develop here max-plus based numerical algorithms for which we establish theoretical complexity estimates. The proof of these estimates is based on results of nonlinear Perron-Frobenius theory. In particular, we study the contraction properties of monotone or non-expansive nonlinear operators, with respect to several classical metrics on cones (Thompson's metric, Hilbert's projective metric), and obtain nonlinear or non-commutative generalizations of the "ergodicity coefficients" arising in the theory of Markov chains. These results have applications in consensus theory and also to the generalized Riccati equations arising in stochastic optimal control
Ferrara, Joseph. "A Study of Nonlinear Dynamics in Mathematical Biology". UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/448.
Pełny tekst źródłaLarson, David F. H. "Modeling nonlinear stochastic ocean loads as diffusive stochastic differential equations to derive the dynamic responses of offshore wind turbines". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105690.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (page 54).
A procedure is developed for modeling stochastic ocean wave and wind loads as diffusive stochastic differential equations (SDE) in a state space form to derive the response statistics of offshore structures, specifically wind turbines. Often, severe wind and wave systems are highly nonlinear and thus treatment as linear systems is not applicable, leading to computationally expensive Monte Carlo simulations. Using Stratonovich-form diffusive stochastic differential equations, both linear and nonlinear components of the wind thrust can be modeled as 2 state SDE. These processes can be superposed with both the linear and nonlinear (inertial and viscous) wave forces, also modeled as a multi-dimensional state space SDE. Furthermore, upon implementing the ESPRIT algorithm to fit the autocorrelation function of any real sea state spectrum, a simple 2-state space model can be derived to completely describe the wave forces. The resulting compound state-space SDE model forms the input to a multi-dimension state-space Fokker-Planck equation, governing the dynamical response of the wind turbine structure. Its solution yields response, fatigue and failure statistics-information critical to the design of any offshore structure. The resulting Fokker-Planck equation can be solved using existing numerical schemes.
by David F.H. Larson.
S.B.
Challa, Subhash. "Nonlinear state estimation and filtering with applications to target tracking problems". Thesis, Queensland University of Technology, 1998.
Znajdź pełny tekst źródłaKsiążki na temat "Nonlinear Dynamic Equations"
Grusa, K. U. Mathematical analysis of nonlinear dynamic processes. Harlow: Longman Scientific & Technical, 1988.
Znajdź pełny tekst źródłaOscillations in planar dynamic systems. Singapore: World Scientific, 1996.
Znajdź pełny tekst źródłaPapageorgiou, Evangelos C. Development of a dynamic model for a UAV. Monterey, Calif: Naval Postgraduate School, 1997.
Znajdź pełny tekst źródłaMurthy, V. R. Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1994.
Znajdź pełny tekst źródłaGrusa, Karl-Ulrich. Mathematical analysis of nonlinear dynamic processes: An introduction to processes governed by partial differential equations. [Harlow, Essex, England]: Longman Scientific & Technical, 1988.
Znajdź pełny tekst źródłaUNESCO. Working Group on Systems Analysis. Meeting. Lotka-Volterra-approach to cooperation and competition in dynamic systems: Proceedings of the 5th Meeting of UNESCO's Working Group on System Theory held on the Wartburg, Eisenach (GDR), March 5-9, 1984. Berlin: Akademie-Verlag, 1985.
Znajdź pełny tekst źródłaMaurice, Holt, Packard Andrew i Institute for Computer Applications in Science and Engineering., red. Simulation of a controlled airfoil with jets. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Znajdź pełny tekst źródła1941-, Brunner H., Zhao Xiao-Qiang i Zou Xingfu 1958-, red. Nonlinear dynamics and evolution equations. Providence, R.I: American Mathematical Society, 2006.
Znajdź pełny tekst źródłaVerhulst, F. Nonlinear differential equations and dynamical systems. Berlin: Springer-Verlag, 1990.
Znajdź pełny tekst źródłaVerhulst, Ferdinand. Nonlinear Differential Equations and Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97149-5.
Pełny tekst źródłaCzęści książek na temat "Nonlinear Dynamic Equations"
Simonovits, András. "Nonlinear Difference Equations". W Mathematical Methods in Dynamic Economics, 68–88. London: Palgrave Macmillan UK, 2000. http://dx.doi.org/10.1057/9780230513532_4.
Pełny tekst źródłaGeorgiev, Svetlin G. "Nonlinear Dynamic Equations and Optimal Control Problems". W Fuzzy Dynamic Equations, Dynamic Inclusions, and Optimal Control Problems on Time Scales, 783–803. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76132-5_15.
Pełny tekst źródłaWang, Chao, Ravi P. Agarwal, Donal O’Regan i Rathinasamy Sakthivel. "Nonlinear Dynamic Equations on Translation Time Scales". W Theory of Translation Closedness for Time Scales, 337–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38644-3_6.
Pełny tekst źródłaGeorgiev, Svetlin G. "Oscillations of Second-Order Nonlinear Functional Dynamic Equations". W Functional Dynamic Equations on Time Scales, 407–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2_9.
Pełny tekst źródłaGeorgiev, Svetlin G. "Nonlinear Integro-Dynamic Equations and Optimal Control Problems". W Fuzzy Dynamic Equations, Dynamic Inclusions, and Optimal Control Problems on Time Scales, 805–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76132-5_16.
Pełny tekst źródłaSocha, Leslaw. "Moment Equations for Nonlinear Stochastic Dynamic Systems (NSDS)". W Linearization Methods for Stochastic Dynamic Systems, 85–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72997-6_4.
Pełny tekst źródłaŚwięch, Andrzej. "HJB Equation, Dynamic Programming Principle, and Stochastic Optimal Control". W Nonlinear Partial Differential Equations for Future Applications, 183–204. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4822-6_5.
Pełny tekst źródłaMas-Gallic, S. "A Particle in Cell Method for the Isentropic Gas Dynamic System". W Navier—Stokes Equations and Related Nonlinear Problems, 357–65. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1415-6_29.
Pełny tekst źródłaGeorgiev, Svetlin G., i Khaled Zennir. "Boundary Value Problems for Nonlinear First Order Dynamic Equations". W Boundary Value Problems on Time Scales, Volume I, 1–102. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003173557-1.
Pełny tekst źródłaGeorgiev, Svetlin G., i Khaled Zennir. "Boundary Value Problems for Nonlinear Second Order Dynamic Equations". W Boundary Value Problems on Time Scales, Volume I, 349–512. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003173557-5.
Pełny tekst źródłaStreszczenia konferencji na temat "Nonlinear Dynamic Equations"
Siranosian, Antranik A., Miroslav Krstic, Andrey Smyshlyaev i Matt Bement. "Gain Scheduling-Inspired Control for Nonlinear Partial Differential Equations". W ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2532.
Pełny tekst źródłaCaruntu, Dumitru I. "On Internal Resonance of Nonlinear Nonuniform Beams". W ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2647.
Pełny tekst źródłaBava, G. P., P. Debernadri, L. A. Lugiato i F. Castelli. "Dynamic Model for Optical Bistability in Multiple Quantum-Well Structures". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.tdsls66.
Pełny tekst źródłaXianmin, Zhang, i Guo Xuemei. "Nonlinear Dynamic Performance Analysis of Elastic Linkage Mechanisms". W ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4206.
Pełny tekst źródłaBélanger, Nicolas, i Pierre-André Bélanger. "Cascadable rms characteristics and average dynamic of pulses in dispersive nonlinear lossy fibers". W Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/nlgw.1998.nsnps.p8.
Pełny tekst źródłaRu, P., P. K. Jakobsen i J. V. Moloney. "Nonlocal Adiabatic Elimination in the Maxwell-Bloch Equation". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc6.
Pełny tekst źródłaSong, X., i Q. X. Zhang. "Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales". W 2015 International Conference on Electrical, Automation and Mechanical Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/eame-15.2015.221.
Pełny tekst źródłaMüller, R. "Dynamic Behavior of Directly Modulated Single-Quantum-Well Semiconductor Lasers". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.tdsls86.
Pełny tekst źródłaCrouch, David D., Diana M. Lininger i Dana Z. Anderson. "Theory of Bistability and Self-Pulsing in an Optical Ring Circuit Having Saturable Photorefractive Gain, Loss, and Photorefractive Feedback". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.dmmpcps483.
Pełny tekst źródłaGudetti, Jacinth Philemon, Seyed Jamaleddin Mostafavi Yazdi, Javad Baqersad, Diane Peters i Mohammad Ghamari. "Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications". W Noise and Vibration Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1078.
Pełny tekst źródłaRaporty organizacyjne na temat "Nonlinear Dynamic Equations"
Michalopoulos, C. D. PR-175-420-R01 Submarine Pipeline Analysis - Theoretical Manual. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 1985. http://dx.doi.org/10.55274/r0012171.
Pełny tekst źródłaHale, Jack, Constantine M. Dafermos, John Mallet-Paret, Panagiotis E. Souganidis i Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1989. http://dx.doi.org/10.21236/ada255356.
Pełny tekst źródłaDafermos, Constantine M., John Mallet-Paret, Panagiotis E. Souganidis i Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1993. http://dx.doi.org/10.21236/ada271514.
Pełny tekst źródłaArchambault, M. R., i C. F. Edwards. Computation of Spray Dynamics by Direct Solution of Moment Transport Equations Inclusion of Nonlinear Momentum Exchange. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2000. http://dx.doi.org/10.21236/ada381371.
Pełny tekst źródłaWu, Yingjie, Selim Gunay i Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/ytgv8834.
Pełny tekst źródła