Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Non-Newtonian.

Artykuły w czasopismach na temat „Non-Newtonian”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Non-Newtonian”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Hou, Lei, i Ray Harwood. "Non-linear properties in Newtonian and non-Newtonian equations". Nonlinear Analysis: Theory, Methods & Applications 30, nr 4 (grudzień 1997): 2497–505. http://dx.doi.org/10.1016/s0362-546x(96)00226-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

SALESI, GIOVANNI. "NON-NEWTONIAN MECHANICS". International Journal of Modern Physics A 17, nr 03 (30.01.2002): 347–74. http://dx.doi.org/10.1142/s0217751x02005797.

Pełny tekst źródła
Streszczenie:
The classical motion of spinning particles can be described without recourse to particular models or special formalisms, and without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincaré group; and only requiring the conservation of the linear and angular momenta, we derive the zitterbewegung, namely the decomposition of the four-velocity in the usual Newtonian constant term pμ/m and in a non-Newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating special relativity, provided that the energy–momentum moves along the worldline of the center-of-mass. Moreover, a nonlinear, nonconstant relation holds between the time durations measured in different reference frames. Newtonian mechanics is reobtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Then we analyze the strict analogy between the classical zitterbewegung equation and the quantum Gordon-decomposition of the Dirac current. It is possible a variational formulation of the theory, through a Lagrangian containing also derivatives of the four-velocity: we get an equation of the motion, actually a generalization of the Newton law a=F/m, where non-Newtonian zitterbewegung-terms appear. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin (a×v)/4m and analyze the general solution of the Eulero–Lagrange equation oscillating with the Compton frequency ω=2m. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.
Style APA, Harvard, Vancouver, ISO itp.
3

Ahamed, M. Fazil, i Sriram Chauhan. "Hydraulic Actuator Systems with Non-Newtonian Working Fluid". Bonfring International Journal of Industrial Engineering and Management Science 6, nr 4 (31.10.2016): 135–39. http://dx.doi.org/10.9756/bijiems.7575.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Slavov, Matias. "Newtonian and Non-Newtonian Elements in Hume". Journal of Scottish Philosophy 14, nr 3 (wrzesień 2016): 275–96. http://dx.doi.org/10.3366/jsp.2016.0143.

Pełny tekst źródła
Streszczenie:
For the last forty years, Hume's Newtonianism has been a debated topic in Hume scholarship. The crux of the matter can be formulated by the following question: Is Hume a Newtonian philosopher? Debates concerning this question have produced two lines of interpretation. I shall call them ‘traditional’ and ‘critical’ interpretations. The traditional interpretation asserts that there are many Newtonian elements in Hume, whereas the critical interpretation seriously questions this. In this article, I consider the main points made by both lines of interpretations and offer further arguments that contribute to this debate. I shall first argue, in favor of the traditional interpretation, that Hume is sympathetic to many prominently Newtonian themes in natural philosophy such as experimentalism, criticality of hypotheses, inductive proof, and criticality of Leibnizian principles of sufficient reason and intelligibility. Second, I shall argue, in accordance with the critical interpretation, that in many cases Hume is not a Newtonian philosopher: His conceptions regarding space and time, vacuum, reality of forces, specifics about causation, and the status of mechanism differ markedly from Newton's related conceptions. The outcome of the article is that there are both Newtonian and non/anti-Newtonian elements in Hume.
Style APA, Harvard, Vancouver, ISO itp.
5

McNeil, D. A., A. J. Addlesee i A. Stuart. "Newtonian and non-Newtonian viscous flows in nozzles". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214, nr 11 (1.11.2000): 1425–36. http://dx.doi.org/10.1243/0954406001523399.

