Gotowa bibliografia na temat „Non-conventional Energy - Solar Energy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Non-conventional Energy - Solar Energy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Non-conventional Energy - Solar Energy"
Naim, Mona M., i Mervat A. Abd El Kawi. "Non-conventional solar stills Part 2. Non-conventional solar stills with energy storage element". Desalination 153, nr 1-3 (luty 2003): 71–80. http://dx.doi.org/10.1016/s0011-9164(02)01095-0.
Pełny tekst źródłaAlkilani, Fouad, Ouassini Nemraoui i Fareed Ismail. "Performance evaluation of solar still integrated with thermoelectric heat pump system". AIMS Energy 11, nr 1 (2023): 47–63. http://dx.doi.org/10.3934/energy.2023003.
Pełny tekst źródłaAbdullah ALHinai, Humaid, Azrul Mohd Ariffin i Miszina Osman. "Revolutionizing Oman's energy network with an optimal mixture renewable energy source". AIMS Energy 11, nr 4 (2023): 628–62. http://dx.doi.org/10.3934/energy.2023032.
Pełny tekst źródłaKhorgade, Shubham, Apeksha Wankhede, Akhil Gajbhiye, Ankit Ramteke, Sarangkumar P. Wath i Yashwant Sarpate. "Integrated Energy Creation Using Wind Energy and Solar Energy". Journal of Thermal Energy Systems 8, nr 2 (23.05.2023): 1–8. http://dx.doi.org/10.46610/jotes.2023.v08i02.001.
Pełny tekst źródłaVieira, Thiago M., Ézio C. Santana, Luiz F. S. Souza, Renan O. Silva, Tarso V. Ferreira i Douglas B. Riffel. "A novel experimental procedure for lock-in thermography on solar cells". AIMS Energy 11, nr 3 (2023): 503–21. http://dx.doi.org/10.3934/energy.2023026.
Pełny tekst źródłaSahu, Usha S. "Designing and Fabrication Non-Conventional Energy: A Review on Literature". International Journal for Research in Applied Science and Engineering Technology 10, nr 6 (30.06.2022): 4881–85. http://dx.doi.org/10.22214/ijraset.2022.44903.
Pełny tekst źródłaHandayani, Noer Abyor, i Dessy Ariyanti. "Potency of Solar Energy Applications in Indonesia". International Journal of Renewable Energy Development 1, nr 2 (1.07.2012): 33–38. http://dx.doi.org/10.14710/ijred.1.2.33-38.
Pełny tekst źródłaSingh, Vikram, i Harpreet Kaur Channi. "Analysis of Floating Solar Panels for Solar Pumping Irrigation System". IOP Conference Series: Earth and Environmental Science 1110, nr 1 (1.02.2023): 012074. http://dx.doi.org/10.1088/1755-1315/1110/1/012074.
Pełny tekst źródłaKumar, Laveet, Jahanzaib Soomro, Hafeez Khoharo i Mamdouh El Haj Assad. "A comprehensive review of solar thermal desalination technologies for freshwater production". AIMS Energy 11, nr 2 (2023): 293–318. http://dx.doi.org/10.3934/energy.2023016.
Pełny tekst źródłaSaad Bin Arif, M., Uvais Mustafa i Shahrin bin Md. Ayob. "Extensively used conventional and selected advanced maximum power point tracking techniques for solar photovoltaic applications: An overview". AIMS Energy 8, nr 5 (2020): 935–58. http://dx.doi.org/10.3934/energy.2020.5.935.
Pełny tekst źródłaRozprawy doktorskie na temat "Non-conventional Energy - Solar Energy"
Baziotopoulos, Con, i mikewood@deakin edu au. "Utilising solar energy within conventional coal fired power stations". Deakin University. School of Engineering and Technology, 2002. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20060817.145445.
Pełny tekst źródłaRowe, Scott Christian. "Pilot Plant Analysis, Experiments, and Control for the Hybridization of Transient Solar Heat with Conventional Utilities". Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10791867.
