Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Non-invasive images.

Książki na temat „Non-invasive images”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 19 najlepszych książek naukowych na temat „Non-invasive images”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Stergios, Stergiopoulos, red. Advanced signal processing: Theory and implementation for sonar, radar, and non-invasive medical diagnostic systems. Wyd. 2. Boca Raton: Taylor & Francis, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Marzec, Mariusz, i Robert Koprowski, red. Non-Invasive Diagnostic Methods - Image Processing. IntechOpen, 2018. http://dx.doi.org/10.5772/intechopen.76952.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Badakhshi, Harun. Image-Guided Stereotactic Radiosurgery: High-Precision, Non-invasive Treatment of Solid Tumors. Springer, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Badakhshi, Harun. Image-Guided Stereotactic Radiosurgery: High-Precision, Non-invasive Treatment of Solid Tumors. Springer, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Badakhshi, Harun. Image-Guided Stereotactic Radiosurgery: High-Precision, Non-Invasive Treatment of Solid Tumors. Springer London, Limited, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Stergiopoulos, Stergios. Advanced Signal Processing: Theory and Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems, Second Edition. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Galiuto, L., R. Senior i H. Becher. Contrast echocardiography. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0007.

Pełny tekst źródła
Streszczenie:
Contrast echocardiography is a non-invasive, well tolerated echocardiographic technique which employs ultrasound contrast agent in order to improve the quality of echocardiographic images, by enhancing blood flow signal.Clinical usefulness of this echocardiographic imaging modality resides in the possibility of providing better acoustic signal in cases of poor quality images, with additional important information related to assessment of myocardial perfusion. Indeed, about one-third of echocardiographic images are affected by poor quality due to high acoustic impedance of the chest wall of the patients secondary to obesity or pulmonary diseases, not allowing detection of left ventricular endocardial border. Moreover, in patients with low ejection fraction and apical left ventricular aneurysm, intraventricular thrombus could be undetectable with standard echocardiography. Furthermore, coronary microcirculation cannot be assessed by standard echocardiography. Contrast echocardiography can be performed in all such conditions to improve diagnostic power of echocardiography.The adjunctive role of contrast echocardiography is well defined in both rest and stress echocardiography in order to detect the endocardial border and intraventricular thrombi, to accurately measure ejection fraction, wall motion, and to assess myocardial perfusion.The purpose of this chapter is to explain basic principles, feasibility, safety, major clinical applications, current indications, and further developments of contrast echocardiography.
Style APA, Harvard, Vancouver, ISO itp.
8

Andrade, Maria João, i Albert Varga. Stress echocardiography: methodology. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0012.

Pełny tekst źródła
Streszczenie:
Stress echocardiography is the combination of echocardiography with a physical, pharmacological, or electrical stress. Good quality images are absolutely necessary and a quad-screen format should be applied for comparative analysis. Different stress echo protocols can be used in different pathologies. Exercise echocardiography has the advantages of its wide availability, low cost, and versatility for the assessment of various cardiac conditions. The most usual pathologies are suspected or known ischaemic heart disease, mitral and aortic valve diseases, hypertrophic cardiomyopathy, and pulmonary hypertension. Among exercise-independent stresses, dobutamine and dipyridamole are the most frequently used. Dobutamine is widely accepted for the evaluation of myocardial viability. The two tests have comparable accuracy for the detection of coronary artery disease. Ergonovine echo is highly feasible, accurate, and safe for the diagnosis of coronary vasospasm. High-rate pacing is especially appropriate in patients with a permanent pacemaker because non-invasive diagnosis of coronary artery disease in these patients is an extremely difficult task.
Style APA, Harvard, Vancouver, ISO itp.
9

Chappell, Michael, Bradley MacIntosh i Thomas Okell. Introduction to Perfusion Quantification using Arterial Spin Labelling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.001.0001.

Pełny tekst źródła
Streszczenie:
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is unique in being a completely non-invasive method for imaging perfusion in the brain. Relying upon a blood-borne tracer that is created by the MRI scanner itself, ASL is becoming a popular tool to study cerebral perfusion, as well as how this perfusion changes in response to neuronal activity or in disease. This primer provides an introduction to perfusion quantification using ASL MRI, focusing both on the methods needed to extract perfusion-weighted images and on how to quantify perfusion and other hemodynamic parameters. Starting with the simplest implementation of ASL, the primer details all the common acquisition methods, as well as the subsequent analysis steps required to quantify perfusion in an individual, detect changes in perfusion in response to neural activity or pharmacological intervention, and examine perfusion variations across groups of individuals. This is supported with examples from real data illustrating all the major steps in the analysis process, linked to online material where the reader can undertake the same analysis for themselves.
Style APA, Harvard, Vancouver, ISO itp.
10

Advanced Signal Processing: Theory and Implementation for Sonor, Radar, and Non-Invasive Medical Diagnostic Systems, Second Edition (Electrical Engineering & Applied Signal Processing). Wyd. 2. CRC, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Stergiopoulos, Stergios. Advanced Signal Processing: Theory and Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems, Second Edition. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Stergiopoulos, Stergios. Advanced Signal Processing: Theory and Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems, Second Edition. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Stergiopoulos, Stergios. Advanced Signal Processing: Theory and Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems, Second Edition. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Stergiopoulos, Stergios. Advanced Signal Processing: Theory and Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems, Second Edition. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Glockner, James F., Kazuhiro Kitajima i Akira Kawashima. Magnetic resonance imaging. Redaktor Christopher G. Winearls. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0015_update_001.

Pełny tekst źródła
Streszczenie:
Magnetic resonance imaging (MRI) provides excellent anatomic detail and soft tissue contrast for the evaluation of patients with renal disease. MRI needs longer scan time than computed tomography (CT); however, no radiation is involved. Gadolinium-based contrast agents (GBCAs) are used to help provide additional image contrast during MRI. MRI is indicated for characterization of renal mass, staging of malignant renal neoplasms, and determination of vena cava involvement by the renal tumour. Magnetic resonance (MR) angiography is widely accepted as a non-invasive imaging work-up of renal artery stenosis. MR urography is an alternative to CT urography to assess the upper urinary tract but does not identify urinary calculi. Diffusion-weighted imaging is a functional MR technique being used to characterize parenchymal renal disease and renal tumours. Nephrogenic systemic fibrosis is a rare but debilitating and potentially life-threatening condition which has been linked to exposure of GBCAs in patients with severe renal insufficiency. The risk versus benefit must be assessed before proceeding.
Style APA, Harvard, Vancouver, ISO itp.
16

Gattringer, Thomas, Christian Enzinger, Stefan Ropele i Franz Fazekas. Vascular imaging (CTA/MRA). Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198722366.003.0008.

Pełny tekst źródła
Streszczenie:
Non-invasive computed tomography angiography (CTA) and magnetic resonance angiography (MRA) constitute an integral part of the diagnostic workup of stroke patients, which—among the various techniques to image the complex cerebrovascular tree—can be conceptually placed between duplex sonography and digital subtraction angiography. CTA and especially MRA can be performed with different techniques and protocols that need to be used according to the clinical questions. In the setting of acute ischaemic stroke with the therapeutic option of endovascular thrombectomy, the rapid and reliable detection of large vessel occlusion has become of paramount importance. Both CTA and MRA can accomplish this and there is no need for contrast material when performing intracranial MRA. Vascular imaging is also essential to identify vessel-related causes of stroke such as large artery atherosclerosis, dissection, and some forms of arteritis mandating specific management or therapeutic intervention to avoid recurrence. Considering these aspects, frequent and targeted use of CTA or MRA is highly encouraged and especially relevant in young patients with stroke.
Style APA, Harvard, Vancouver, ISO itp.
17

(Editor), Kanagasingam Yogesan, Sajeesh Kumar (Editor), Leonard Goldschmidt (Editor) i Jorge Cuadros (Editor), red. Teleophthalmology. Springer, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Yogesan, Kanagasingam, Sajeesh Kumar, Leonard Goldschmidt i Jorge Cuadros. Teleophthalmology. Springer, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Marek, Jan, i Folkert Meijboom. Echocardiography. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0173.

Pełny tekst źródła
Streszczenie:
Echocardiographic techniques have revolutionized the practice of congenital cardiology over the last three decades. Due to its non-invasive nature and high temporal resolution, echocardiography enables cardiac structures to be imaged as early as the 14th gestational week and it remains the superior diagnostic modality in small children. While transoesophageal (TOE) two-dimensional echocardiography has become an integral part of almost all cardiac interventions, real-time three-dimensional TOE used in older children and adults may help surgeons to understand dynamic spatial relationships of intracardiac structures, enabling them to achieve the best result of an operation. Post bypass, two- and three-dimensional TOE studies significantly reduce the number of reoperations, unnecessary bypass procedures, and general anaesthetics. A developing technique known as tissue deformation imaging enables the assessment of global and regional myocardial systolic and diastolic function even in small hearts. Although mainly used for research, in some specific situations these techniques may modify further diagnostic management, optimize medication, or even change clinical management. Despite its known limitations, echocardiography remains a routine imaging modality for all patients with congenital heart disease, being a definitive imaging modality prior to intervention for many children and screening imaging for older children and adults with congenital heart disease.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii