Artykuły w czasopismach na temat „Non-fullerene acceptor (NFA)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Non-fullerene acceptor (NFA)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jiang, Yuanyuan, i Xiaozhang Zhu. "High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors". Organic Materials 03, nr 02 (31.03.2021): 254–76. http://dx.doi.org/10.1055/a-1472-3989.
Pełny tekst źródłaIm, Chan, Sang-Woong Kang, Jeong-Yoon Choi i Jongdeok An. "Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems". Polymers 13, nr 11 (28.05.2021): 1770. http://dx.doi.org/10.3390/polym13111770.
Pełny tekst źródłaHasenburg, Franziska H., Kun-Han Lin, Bas van der Zee, Paul W. M. Blom, Denis Andrienko i Gert-Jan A. H. Wetzelaer. "Ambipolar charge transport in a non-fullerene acceptor". APL Materials 11, nr 2 (1.02.2023): 021105. http://dx.doi.org/10.1063/5.0137073.
Pełny tekst źródłaDatt, Ram, Harrison Ka Hin Lee, Michael Spence, Matthew Carnie i Wing Chung Tsoi. "High performance non-fullerene organic photovoltaics under implant light illumination region". Applied Physics Letters 122, nr 14 (3.04.2023): 143906. http://dx.doi.org/10.1063/5.0144861.
Pełny tekst źródłaYang, Qing, Xuan Liu, Shuwen Yu, Zhendong Feng, Lixin Liang, Wei Qin, Youyang Wang i in. "Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells". Energy & Environmental Science 14, nr 12 (2021): 6536–45. http://dx.doi.org/10.1039/d1ee02248b.
Pełny tekst źródłaZhang, Jie, Yunjie Xiang i Shaohui Zheng. "From Y6 to BTPT-4F: a theoretical insight into the influence of the individual change of fused-ring skeleton length or side alkyl chains on molecular arrangements and electron mobility". New Journal of Chemistry 45, nr 27 (2021): 12247–59. http://dx.doi.org/10.1039/d1nj01515j.
Pełny tekst źródłaGrant, Trevor M., Chloé Dindault, Nicole A. Rice, Sufal Swaraj i Benoît H. Lessard. "Synthetically facile organic solar cells with >4% efficiency using P3HT and a silicon phthalocyanine non-fullerene acceptor". Materials Advances 2, nr 8 (2021): 2594–99. http://dx.doi.org/10.1039/d1ma00165e.
Pełny tekst źródłaLu, Qiuchen, Ming Qiu, Meiyu Zhao, Zhuo Li i Yuanzuo Li. "Modification of NFA-Conjugated Bridges with Symmetric Structures for High-Efficiency Non-Fullerene PSCs". Polymers 11, nr 6 (2.06.2019): 958. http://dx.doi.org/10.3390/polym11060958.
Pełny tekst źródłaLi, Yang, Wei Huang, Dejiang Zhao, Lu Wang, Zhiqiang Jiao, Qingyu Huang, Peng Wang, Mengna Sun i Guangcai Yuan. "Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor". Molecules 27, nr 6 (10.03.2022): 1800. http://dx.doi.org/10.3390/molecules27061800.
Pełny tekst źródłaYang, Chenyi, Shaoqing Zhang, Junzhen Ren, Mengyuan Gao, Pengqing Bi, Long Ye i Jianhui Hou. "Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency". Energy & Environmental Science 13, nr 9 (2020): 2864–69. http://dx.doi.org/10.1039/d0ee01763a.
Pełny tekst źródłaMumyatov, Alexander V., i Pavel A. Troshin. "A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells". Energies 16, nr 4 (15.02.2023): 1924. http://dx.doi.org/10.3390/en16041924.
Pełny tekst źródłaLee, Dongchan, Do Hui Kim, Chang-Mok Oh, Sujung Park, Narra Vamsi Krishna, Febrian Tri Adhi Wibowo, In-Wook Hwang, Sung-Yeon Jang i Shinuk Cho. "Investigation of Hole-Transfer Dynamics through Simple EL De-Convolution in Non-Fullerene Organic Solar Cells". Polymers 15, nr 20 (10.10.2023): 4042. http://dx.doi.org/10.3390/polym15204042.
Pełny tekst źródłaShehzad, Rao Aqil, Javed Iqbal, Muhammad Usman Khan, Riaz Hussain, Hafiz Muhammad Asif Javed, Ateeq ur Rehman, Muhammad Usman Alvi i Muhammad Khalid. "Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells". Computational and Theoretical Chemistry 1181 (lipiec 2020): 112833. http://dx.doi.org/10.1016/j.comptc.2020.112833.
Pełny tekst źródłaOh, Sora, Chang Eun Song, Taeho Lee, Ara Cho, Hang Ken Lee, Jong-Cheol Lee, Sang-Jin Moon, Eunhee Lim, Sang Kyu Lee i Won Suk Shin. "Enhanced efficiency and stability of PTB7-Th-based multi-non-fullerene solar cells enabled by the working mechanism of the coexisting alloy-like structure and energy transfer model". Journal of Materials Chemistry A 7, nr 38 (2019): 22044–53. http://dx.doi.org/10.1039/c9ta07919j.
Pełny tekst źródłaXiang, Yunjie, Chunlin Xu i Shaohui Zheng. "Increasing Charge Carrier Mobility through Modifications of Terminal Groups of Y6: A Theoretical Study". International Journal of Molecular Sciences 24, nr 10 (11.05.2023): 8610. http://dx.doi.org/10.3390/ijms24108610.
Pełny tekst źródłaZhang, Shimiao, Dong Hwan Son, Rahmatia Fitri Binti Nasrun, Sabrina Aufar Salma, Hongsuk Suh i Joo Hyun Kim. "Medium Bandgap Polymers for Efficient Non-Fullerene Polymer Solar Cells—An In-Depth Study of Structural Diversity of Polymer Structure". International Journal of Molecular Sciences 24, nr 1 (28.12.2022): 522. http://dx.doi.org/10.3390/ijms24010522.
Pełny tekst źródłaSaeki, Akinori. "(Invited) Dynamic Relaxation of Charge Carrier Mobilities in Organic Photovoltaics". ECS Meeting Abstracts MA2024-01, nr 13 (9.08.2024): 1047. http://dx.doi.org/10.1149/ma2024-01131047mtgabs.
Pełny tekst źródłaJahandar, Muhammad, Jinhee Heo, Soyeon Kim i Dong Chan Lim. "Efficient Cathode Interfacial Layer for Low-Light/Indoor Non-Fullerene Organic Photovoltaics". Nanoenergy Advances 3, nr 2 (20.06.2023): 155–69. http://dx.doi.org/10.3390/nanoenergyadv3020009.
Pełny tekst źródłaHam, Gayoung, Damin Lee, Changwoo Park i Hyojung Cha. "Charge Carrier Dynamics in Non-Fullerene Acceptor-Based Organic Solar Cells: Investigating the Influence of Processing Additives Using Transient Absorption Spectroscopy". Materials 16, nr 16 (21.08.2023): 5712. http://dx.doi.org/10.3390/ma16165712.
Pełny tekst źródłaWang, Xin, Zongtao Wang, Mingwei Li, Lijun Tu, Ke Wang, Dengping Xiao, Qiang Guo i in. "A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells". Polymers 14, nr 17 (30.08.2022): 3590. http://dx.doi.org/10.3390/polym14173590.
Pełny tekst źródłaRamírez Como, Magaly, Luis Resendiz, Osbel Almora Rodríguez i Lluis F. Marsal. "(Invited) Non-Fullerene Acceptor in Organic Solar Cells Toward Improving Performance as Indoor Light Energy Harvester". ECS Meeting Abstracts MA2024-01, nr 31 (9.08.2024): 1530. http://dx.doi.org/10.1149/ma2024-01311530mtgabs.
Pełny tekst źródłaSaeki, Akinori. "(Invited) Machine Learning and Fast Experimental Screening-Assisted Development of Organic Solar Cell". ECS Meeting Abstracts MA2023-01, nr 14 (28.08.2023): 1349. http://dx.doi.org/10.1149/ma2023-01141349mtgabs.
Pełny tekst źródłaImahori, Hiroshi. "Non-Fullerene Acceptors for Organic Photovoltaics". ECS Meeting Abstracts MA2023-01, nr 14 (28.08.2023): 1345. http://dx.doi.org/10.1149/ma2023-01141345mtgabs.
Pełny tekst źródłaKim, Minjun, Seung Un Ryu, Sang Ah Park, Yong-Jin Pu i Taiho Park. "Designs and understanding of small molecule-based non-fullerene acceptors for realizing commercially viable organic photovoltaics". Chemical Science 12, nr 42 (2021): 14004–23. http://dx.doi.org/10.1039/d1sc03908c.
Pełny tekst źródłaLee, Youngwan, Telugu Bhim Raju, Hyerim Yeom, Peddaboodi Gopikrishna, Kwangmin Kim, Hye Won Cho, Jung Woo Moon, Jeong Ho Cho, Jin Young Kim i BongSoo Kim. "Alkyl Chain Engineering of Low Bandgap Non-Fullerene Acceptors for High-Performance Organic Solar Cells: Branched vs. Linear Alkyl Side Chains". Polymers 14, nr 18 (12.09.2022): 3812. http://dx.doi.org/10.3390/polym14183812.
Pełny tekst źródłaLi, Xian’e, Qilun Zhang, Xianjie Liu i Mats Fahlman. "Pinning energies of organic semiconductors in high-efficiency organic solar cells". Journal of Semiconductors 44, nr 3 (1.03.2023): 032201. http://dx.doi.org/10.1088/1674-4926/44/3/032201.
Pełny tekst źródłaYamakata, Akira, Kosaku Kato, Takumi Urakami, Hirofumi Sato, Masahiro Higashi, Tomokazu Umeyama i Hiroshi Imahori. "(Invited) Observation of Free Carriers in Non-Fullerene Acceptors with Broadband Mid-Infrared Transient Absorption Spectroscopy". ECS Meeting Abstracts MA2023-01, nr 14 (28.08.2023): 1361. http://dx.doi.org/10.1149/ma2023-01141361mtgabs.
Pełny tekst źródłaChen, Tao, Rui Shi, Ruohua Gui, Haixia Hu, Wenqing Zhang, Kangning Zhang, Bin Cui, Hang Yin, Kun Gao i Jianqiang Liu. "Fluorination of Terminal Groups Promoting Electron Transfer in Small Molecular Acceptors of Bulk Heterojunction Films". Molecules 27, nr 24 (18.12.2022): 9037. http://dx.doi.org/10.3390/molecules27249037.
Pełny tekst źródłaCui, Yong, Huifeng Yao, Ling Hong, Tao Zhang, Yabing Tang, Baojun Lin, Kaihu Xian i in. "Organic photovoltaic cell with 17% efficiency and superior processability". National Science Review 7, nr 7 (5.12.2019): 1239–46. http://dx.doi.org/10.1093/nsr/nwz200.
Pełny tekst źródłaIm, Chan, Sang Woong Kang, Jeong Yoon Choi, Jongdeok An, Júlia Mičová i Zdeněk Remeš. "Spatial Balance of Photogenerated Charge Carriers in Active Layers of Polymer Solar Cells". Molecules 28, nr 15 (2.08.2023): 5823. http://dx.doi.org/10.3390/molecules28155823.
Pełny tekst źródłaJanjua, Muhammad Ramzan Saeed Ashraf. "Impact of symmetry breaking on the performance of non-fullerene acceptors (NFAs) for photo and thermally stable organic solar cells (OSCs): A DFT-based interrogation and investigation". Journal of Photochemistry and Photobiology A: Chemistry 444 (październik 2023): 115003. http://dx.doi.org/10.1016/j.jphotochem.2023.115003.
Pełny tekst źródłaCao, Mingwei, Lei Wang, Huan-huan Gao, Hao Jiang i Hai Yang Song. "Intrinsic Influence of Selenium Substitution in Thiophene and Benzo-2,1,3-thiadiazole on Electronic Structure, Excited States and Photovoltaic Performances Evaluated by Theoretical Calculation". New Journal of Chemistry, 2022. http://dx.doi.org/10.1039/d2nj04490k.
Pełny tekst źródłaBiswas, Swarup, Yongju Lee, Hyojeong Choi i Hyeok Kim. "Recent Developments in Non-Fullerene-Acceptor-Based Indoor Organic Solar Cells". Journal of Physics: Materials, 10.10.2023. http://dx.doi.org/10.1088/2515-7639/ad01df.
Pełny tekst źródłaLee, Wonho, Dongmin Lee, Yongchan Jang, Jeonga Kim, Sang Young Jeong, Han Young Woo, Donggu Lee, Jong Bok Kim, Youngmin Lee i Changyeon Lee. "Impacts of Metal Oxide Diffusion and Materials Design on Thermal Stabilities of Non-Fullerene Polymer Solar Cells". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta07390k.
Pełny tekst źródłaKhatua, Rudranarayan, Bibhas Das i Anirban Mondal. "Rational Design of Non-Fullerene Acceptors via Side-Chain and Terminal Group Engineering: A Computational Study". Physical Chemistry Chemical Physics, 2023. http://dx.doi.org/10.1039/d2cp05958d.
Pełny tekst źródłaJi, Yiwen, Lingxia Xu, Xinyu Mu, Wenjing Wang i Kun Gao. "Photoinduced intra- and inter-molecular charge transfer dynamics in organic small molecules with intra-molecular push-pull electronic structure". Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc01534j.
Pełny tekst źródłaChen, Kaixuan, Huan Wei, Ping-An Chen, Yu Liu, Jing Guo, Jiangnan Xia, Haihong Xie, Xincan Qiu i Yuanyuan Hu. "Band-like transport in non-fullerene acceptor semiconductor Y6". Frontiers of Optoelectronics 15, nr 1 (26.05.2022). http://dx.doi.org/10.1007/s12200-022-00019-2.
Pełny tekst źródłaXu, Lei, Sunsun Li, Wenchao Zhao, Yaomeng Xiong, Jinfeng Yu, Jinzhao Qin, Gang Wang i in. "The Role of Solution Aggregation Property towards High‐Efficiency Non‐Fullerene Organic Photovoltaic Cells". Advanced Materials, 26.04.2024. http://dx.doi.org/10.1002/adma.202403476.
Pełny tekst źródłaPadula, Daniele, Alessandro Landi i Giacomo Prampolini. "Assessing alkyl side chain effects on electron transport properties of Y6–derived non–fullerene acceptors". Energy Advances, 2023. http://dx.doi.org/10.1039/d3ya00149k.
Pełny tekst źródłaSuthar, Rakesh, T. Abhijith i Supravat Karak. "Machine-Learning-Guided Prediction of Photovoltaic Performance for Non-fullerene Organic Solar Cells using Novel Molecular and Structural Descriptors". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta04603f.
Pełny tekst źródłaPranav, Manasi, Atul Shukla, David Moser, Julia Rumeney, Wenlan Liu, Rong Wang, Bowen Sun i in. "On the critical competition between singlet exciton decay and free charge generation in non-fullerene-based organic solar cells with low energetic offset". Energy & Environmental Science, 2024. http://dx.doi.org/10.1039/d4ee01409j.
Pełny tekst źródłaManikandan, Suraj, i Jens Wenzel Andreasen. "Integration of Photovoltaic Organic Materials into mm-Wave Technologies: Towards Self-Powered Phase Shifters". Journal of Materials Chemistry C, 2024. http://dx.doi.org/10.1039/d4tc02828g.
Pełny tekst źródłaPeng, Jing, Lijiao Ma, Huixue Li, Guanlin Wang, Zhihao Chen, Feiwu Chen, Jianhui Hou i Shaoqing Zhang. "A Comprehensive Study on the Halogenation Effect of Non-Fullerene Acceptors for Photovoltaic Application". Materials Chemistry Frontiers, 2024. http://dx.doi.org/10.1039/d4qm00648h.
Pełny tekst źródłaTang, Yabing, Hong Zheng, Xiaobo Zhou, Zheng Tang, Wei Ma i Han Yan. "N-Dopants Optimize the Utilization of Spontaneously Formed Photocharges in Organic Solar Cells". Energy & Environmental Science, 2023. http://dx.doi.org/10.1039/d2ee03612f.
Pełny tekst źródłaGiannini, Samuele, Jesús Cerdá, Giacomo Prampolini, Fabrizio Santoro i David Beljonne. "Dissecting the nature and dynamics of electronic excitations in a solid-state aggregate of a representative non-fullerene acceptor". Journal of Materials Chemistry C, 2024. http://dx.doi.org/10.1039/d4tc01716a.
Pełny tekst źródłaYang, Yezi, Chuang Yao, Lei Li, Maolin Bo, Meng He i Jinshan Wang. "Isomerization of two-dimensional non-fullerene electron acceptor materials for developing high-performance organic solar cells". Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc02373c.
Pełny tekst źródłaGao, Xiang, Fengbo Sun, Xinzhu Tong, Xufan Zheng, Yinuo Wang, Cong Xiao, Pengcheng Li, Renqiang Yang, Xunchang Wang i Zhitian Liu. "Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells". Frontiers of Optoelectronics 16, nr 1 (23.04.2023). http://dx.doi.org/10.1007/s12200-023-00063-6.
Pełny tekst źródłaSharma, Ganesh D., A. R. Khokhlov, M. L. Keshtov, D. Y. Shikin, D. Y. Godovsky, V. N. Sergeev, J. Liu, D. P. Kalinkin, V. G. Alekseev i Shyam Shankar S. "Non‐fused nonfullerene acceptors with asymmetric benzo[1,2‐b:3,4‐b', 6,5‐b"]trithiophene (BTT) central donor core and different acceptor terminal units for organic solar cells". Chemistry – A European Journal, 7.10.2024. http://dx.doi.org/10.1002/chem.202403193.
Pełny tekst źródłaZhugayevych, Andriy, Kun-Han Lin i Denis Andrienko. "Electronic coarse-graining of long conjugated molecules: Case study of non-fullerene acceptors". Journal of Chemical Physics 159, nr 2 (10.07.2023). http://dx.doi.org/10.1063/5.0155488.
Pełny tekst źródłaTang, Yahui, Wen Liang Tan, Zhuping Fei, Martin Heeney i Christopher R. McNeill. "Different Energetics at Donor:Acceptor Interfaces in Bilayer and Bulk‐Heterojunction Polymer:Non‐fullerene Organic Solar Cells". Solar RRL, 13.08.2023. http://dx.doi.org/10.1002/solr.202300471.
Pełny tekst źródła