Gotowa bibliografia na temat „Non-Kähler geometry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Non-Kähler geometry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Non-Kähler geometry"
Dai, Song. "Lower order tensors in non-Kähler geometry and non-Kähler geometric flow". Annals of Global Analysis and Geometry 50, nr 4 (6.06.2016): 395–418. http://dx.doi.org/10.1007/s10455-016-9518-0.
Pełny tekst źródłaBroder, Kyle. "The Schwarz lemma in Kähler and non-Kähler geometry". Asian Journal of Mathematics 27, nr 1 (2023): 121–34. http://dx.doi.org/10.4310/ajm.2023.v27.n1.a5.
Pełny tekst źródłaFino, Anna, i Adriano Tomassini. "Non-Kähler solvmanifolds with generalized Kähler structure". Journal of Symplectic Geometry 7, nr 2 (2009): 1–14. http://dx.doi.org/10.4310/jsg.2009.v7.n2.a1.
Pełny tekst źródłaVerbitsky, M. S., V. Vuletescu i L. Ornea. "Classification of non-Kähler surfaces and locally conformally Kähler geometry". Russian Mathematical Surveys 76, nr 2 (1.04.2021): 261–89. http://dx.doi.org/10.1070/rm9858.
Pełny tekst źródłaZheng, Fangyang. "Some recent progress in non-Kähler geometry". Science China Mathematics 62, nr 11 (22.05.2019): 2423–34. http://dx.doi.org/10.1007/s11425-019-9528-1.
Pełny tekst źródłaAlessandrini, Lucia, i Giovanni Bassanelli. "Positive $$\partial \bar \partial - closed$$ currents and non-Kähler geometrycurrents and non-Kähler geometry". Journal of Geometric Analysis 2, nr 4 (lipiec 1992): 291–316. http://dx.doi.org/10.1007/bf02934583.
Pełny tekst źródłaCortés, Vicente, i Liana David. "Twist, elementary deformation and K/K correspondence in generalized geometry". International Journal of Mathematics 31, nr 10 (wrzesień 2020): 2050078. http://dx.doi.org/10.1142/s0129167x20500780.
Pełny tekst źródłaDunajski, Maciej. "Null Kähler Geometry and Isomonodromic Deformations". Communications in Mathematical Physics 391, nr 1 (8.12.2021): 77–105. http://dx.doi.org/10.1007/s00220-021-04270-0.
Pełny tekst źródłaYANG, BO. "A CHARACTERIZATION OF NONCOMPACT KOISO-TYPE SOLITONS". International Journal of Mathematics 23, nr 05 (maj 2012): 1250054. http://dx.doi.org/10.1142/s0129167x12500541.
Pełny tekst źródłaYau, Shing-Tung. "Existence of canonical metrics in non-Kähler geometry". Notices of the International Congress of Chinese Mathematicians 9, nr 1 (2021): 1–10. http://dx.doi.org/10.4310/iccm.2021.v9.n1.a1.
Pełny tekst źródłaRozprawy doktorskie na temat "Non-Kähler geometry"
Lee, Hwasung. "Strominger's system on non-Kähler hermitian manifolds". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef.
Pełny tekst źródłaProto, Yann. "Geometry of heterotic flux compactifications". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS125.
Pełny tekst źródłaThis thesis delves into recent developments in the study of flux compactifications of the heterotic string theory. We primarily focus on four-dimensional Minkowski compactifications with spacetime supersymmetry, whose underlying six-dimensional geometries are, in the presence of torsion, non-Kähler SU(3) structure manifolds. We develop several methods to analyze these compactifications from both supergravity and worldsheet perspectives. We investigate geometric flows in non-Kähler geometry that play a central role in the study of the Hull-Strominger equations, and elucidate their supersymmetry properties. We present a class of orbifold backgrounds that can be described using torsional linear sigma models with (0,2) worldsheet supersymmetry, and obtain new examples of heterotic flux backgrounds. Finally, we explore the implications of Narain T-duality for the moduli space of torsional heterotic vacua, and find evidence for topology change and Kähler/non-Kähler dualities
Göteman, Malin. "The Complex World of Superstrings : On Semichiral Sigma Models and N=(4,4) Supersymmetry". Doctoral thesis, Uppsala universitet, Teoretisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183407.
Pełny tekst źródłaBattisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Pełny tekst źródłaIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Knauf, Anke [Verfasser]. "Geometric transitions on non-Kähler manifolds / vorgelegt von Anke Knauf". 2006. http://d-nb.info/979527503/34.
Pełny tekst źródłaKsiążki na temat "Non-Kähler geometry"
Dinew, Sławomir, Sebastien Picard, Andrei Teleman i Alberto Verjovsky. Complex Non-Kähler Geometry. Redaktorzy Daniele Angella, Leandro Arosio i Eleonora Di Nezza. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2.
Pełny tekst źródłaAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02441-7.
Pełny tekst źródłaAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Springer London, Limited, 2013.
Znajdź pełny tekst źródłaAngella, Daniele, Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky, Leandro Arosio i Eleonora Di Nezza. Complex Non-Kähler Geometry: Cetraro, Italy 2018. Springer, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Non-Kähler geometry"
Dinew, Sławomir. "Lectures on Pluripotential Theory on Compact Hermitian Manifolds". W Complex Non-Kähler Geometry, 1–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_1.
Pełny tekst źródłaPicard, Sébastien. "Calabi–Yau Manifolds with Torsion and Geometric Flows". W Complex Non-Kähler Geometry, 57–120. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_2.
Pełny tekst źródłaTeleman, Andrei. "Non-Kählerian Compact Complex Surfaces". W Complex Non-Kähler Geometry, 121–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_3.
Pełny tekst źródłaVerjovsky, Alberto. "Intersection of Quadrics in ℂ n $$\mathbb {C}^n$$ , Moment-Angle Manifolds, Complex Manifolds and Convex Polytopes". W Complex Non-Kähler Geometry, 163–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_4.
Pełny tekst źródłaTian, Gang. "Kähler-Einstein metrics with non-positive scalar curvature". W Canonical Metrics in Kähler Geometry, 43–56. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8389-4_5.
Pełny tekst źródłaAngella, Daniele. "Preliminaries on (Almost-)Complex Manifolds". W Cohomological Aspects in Complex Non-Kähler Geometry, 1–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_1.
Pełny tekst źródłaAngella, Daniele. "Cohomology of Complex Manifolds". W Cohomological Aspects in Complex Non-Kähler Geometry, 65–94. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_2.
Pełny tekst źródłaAngella, Daniele. "Cohomology of Nilmanifolds". W Cohomological Aspects in Complex Non-Kähler Geometry, 95–150. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_3.
Pełny tekst źródłaAngella, Daniele. "Cohomology of Almost-Complex Manifolds". W Cohomological Aspects in Complex Non-Kähler Geometry, 151–232. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_4.
Pełny tekst źródłaLiu, Xu. "Compact Smooth but Non-complex Complements of Complete Kähler Manifolds". W Complex Analysis and Geometry, 235–39. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55744-9_17.
Pełny tekst źródła