Pełny tekst źródła
Streszczenie:
A study of laminar, Newtonian and non-Newtonian fluids in nozzles has been undertaken. A theoretical model, previously deduced for Newtonian flows in expansions, was developed for Newtonian and non-Newtonian flows in nozzles. The model is based on a two-stream approach where the momentum and kinetic energy stored in the velocity profile of the fluid is altered by an area change of one stream relative to the other. The non-Newtonian liquids investigated were shear thinning. The model was used to investigate these non-Newtonian fluids and to justify the use of simpler, more approximate equations developed for the loss and flow coefficients. The model is compared favourably with data available in the open literature.
Style APA, Harvard, Vancouver, ISO itp.
6

Broniarz-Press, Lubomira, i Karol Pralat. "Thermal conductivity of Newtonian and non-Newtonian liquids". International Journal of Heat and Mass Transfer 52, nr 21-22 (październik 2009): 4701–10. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hossain, Md Sarowar, Barnana Pal i P. K. Mukhopadhyay. "Ultrasonic Characterization of Newtonian and Non-newtonian Fluids". Universal Journal of Physics and Application 12, nr 3 (wrzesień 2018): 41–46. http://dx.doi.org/10.13189/ujpa.2018.120302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Maritz, Riëtte, i Emile Franc Doungmo Goufo. "Newtonian and Non-Newtonian Fluids through Permeable Boundaries". Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/146521.

Pełny tekst źródła
Streszczenie:
We considered the situation where a container with a permeable boundary is immersed in a larger body of fluid of the same kind. In this paper, we found mathematical expressions at the permeable interfaceΓof a domainΩ, whereΩ⊂R3.Γis defined as a smooth two-dimensional (at least classC2) manifold inΩ. The Sennet-Frenet formulas for curves without torsion were employed to find the expressions on the interfaceΓ. We modelled the flow of Newtonian as well as non-Newtonian fluids through permeable boundaries which results in nonhomogeneous dynamic and kinematic boundary conditions. The flow is assumed to flow through the boundary only in the direction of the outer normaln, where the tangential components are assumed to be zero. These conditions take into account certain assumptions made on the curvature of the boundary regarding the surface density and the shape ofΩ; namely, that the curvature is constrained in a certain way. Stability of the rest state and uniqueness are proved for a special case where a “shear flow” is assumed.
Style APA, Harvard, Vancouver, ISO itp.
9

Prokop, V., K. Kozel i R. Keslerová. "Numerical Solution of Newtonian and Non-Newtonian Flows". PAMM 6, nr 1 (grudzień 2006): 579–80. http://dx.doi.org/10.1002/pamm.200610270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pokorný, Milan. "Cauchy problem for the non-newtonian viscous incompressible fluid". Applications of Mathematics 41, nr 3 (1996): 169–201. http://dx.doi.org/10.21136/am.1996.134320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Oolman, Timothy, Harvey W. Blanch i Larry E. Erickson. "Non-Newtonian Fermentation Systems". Critical Reviews in Biotechnology 4, nr 2 (styczeń 1986): 133–84. http://dx.doi.org/10.3109/07388558609150793.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Barrow, John D. "Non-Euclidean Newtonian cosmology". Classical and Quantum Gravity 37, nr 12 (29.05.2020): 125007. http://dx.doi.org/10.1088/1361-6382/ab8437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Zhu, Bo, Minjae Lee, Ed Quigley i Ronald Fedkiw. "Codimensional non-Newtonian fluids". ACM Transactions on Graphics 34, nr 4 (27.07.2015): 1–9. http://dx.doi.org/10.1145/2766981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Black, K., i Volfango Bertola. "NON-NEWTONIAN LEIDENFROST DROPS". Atomization and Sprays 23, nr 3 (2013): 233–47. http://dx.doi.org/10.1615/atomizspr.2013007461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Pennington, S. V., N. D. Waters i E. W. Williams. "Draining non-Newtonian films". Journal of Non-Newtonian Fluid Mechanics 37, nr 2-3 (styczeń 1990): 201–8. http://dx.doi.org/10.1016/0377-0257(90)90005-v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Pennington, S. V., N. D. Waters, G. K. Rennie i E. J. Staples. "Draining non-Newtonian films". Journal of Non-Newtonian Fluid Mechanics 37, nr 2-3 (styczeń 1990): 209–31. http://dx.doi.org/10.1016/0377-0257(90)90006-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Binbaşıoǧlu, Demet, Serkan Demiriz i Duran Türkoǧlu. "Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces". Journal of Fixed Point Theory and Applications 18, nr 1 (6.11.2015): 213–24. http://dx.doi.org/10.1007/s11784-015-0271-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Whitelaw, D. S., Jim H. Whitelaw i C. Arcoumanis. "BREAKUP OF DROPLETS OF NEWTONIAN AND NON-NEWTONIAN FLUIDS". Atomization and Sprays 6, nr 3 (1996): 245–56. http://dx.doi.org/10.1615/atomizspr.v6.i3.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Vélez-Cordero, J. Rodrigo, Johanna Lantenet, Juan Hernández-Cordero i Roberto Zenit. "Compact bubble clusters in Newtonian and non-Newtonian liquids". Physics of Fluids 26, nr 5 (maj 2014): 053101. http://dx.doi.org/10.1063/1.4874630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Wei, Y., E. Rame, L. M. Walker i S. Garoff. "Dynamic wetting with viscous Newtonian and non-Newtonian fluids". Journal of Physics: Condensed Matter 21, nr 46 (29.10.2009): 464126. http://dx.doi.org/10.1088/0953-8984/21/46/464126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Koplik, Joel, i Jayanth R. Banavar. "Reentrant corner flows of Newtonian and non-Newtonian fluids". Journal of Rheology 41, nr 3 (maj 1997): 787–805. http://dx.doi.org/10.1122/1.550832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Favelukis, Moshe, i Ramon J. Albalak. "Bubble growth in viscous newtonian and non-newtonian liquids". Chemical Engineering Journal and the Biochemical Engineering Journal 63, nr 3 (wrzesień 1996): 149–55. http://dx.doi.org/10.1016/s0923-0467(96)03119-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Dziubiński, M., i A. Marcinkowski. "Discharge of Newtonian and Non-Newtonian Liquids from Tanks". Chemical Engineering Research and Design 84, nr 12 (grudzień 2006): 1194–98. http://dx.doi.org/10.1205/cherd.05138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Prakash, Om, S. Gupta i P. Mishra. "Newtonian and Inelastic Non-Newtonian Flow across Tube Banks". Industrial & Engineering Chemistry Research 26, nr 7 (lipiec 1987): 1365–72. http://dx.doi.org/10.1021/ie00067a600.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Abd Al-Samieh, M. F. "Surface Roughness Effects for Newtonian and Non-Newtonian Lubricants". Tribology in Industry 41, nr 1 (15.03.2019): 56–63. http://dx.doi.org/10.24874/ti.2019.41.01.07.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Jiang, Xiao F., Chunying Zhu i Huai Z. Li. "Bubble pinch-off in Newtonian and non-Newtonian fluids". Chemical Engineering Science 170 (październik 2017): 98–104. http://dx.doi.org/10.1016/j.ces.2016.12.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Zhu, Jianting, i Qian Deng. "Non-Newtonian flow past a swarm of Newtonian droplets". Chemical Engineering Science 49, nr 1 (1994): 147–50. http://dx.doi.org/10.1016/0009-2509(94)85043-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Keslerová, Radka, i Karel Kozel. "Numerical Modelling of Newtonian and Non-Newtonian Fluids Flow". PAMM 8, nr 1 (grudzień 2008): 10181–82. http://dx.doi.org/10.1002/pamm.200810181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Foucault, S., G. Ascanio i P. A. Tanguy. "Coaxial Mixer Hydrodynamics with Newtonian and non-Newtonian Fluids". Chemical Engineering & Technology 27, nr 3 (5.03.2004): 324–29. http://dx.doi.org/10.1002/ceat.200401996.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Vimmr, Jan. "Modelling of Newtonian and Non-Newtonian Incompressible Fluid Flow". PAMM 6, nr 1 (grudzień 2006): 599–600. http://dx.doi.org/10.1002/pamm.200610280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Nabwey, Hossam A., Farhad Rahbar, Taher Armaghani, Ahmed M. Rashad i Ali J. Chamkha. "A Comprehensive Review of Non-Newtonian Nanofluid Heat Transfer". Symmetry 15, nr 2 (29.01.2023): 362. http://dx.doi.org/10.3390/sym15020362.

Pełny tekst źródła
Streszczenie:
Nanofluids behave like non-Newtonian fluids in many cases and, therefore, studying their symmetrical behavior is of paramount importance in nanofluid heat transfer modeling. This article attempts to provide are flection on symmetry via thorough description of a variety of non-Newtonian models and further provides a comprehensive review of articles on non-Newtonian models that have applied symmetrical flow modeling and nanofluid heat transfer. This study reviews articles from recent years and provides a comprehensive analysis of them. Furthermore, a thorough statistical symmetrical analysis regarding the commonality of nanoparticles, base fluids and numerical solutions to equations is provided. This article also investigates the history of nanofluid use as a non-Newtonian fluid; that is, the base fluid is considered to be non-Newtonian fluid or the base fluid is Newtonian, such as water. However, the nanofluid in question is regarded as non-Newtonian in modeling. Results show that 25% of articles considered nanofluids with Newtonian base fluid as a non-Newtonian model. In this article, the following questions are answered for the first time: Which non-Newtonian model has been used to model nanofluids? What are the most common non-Newtonian base fluids? Which numerical method is most used to solve non-Newtonian equations?
Style APA, Harvard, Vancouver, ISO itp.
32

Brandon, Robert N. "A Non-Newtonian Newtonian Model of Evolution: The ZFEL View". Philosophy of Science 77, nr 5 (grudzień 2010): 702–15. http://dx.doi.org/10.1086/656901.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Eichheimer, Philipp, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz i Boris J. P. Kaus. "Pore-scale permeability prediction for Newtonian and non-Newtonian fluids". Solid Earth 10, nr 5 (23.10.2019): 1717–31. http://dx.doi.org/10.5194/se-10-1717-2019.

Pełny tekst źródła
Streszczenie:
Abstract. The flow of fluids through porous media such as groundwater flow or magma migration is a key process in geological sciences. Flow is controlled by the permeability of the rock; thus, an accurate determination and prediction of its value is of crucial importance. For this reason, permeability has been measured across different scales. As laboratory measurements exhibit a range of limitations, the numerical prediction of permeability at conditions where laboratory experiments struggle has become an important method to complement laboratory approaches. At high resolutions, this prediction becomes computationally very expensive, which makes it crucial to develop methods that maximize accuracy. In recent years, the flow of non-Newtonian fluids through porous media has gained additional importance due to, e.g., the use of nanofluids for enhanced oil recovery. Numerical methods to predict fluid flow in these cases are therefore required. Here, we employ the open-source finite difference solver LaMEM (Lithosphere and Mantle Evolution Model) to numerically predict the permeability of porous media at low Reynolds numbers for both Newtonian and non-Newtonian fluids. We employ a stencil rescaling method to better describe the solid–fluid interface. The accuracy of the code is verified by comparing numerical solutions to analytical ones for a set of simplified model setups. Results show that stencil rescaling significantly increases the accuracy at no additional computational cost. Finally, we use our modeling framework to predict the permeability of a Fontainebleau sandstone and demonstrate numerical convergence. Results show very good agreement with experimental estimates as well as with previous studies. We also demonstrate the ability of the code to simulate the flow of power-law fluids through porous media. As in the Newtonian case, results show good agreement with analytical solutions.
Style APA, Harvard, Vancouver, ISO itp.
34

Chang, L., i W. Zhao. "Fundamental Differences Between Newtonian and Non-Newtonian Micro-EHL Results". Journal of Tribology 117, nr 1 (1.01.1995): 29–35. http://dx.doi.org/10.1115/1.2830603.

Pełny tekst źródła
Streszczenie:
Numerical analyses of micro-EHL problems have shown remarkably different results with Newtonian and non-Newtonian rheological models. However, no consensus has been reached whether a Newtonian model can be used in micro-EHL analysis. It is difficult to prove the point numerically as researchers use different numerical methods, grid sizes, time steps, and convergence criteria. This paper analytically studies the fundamental differences between Newtonian and non-Newtonian micro-EHL results. Algebraic governing equations are derived in terms of dimensionless parameters of the problem. Results are obtained for a range of key dimensionless parameters of practical interest. These results suggest that Newtonian and non-Newtonian micro-EHL results would be qualitatively different and the differences would be most pronounced with surface roughness of short wavelengths. Since surface roughness of machine elements contains substantial short-wavelength contents, a Newtonian rheological model is likely to generate misleading micro-EHL results under all operating conditions under which the shear-thinning effect of the lubricant is significant.
Style APA, Harvard, Vancouver, ISO itp.
35

Knight, D. G. "Revisiting Newtonian and non-Newtonian fluid mechanics using computer algebra". International Journal of Mathematical Education in Science and Technology 37, nr 5 (15.07.2006): 573–92. http://dx.doi.org/10.1080/03091900600712215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Aminzadeh, M., A. Maleki, B. Firoozabadi i H. Afshin. "On the motion of Newtonian and non-Newtonian liquid drops". Scientia Iranica 19, nr 5 (październik 2012): 1265–78. http://dx.doi.org/10.1016/j.scient.2011.09.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Dolz, Manuel, Jesús Delegido, Alejandro Casanovas i María-Jesús Hernández. "A Low-Cost Experiment on Newtonian and Non-Newtonian Fluids". Journal of Chemical Education 82, nr 3 (marzec 2005): 445. http://dx.doi.org/10.1021/ed082p445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Prokop, Vladimír, i Karel Kozel. "Numerical simulation of Newtonian and non-Newtonian flows in bypass". Mathematics and Computers in Simulation 80, nr 8 (kwiecień 2010): 1725–33. http://dx.doi.org/10.1016/j.matcom.2009.06.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Foucault, Stéphane, Gabriel Ascanio i Philippe A. Tanguy. "Power Characteristics in Coaxial Mixing: Newtonian and Non-Newtonian Fluids". Industrial & Engineering Chemistry Research 44, nr 14 (lipiec 2005): 5036–43. http://dx.doi.org/10.1021/ie049654x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Morales, Hernán G., Ignacio Larrabide, Arjan J. Geers, Martha L. Aguilar i Alejandro F. Frangi. "Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms". Journal of Biomechanics 46, nr 13 (wrzesień 2013): 2158–64. http://dx.doi.org/10.1016/j.jbiomech.2013.06.034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Kanellopoulos, N. K. "Capillary models for porous media: Newtonian and non-Newtonian flow". Journal of Colloid and Interface Science 108, nr 1 (listopad 1985): 11–17. http://dx.doi.org/10.1016/0021-9797(85)90231-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kawase, Y. "Particle-fluid heat/mass transfer: Newtonian and non-Newtonian fluids". Wärme- und Stoffübertragung 27, nr 2 (luty 1992): 73–76. http://dx.doi.org/10.1007/bf01590121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Arcoumanis, C., L. Khezzar, D. S. Whitelaw i B. C. H. Warren. "Breakup of Newtonian and non-Newtonian fluids in air jets". Experiments in Fluids 17, nr 6 (październik 1994): 405–14. http://dx.doi.org/10.1007/bf01877043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Turkeri, Hasret, Senol Piskin i M. Serdar Celebi. "A comparison between non-Newtonian and Newtonian blood viscosity models". Journal of Biomechanics 44 (maj 2011): 17. http://dx.doi.org/10.1016/j.jbiomech.2011.02.060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Vlasak, P., i Z. Chara. "Conveying of Solid Particles in Newtonian and Non-Newtonian Carriers". Particulate Science and Technology 27, nr 5 (3.09.2009): 428–43. http://dx.doi.org/10.1080/02726350903130019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Doludenko, A. N., S. V. Fortova i E. E. Son. "The Rayleigh–Taylor instability of Newtonian and non-Newtonian fluids". Physica Scripta 91, nr 10 (21.09.2016): 104006. http://dx.doi.org/10.1088/0031-8949/91/10/104006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Fu, Taotao, Odile Carrier, Denis Funfschilling, Youguang Ma i Huai Z. Li. "Newtonian and Non-Newtonian Flows in Microchannels: Inline Rheological Characterization". Chemical Engineering & Technology 39, nr 5 (12.02.2016): 987–92. http://dx.doi.org/10.1002/ceat.201500620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Gradeck, M., B. F. Z. Fagla, C. Baravian i M. Lebouché. "Experimental thermomechanic study of Newtonian and non-Newtonian suspension flows". International Journal of Heat and Mass Transfer 48, nr 16 (lipiec 2005): 3469–77. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.12.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Prokop, V., i K. Kozel. "Numerical Solution of Newtonian and Non-Newtonian Flows in Bypass". PAMM 8, nr 1 (grudzień 2008): 10637–38. http://dx.doi.org/10.1002/pamm.200810637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

TOMITA, Yukio. "Flow of Non-Newtonian Fluids". Nihon Reoroji Gakkaishi(Journal of the Society of Rheology, Japan) 15, nr 4 (1987): 167–71. http://dx.doi.org/10.1678/rheology1973.15.4_167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii