Gotowa bibliografia na temat „Non-lymphoid organs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Non-lymphoid organs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Non-lymphoid organs"
Jandrić-Kočić, Marijana. "Recirculation of naive T lymphocytes". Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma 27, nr 86 (2022): 25–48. http://dx.doi.org/10.5937/mgiszm2286025j.
Pełny tekst źródłaParker, George A., i Catherine A. Picut. "Immune Functioning in Non lymphoid Organs: The Liver". Toxicologic Pathology 40, nr 2 (16.11.2011): 237–47. http://dx.doi.org/10.1177/0192623311428475.
Pełny tekst źródłaFeizi, Neda, Neda Feizi, Gang Zhang, Latha Halesha, Khodor Abou Daya i Martin H. Oberbarnscheidt. "Tertiary Lymphoid Organs promote allograft rejection". Journal of Immunology 212, nr 1_Supplement (1.05.2024): 0321_5062. http://dx.doi.org/10.4049/jimmunol.212.supp.0321.5062.
Pełny tekst źródłaWeninger, Wolfgang, Maté Biro i Rohit Jain. "Leukocyte migration in the interstitial space of non-lymphoid organs". Nature Reviews Immunology 14, nr 4 (7.03.2014): 232–46. http://dx.doi.org/10.1038/nri3641.
Pełny tekst źródłaPreziuso, S., GE Magi, S. Mari i G. Renzoni. "Detection of Visna Maedi virus in mesenteric lymph nodes and in other lymphoid tissues of sheep three years after respiratory infection". Veterinární Medicína 58, No. 7 (20.08.2013): 359–63. http://dx.doi.org/10.17221/6916-vetmed.
Pełny tekst źródłaTkachev, Victor, Scott Nicholas Furlan, E. Lake Potter, Betty H. Zheng, Daniel J. Hunt, Lucrezia Colonna, Agne Taraseviciute i in. "Delineating tissue-specific alloimmunity during acute GVHD". Journal of Immunology 200, nr 1_Supplement (1.05.2018): 55.1. http://dx.doi.org/10.4049/jimmunol.200.supp.55.1.
Pełny tekst źródłaHotchkiss, R., M. Hiramatsu, P. Cobb, T. Buchman i I. Karl. "CECAL LIGATION AND PUNCTURE (CLP) IN MICE TRIGGERS APOPTOSIS IN LYMPHOID AND NON-LYMPHOID ORGANS." Shock 5 (czerwiec 1996): 71. http://dx.doi.org/10.1097/00024382-199606002-00226.
Pełny tekst źródłaJia, Cunxin, Yujie Zhou, Xiaohuan Huang, Xi Peng, Linyan Liu, Linyan Zhou, Li Jin, Hongjuan Shi, Jing Wei i Deshou Wang. "The cellular protein expression of Foxp3 in lymphoid and non-lymphoid organs of Nile tilapia". Fish & Shellfish Immunology 45, nr 2 (sierpień 2015): 300–306. http://dx.doi.org/10.1016/j.fsi.2015.03.021.
Pełny tekst źródłaFinke, Daniela, i Hans Acha-Orbea. "Differential migration ofin vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs". European Journal of Immunology 31, nr 9 (wrzesień 2001): 2603–11. http://dx.doi.org/10.1002/1521-4141(200109)31:9<2603::aid-immu2603>3.0.co;2-8.
Pełny tekst źródłaSainova, Iskra, Vera Kolyovska, Desislava Drenska, Dimitar Maslarov, Andrey Petrov, Dimitrina Dimitrova-Dikanarova i Tzvetanka Markova. "Production of anti-GM3, anti-GM1, and anti-GD1A antibodies by non-lymphoid cells, tissues, and organs". Pharmacia 71 (1.11.2024): 1–8. http://dx.doi.org/10.3897/pharmacia.71.e138022.
Pełny tekst źródłaRozprawy doktorskie na temat "Non-lymphoid organs"
Roubanis, Aristeidis. "Investigating the metabolism of regulatory T cells in non-lymphoid tissues using a genetic approach and an in vivo adaptation of SCENITH". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS321.pdf.
Pełny tekst źródłaRegulation of cellular metabolism is a central element governing the fate and function of T cells. Among T cells, CD4+ Foxp3+ regulatory T cells (Tregs) are critical for the maintenance of self-tolerance and immune homeostasis. Tregs are present in lymphoid tissues where they control immune responses and in various non-lymphoid tissues where they maintain tissue homeostasis. Precursors of Tregs colonising non- lymphoid tissues are present in the spleen and lymph nodes and undergo developmental differentiation steps. However, the mechanisms by which Tregs colonise non-lymphoid tissues and how tissue Tregs metabolically adapt to varying microenvironments across tissues remain poorly understood partly because of experimental difficulties in assessing the metabolic profiles of rare cells in physiological conditions. To investigate the metabolism of Tregs, mice conditionally knocked out for the metabolic checkpoint Liver kinase B1 (LKB1) (cKO) were generated. These mice have a significantly reduced lifespan due to a systemic hyperinflammatory disorder, despite having relatively normal numbers of Tregs in the spleen and lymph nodes. LKB1, primarily known for activating AMPK and modulating mitochondrial metabolism, appears crucial for the colonisation of NLT by Tregs. Further analysis revealed the absence of the mature tissue Treg precursors in the spleen of cKO mice, suggesting a block of tissue Treg differentiation in the absence of LKB1.Recent advances, such as the SCENITH technique, allow the study of the metabolism of rare cells by measuring protein translation as an indicator of energy consumption by flow cytometry. However, this technique traditionally requires cells to be cultured ex vivo or in vitro, which can alter their metabolism. To address this issue, an innovative method derived from SCENITH was implemented to investigate the cellular metabolism of T cells in the spleen and lungs at steady state. Compared to classical SCENITH, this new technique also helps improve cell viability, in particular for Tregs. Results obtained with the in vivo SCENITH revealed that conventional T cells and Tregs share similar metabolic profiles in the spleen and lungs. Notably, lung T cell metabolism relies mainly on oxidative phosphorylation at steady state, while spleen T cells also utilise glycolysis. Additionally, maintaining Foxp3 expression in Tregs is influenced by metabolic inhibitors affecting protein translation and energy availability. Our findings highlight the role of LKB1 in the differentiation and colonisation of tissue Tregs and underscore the importance of metabolic adaptation in tissue Treg differentiation. The new in vivo SCENITH technique may provide valuable insights to assess the metabolic status of rare T cells in their natural environments
Roake, Justin Alan. "Studies on the properties and migration of non-lymphoid dendritic cells". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317810.
Pełny tekst źródłaKsiążki na temat "Non-lymphoid organs"
Smedby, Karin Ekström, Mads Melbye i Hans-Olov Adami. Non-Hodgkin Lymphoma. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676827.003.0027.
Pełny tekst źródłaBlaser, Annika Reintam, i Adam M. Deane. Normal physiology of the gastrointestinal system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0172.
Pełny tekst źródłaAlbert, Tyler J., i Erik R. Swenson. The blood cells and blood count. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0265.
Pełny tekst źródłaCzęści książek na temat "Non-lymphoid organs"
Rao, Abdul S., Justin A. Roake, Christian P. Larsen, Deborah F. Hankins, Peter J. Morris i Jonathan M. Austyn. "Isolation of Dendritic Leukocytes from Non-Lymphoid Organs". W Advances in Experimental Medicine and Biology, 507–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2930-9_85.
Pełny tekst źródłaWalker, Brian R. "Modulation of glucocorticoid activity by metabolism of steroids in non-lymphoid organs". W Steroid Hormones and the T-Cell Cytokine Profile, 71–99. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0931-0_4.
Pełny tekst źródłaKirsch, Brian James, Shu-Jyuan Chang, Michael James Betenbaugh i Anne Le. "Non-Hodgkin Lymphoma Metabolism". W The Heterogeneity of Cancer Metabolism, 103–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_7.
Pełny tekst źródłaAndrabi, Syedah Asma, Nawab Nashiruddullah, Shafiqur Rahman, Dawoud Aamir i afrin Ara Ahmed. "IMPORTANT NON-ONCOGENIC IMMUNO SUPPRESSIVE VIRAL DISEASES OF CHICKENS". W Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 3, 88–108. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bcag3p1ch8.
Pełny tekst źródłaWoodhouse, Andrew. "Case 38". W Oxford Case Histories in Infectious Diseases and Microbiology, redaktor Andrew Woodhouse, 261–66. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0038.
Pełny tekst źródłaSepulveda, Antonia R. "Mucosa-Associated Lymphoid Tissue Lymphomas". W Gastrointestinal Oncology, 803–11. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195133721.003.0066.
Pełny tekst źródłaNaresh, Kikkeri N. "Gastrointestinal lymphomas". W Oxford Textbook of Medicine, redaktor Jack Satsangi, 2892–902. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0301.
Pełny tekst źródłaStreszczenia konferencji na temat "Non-lymphoid organs"
Rosenbluth, Michael J., Wilbur A. Lam i Daniel A. Fletcher. "Contribution of Cell Mechanics to Acute Leukemia". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59881.
Pełny tekst źródła