Spis treści
Gotowa bibliografia na temat „Non-Orientability”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Non-Orientability”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Non-Orientability"
Brown, D. R. L., i D. M. Jackson. "A rooted map invariant, non-orientability and Jack symmetric functions". Journal of Combinatorial Theory, Series B 97, nr 3 (maj 2007): 430–52. http://dx.doi.org/10.1016/j.jctb.2006.07.007.
Pełny tekst źródłaRUSAKOV, B. YE. "LOOP AVERAGES AND PARTITION FUNCTIONS IN U(N) GAUGE THEORY ON TWO-DIMENSIONAL MANIFOLDS". Modern Physics Letters A 05, nr 09 (10.04.1990): 693–703. http://dx.doi.org/10.1142/s0217732390000780.
Pełny tekst źródłaAguirre, Pablo, Bernd Krauskopf i Hinke M. Osinga. "Global Invariant Manifolds Near Homoclinic Orbits to a Real Saddle: (Non)Orientability and Flip Bifurcation". SIAM Journal on Applied Dynamical Systems 12, nr 4 (styczeń 2013): 1803–46. http://dx.doi.org/10.1137/130912542.
Pełny tekst źródłaMAGNON, ANNE. "PT VIOLATION AND ORIENTABILITY IN THE EARLY UNIVERSE". International Journal of Modern Physics D 03, nr 01 (marzec 1994): 225–30. http://dx.doi.org/10.1142/s0218271894000344.
Pełny tekst źródłaSingerman, David. "Orientable and non-orientable Klein surfaces with maximal symmetry". Glasgow Mathematical Journal 26, nr 1 (styczeń 1985): 31–34. http://dx.doi.org/10.1017/s0017089500005747.
Pełny tekst źródłaCosta, Antonio F., i Milagros Izquierdo. "On real trigonal Riemann surfaces". MATHEMATICA SCANDINAVICA 98, nr 1 (1.03.2006): 53. http://dx.doi.org/10.7146/math.scand.a-14983.
Pełny tekst źródłaLIENHARDT, PASCAL. "N-DIMENSIONAL GENERALIZED COMBINATORIAL MAPS AND CELLULAR QUASI-MANIFOLDS". International Journal of Computational Geometry & Applications 04, nr 03 (wrzesień 1994): 275–324. http://dx.doi.org/10.1142/s0218195994000173.
Pełny tekst źródłaXu, Yun, Anja Winkler, Martin Helwig, Niels Modler, Maik Gude, Axel Dittes, Dominik Höhlich i Thomas Lampke. "Numerical Investigation of the Magnetic Alignment of Fe-Co-Coated Single Reinforcement Fibers". Journal of Physics: Conference Series 2526, nr 1 (1.06.2023): 012036. http://dx.doi.org/10.1088/1742-6596/2526/1/012036.
Pełny tekst źródłaWinkler, Anja, Niels Modler, Maik Gude, Yun Xu, Martin Helwig, Eike Dohmen, Axel Dittes, Dominik Höhlich i Thomas Lampke. "Numerical Investigation of the Orientability of Single Reinforcement Fibers in Polymer Matrices". Polymers 14, nr 3 (28.01.2022): 534. http://dx.doi.org/10.3390/polym14030534.
Pełny tekst źródłaLemos, N. A., i M. J. Rebouças. "Inquiring electromagnetic quantum fluctuations about the orientability of space". European Physical Journal C 81, nr 7 (lipiec 2021). http://dx.doi.org/10.1140/epjc/s10052-021-09426-9.
Pełny tekst źródłaRozprawy doktorskie na temat "Non-Orientability"
Ben, Dali Houcine. "b-énumération de cartes et polynômes de Jack". Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0041.
Pełny tekst źródłaWe are interested in connections between symmetric functions and the enumeration of maps, which are graphs drawn on surfaces, not necessarily orientable. We consider generating series of some families of maps with colored vertices, including bipartite maps and constellations. In these generating series, some properties of the combinatorial structure of the map are controlled, and each map is counted with a weight correlated to its "non-orientability". We focus on two families of conjectures connecting these series to Jack polynomials, a one parameter deformation of Schur symmetric functions. The Matching-Jack conjecture, introduced by Goulden and Jackson in 1996, suggests that the expansion of a mutliparametric Jack series in the power-sum symmetric functions has non-negative integer coefficients. Moreover, these coefficients count bipartite maps with controlled degrees of all vertices and faces. Using techniques of differential operators recently introduced by Chapuy and Dołęga, we prove the Matching-Jack conjecture for a particular specialization of the generating series. We use this result and a new connection with the Farahat-Higman algebra to prove the "integrality part" in the conjecture. In another direction, we establish a combinatorial formula for the power-sum expansion of Jack polynomials using layered maps, a family of decorated bipartite maps introduced in this thesis. We deduce this formula from a more general one that we provide for Jack characters. Actually, this result generalizes a formula conjectured by Stanley and proved by Féray in 2010 for the characters of the symmetric group. We combine this formula withan approach based on a family of operators introduced by Nazarov and Sklyanin in orderto prove a conjecture of Lassalle from 2008 about the positivity and the integrality of Jack characters in Stanley’s coordinates. Finally, we use the map expansion of Jack characters in order to prove that the generating series of bipartite maps with controlled vertex and face degrees satisfies a family of differential equations that completely characterizes it. Similar differential equations are alsoprovided for the series of constellations
Części książek na temat "Non-Orientability"
"non-orientability, n." W Oxford English Dictionary. Wyd. 3. Oxford University Press, 2023. http://dx.doi.org/10.1093/oed/6289935181.
Pełny tekst źródłaBelot, Gordon. "Elliptic de Sitter Spacetime". W Accelerating Expansion, 64–78. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192866462.003.0005.
Pełny tekst źródłaEarl, Richard. "2. Making surfaces". W Topology: A Very Short Introduction, 24–47. Oxford University Press, 2019. http://dx.doi.org/10.1093/actrade/9780198832683.003.0002.
Pełny tekst źródła