Pełny tekst źródłaThe direct capture of solar heat is now commercial for electrical generation at 550 °C (1000 °F), which has provoked interest in solar driven approaches to commodity and fuels production at higher temperatures. However, conventional commodity and fuels facilities often operate continuously regardless of weather and nighttime conditions. Conversely, direct sunlight is immediately lost upon shading by clouds and sunset. Beyond inconvenience, this intermittency has the potential to destroy high temperature equipment through thermal fatigue and thermal shock. To overcome interruptions in solar availability we propose the inclusion of direct sunlight in commodities and fuels production as a supplement to conventional electrical heating. Within this regime conventional utilities are ideally sourced from sustainable stored or orthogonal energy sources. Control is needed to substitute solar, which can be lost within seconds during transient weather, with electrical heat. To explore control strategies for the alternation of solar and electrical heat a new facility was constructed at the University of Colorado, Boulder. Specifically, a 45 kW 18 lamp high-flux solar simulator was erected that approximates the sunlight found in actual concentrated solar plants. Calorimetry was analyzed for the measurement of extreme radiance in this testbed. Results from calorimeter design were applied to radiation measurement from the lamps, which were capable of delivering 9.076±0.190 kW of power to a ?10 cm target with a peak flux of 12.50 MW/m2 (12,500 “suns”). During this characterization a previously unknown observer effect was seen that differentiates radiative heat from lamps and the energy delivered by sunlight in actual concentrated solar facilities. This characterization allowed confident experimentation within the lamp testbed for control studies on a 15 kW solar-electric tube furnace for commodities and fuels production. Furnace electric heat was manipulated by four different linear control strategies for the rejection weather transients reproduced by the high-flux solar simulator lamps. These included feedback, feedforward feedback, model predictive control, and model predictive control with a weather forecast. It was found that model predictive control with a forecast best maintained furnace conditions. Prior researchers have suggested that forecasts would be useful in solar control, which was shown across simulation and experiment.
Ma, Yizheng. "PHOTOVOLTAIC ENERGY POTENTIAL FOR NON- RESIDENTIAL BUILDINGS IN VISBY". Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448444.
Pełny tekst źródłaRader, Thomas J. "Comparing Estimates of the Capacity Values of Photovoltaic Solar Power Plants Using Hourly and Sub-hourly Data". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1353966527.
Pełny tekst źródłaLissau, Jonas Sandby. "Non-Coherent Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films for Efficient Solar Light Harvesting". Doctoral thesis, Uppsala universitet, Fysikalisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229831.
Pełny tekst źródłaQandil, Hassan Darwish Hassan. "Investigations of the Fresnel Lens Based Solar Concentrator System through a Unique Statistical-Algorithmic Approach". Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1609121/.
Pełny tekst źródłaDallas, William. "Resonance ultrasonic vibrations (RUV) for crack detection in silicon wafers for solar cells". [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001848.
Pełny tekst źródłaBaig, Hasan. "Enhancing performance of building integrated concentrating photovoltaic systems". Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/17301.
Pełny tekst źródłaJunda, Maxwell M. "Spectroscopic Ellipsometry as a Versatile, Non-Contact Probe of Optical, Electrical, and Structural Properties in Thin Films: Applications in Photovoltaics". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1493148258156143.
Pełny tekst źródłaHibberd, Christopher J. "Development of non-vacuum and low-cost techniques for Cu(In, Ga)(Se, S)2 thin film solar cell processing". Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/5840.
Pełny tekst źródłaKsiążki na temat "Non-conventional Energy - Solar Energy"
1935-, Furlan G., red. 1985 Workshop of Non-conventional Energy Sources and Material Science for Energy: I.C.T.P., Trieste, 2nd-20th Sept., 1985. Singapore: World Scientific Pub., 1985.
Znajdź pełny tekst źródłaWorld Institute of Sustainable Energy (India), red. Power drain: Hidden subsidies to conventional power in India : a WISE research report. Pune: World Institute of Sustainable Energy, 2008.
Znajdź pełny tekst źródłaWorkshop, on the Physics of Non-Conventional Energy Sources and Material Science for Energy (1985 Trieste Italy). 1985 Workshop on the Physics of Non-Conventional Energy Sources and Material Science for Energy: I.C.T.P., Trieste, 2nd-20th, Sept., 1985. Singapore: World Scientific, 1987.
Znajdź pełny tekst źródłaWorld Institute of Sustainable Energy (India), red. Power drain: Hidden subsidies to conventional power in India : a WISE research report. Pune: World Institute of Sustainable Energy, 2008.
Znajdź pełny tekst źródłaWorld Institute of Sustainable Energy (India), red. Power drain: Hidden subsidies to conventional power in India : a WISE research report. Pune: World Institute of Sustainable Energy, 2008.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Studying the thermal/non-thermal crossover in solar flares: Final report, NRA-92-OSSA-17. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Studying the thermal/non-thermal crossover in solar flares: Final report, NRA-92-OSSA-17. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Studying the thermal/non-thermal crossover in solar flares: Final report, NRA-92-OSSA-17. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaR, Bhalero A., i Trivedy R. K, red. Non-conventional energy sources: State of art. Agra: Current Publications, 2007.
Znajdź pełny tekst źródłaTechnology Information, Forecasting and Assessment Council (India), red. A report on non-conventional energy sources. New Delhi: Technology Information, Forecasting & Assessment Council, Dept. of Science & Technology, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Non-conventional Energy - Solar Energy"
Islam, Md Amirul, i Bidyut Baran Saha. "TEWI Assessment of Conventional and Solar Powered Cooling Systems". W Solar Energy, 147–77. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0675-8_9.
Pełny tekst źródłaFortuin, Stefan, i Gerhard Stryi-Hipp. "Solar Collectors solar collector , Non-concentrating solar collector non-concentrating". W Solar Energy, 378–98. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_681.
Pełny tekst źródłaVepa, Ranjan. "Non-Conventional Energy Generation: Solar, Wave, and Tidal Energy Generation". W Lecture Notes in Energy, 349–73. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5400-6_8.
Pełny tekst źródłaCoppye, J., E. Demesmaeker, H. E. Elgamel, J. Szlufcik, M. Ghannam, J. Nijs, R. Mertens i in. "Non-Conventional Emitters for Polycrystalline Silicon Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 657–60. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_168.
Pełny tekst źródłaStierstadt, Klaus. "Non-solar Energy Converters". W essentials, 47–55. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38313-8_7.
Pełny tekst źródłaSwet, C. J. "Cool Storage for Solar and Conventional Air Conditioning". W Energy Storage Systems, 349–68. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2350-8_14.
Pełny tekst źródłaMil’shtein, Samson, i Dhawal Asthana. "Design of Heterostructure Solar Cell Using Non-crystalline a-Si/poly-Si". W Harvesting Solar Energy, 19–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93380-7_2.
Pełny tekst źródłaGordon, Harry T., P. Richard Rittelmann, Justin Estoque, G. Kimball Hart i Min Kantrowitz. "Passive Solar Energy for Non-Residential Buildings". W Advances in Solar Energy, 171–206. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2227-6_3.
Pełny tekst źródłaToksoy, M., i O. Devres. "Integral Transform Solution of a One Dimensional Transient Non-Homogeneous Heat Conduction Problem in the Trombe Wall". W Solar Energy Utilization, 618–29. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3631-7_33.
Pełny tekst źródłaHočevar, Mateja, Marko Berginc, Urša Opara Krašovec i Marko Topič. "Dye-Sensitized Solar Cells". W Sol-Gel Processing for Conventional and Alternative Energy, 147–75. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1957-0_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Non-conventional Energy - Solar Energy"
Das, Partha. "Solar energy utilization for geographical exploration". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808685.
Pełny tekst źródłaMehta, J. R. "Regeneration of liquid desiccant using solar energy". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808680.
Pełny tekst źródłaSharma, Priyanjan, i Nitesh Malhotra. "Solar tracking system using microcontroller". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808687.
Pełny tekst źródłaKaramanis, Dimitris. "Passive solar cooling with thermoresponsive nanocomposites". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808677.
Pełny tekst źródłaGajra, Kalpesh M., i Rajkumar S. Pant. "SoPTAS: Solar powered tethered aerostat system". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808684.
Pełny tekst źródłaBanerjee, Alomoy, Arka Majumder, Akanistha Banerjee, Sourav Sarkar i Debdut Bosu. "Harnessing non conventional solar energy through Conventional thermal power sytems". W 2015 International Conference and Workshop on Computing and Communication (IEMCON). IEEE, 2015. http://dx.doi.org/10.1109/iemcon.2015.7344434.
Pełny tekst źródłaSinha, Dola, Amiya Bandhu Das, Dipak Kr Dhak i Pradip Kr Sadhu. "Equivalent circuit configuration for solar PV cell". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808682.
Pełny tekst źródłaMaity, Souradeep, Anurag Singh i Bipul Krishna Saha. "Solar resource assessment in India a case study". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808690.
Pełny tekst źródłaGanguly, Amar K., Debarun Kabi i Anuva Ganguly. "High efficiency Solar Cell using a new material". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808692.
Pełny tekst źródłaTripathi, Mridula, Priyanka Chawla i Kamlesh Pandey. "Natural photosensitizers for solid-state dye sensitized solar cell". W 2014 1st International Conference on Non Conventional Energy (ICONCE). IEEE, 2014. http://dx.doi.org/10.1109/iconce.2014.6808679.
Pełny tekst źródłaRaporty organizacyjne na temat "Non-conventional Energy - Solar Energy"
Elshurafa, Amro, Frank Felder i Nezar Alhaidari. Achieving Renewable Energy Targets Without Compromising the Power Sector’s Reliability. King Abdullah Petroleum Studies and Research Center, marzec 2022. http://dx.doi.org/10.30573/ks--2021-dp23.
Pełny tekst źródłaDiao, Ruisheng, Shuai Lu, Pavel V. Etingov, Jian Ma, Yuri V. Makarov i Xinxin Guo. NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services. Office of Scientific and Technical Information (OSTI), lipiec 2011. http://dx.doi.org/10.2172/1029090.
Pełny tekst źródłaCrumbly, Isaac J., i Haixin Wang. An Analysis of the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non Renewable Energy Sources. Fort Belvoir, VA: Defense Technical Information Center, marzec 2015. http://dx.doi.org/10.21236/ada626067.
Pełny tekst źródłaSalah Uddin, Gazi. Social Benefits of Clean Energy: Evidence from Bangladesh. Asian Development Bank, czerwiec 2023. http://dx.doi.org/10.22617/wps230182-2.
Pełny tekst źródłaAyele, Seife, Wei Shen, Frangton Chiyemura i Jing Gu. Enhancing China–Africa Cooperation in the Renewable Energy Sector. Institute of Development Studies, marzec 2021. http://dx.doi.org/10.19088/ids.2021.028.
Pełny tekst źródłaDesai, Tapan, i Matt Flannery. Technical - Coal Gasification Technologies Subtopic d: Hybrid Integrated Concepts for IGCC (with CCS) and Non-Biomass Renewable Energy (e.g. Solar, Wind). Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1123379.
Pełny tekst źródłaFabra, Natalia, Eduardo Gutiérrez, Aitor Lacuesta i Roberto Ramos. Do Renewables Create Local Jobs? Madrid: Banco de España, styczeń 2023. http://dx.doi.org/10.53479/29475.
Pełny tekst źródłaPag, F., M. Jesper, U. Jordan, W. Gruber-Glatzl i J. Fluch. Reference applications for renewable heat. IEA SHC Task 64, styczeń 2021. http://dx.doi.org/10.18777/ieashc-task64-2021-0002.
Pełny tekst źródłaBilli, M., A. Urquiza Gómez i C. Feres Klenner. Environmental communication and non-conventional renewable energy projects. Content analysis of Chilean mass media. Revista Latina de Comunicación Social, październik 2017. http://dx.doi.org/10.4185/rlcs-2017-1216en.
Pełny tekst źródłaHARDIN, NATHANIEL, ZACHARY DUCA i PATRICK WARD. STUDY OF IONIC MASS TRANSPORT IN NON-CONVENTIONAL ELECTROLYTES FOR ENERGY STORAGE AND CARBON CAPTURE APPLICATIONS. Office of Scientific and Technical Information (OSTI), październik 2021. http://dx.doi.org/10.2172/1827960.
Pełny tekst źródła